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Abstract

In the present research paper, the approximate analytical solutions of the modified radial Schrodinger
equation (MSE) have been obtained with a newly proposed potential called generalized Hellmann—Kratzer
potential (GHKP) model by using the improved approximation scheme to the centrifugal term for any [-states.
The potential is a superposition of the Hellmann-Kratzer potential model and new terms proportional with
(1/r3,1/r4,exp(—ar)/r2and expl—ar) jr?), appears as a result of the effects of noncommutativity
properties of space and phase on the Hellmann—Kratzer potential model. We applied the generalized Bopp's
shift method and standard perturbation theory, in the nonrelativistic noncommutative three-dimensional real
space phase (NC: 3D-RSP) instead to solving MSE directly with star product. The bound state energy
eigenvalues for the some diatomic molecules such asN,,CO, NO and CH obtained in terms of the

generalized the Gamma function, the discreet atomic quantum numbers ( j,Nn,l,Sandm), two infinitesimal

parameters (@,5) which are induced automatically by position-position and phase-phase noncommutativity
properties, in addition to, the dimensional parameters (Vl,V,a, r., De) of GHKP model. Furthermore, we have

shown that the corresponding Hamiltonian operator in (NC: 3D-RSP) symmetries is the sum of the
Hamiltonian operator of the HKP model and two operators, the first one is the modified spin-orbit interaction
while the second is the modified Zeeman operator for the previous diatomic molecule.

Keywords: Schrodinger Equation, Generalized Hellmann—Kratzer Potential Model, Nonrelativistic
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1. Introduction

It is well known that the the Kratzer potential has attracted a great deal of interest over the years and has been
one of the most useful models for study the molecular structure in quantum physics, recently has received a
lot of attention for a wide range of interests generally. To be precise, this potential is very important in many
fields of physics and chemistry such as atomic physics, molecular physics, and quantum chemistry. In
particular, it is used to describe the interactions of diatomic molecules such asN,,CO, NO and CH in

quantum mechanics. In addition, this potential has a long-range attraction behavior when dealing with
relatively long distances between molecules in addition to the short-range (repulsive property) when the
distance between the molecules becomes very small [1-4]. On the other hand, the Yukawa potential (the
screened Coulomb potential) which is one of the exponential types and most realistic short-range potentials in
nuclear Physics. It is characterized by its useful applications in many fields such as solid-state physics,
condensed matter physics and charged particle in weakly non-ideal plasma [5-8]. C. O. Edet et al. [9-10] was
studied the Hellmann—Kratzer potential model (the combined between the Kratzer potential, the Yukawa
potential and the Coulomb potential) within the framework of Nikiforov and Uvarov method and obtained the
nonrelativistic bound state energy eigenvalues of the diatomic molecules N,,CO, NO and CH . In work,

motivated by several recent studies such as the non-renormalizable of the standard model, string theory,
quantum gravity, the noncommutative quantum mechanics NCQM has attracted much attention [11]. The
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noncommutativity of space-time was known firstly by Heisenberg and was formalized by Snyder at 1947. In
the present research paper, we want to extend, the study of C. O. Edet et al. in ref. [10] to the nonrelativistic
NCQM case to the possibility of finding other applications and more profound interpretations in the sub-
atomics scales. The nonrelativistic energy levels for diatomic molecules (N,,CO, NO and CH ), which

interacted with generalized Hellmann—Kratzer potential (GHKP) model in the context of the noncommutative
space phase, have not been obtained yet. The main purpose of this paper is to solve the modified Schrodinger
equation MSE with GHKP model:

2
\ r-r,) Viexp(-ar R B-V, C V,expl-ar) aV,expl-ar
th(r):—T°+De[r ]+1X'°r( R e

[

in (NC: 3D-RSP) symmetries using the generalized Bopp's shift method which depends on the concepts that
we present below in the third section. The structure of nonrelativistic noncommutative quantum mechanics
(NRNCQM) based to NC canonical commutations relations in Schrédinger, Heisenberg and interactions
pictures (SP, HP and IP), respectively, as follows (Throughout this paper, the natural units ¢ =n=1 will be
used) [12-18]:

] [Xn (t) Py (t)] %

)
t] T[X[pf)(t "p.,)<]t oo :f'*”1=W?’*—(tﬂ{*wt)?w -ig, @
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[pi, pj]:[pi(t, p;(

4n
én (t)z ()A(” v Py )(t) in (HP and IP, respectively) are depending on the corresponding operators és =X Vv P

00 | . _ : .
Here M :n[1+ —ZJ is the effective Planck constant, however, the operators &, (I)Z(X- \Y% pi)(t)and

in SP from the following projections relations:

{giH (t):exp(ll:l ( - ))§i5 exp(_“:lhk(t_t )) 3{5 ():exp(il:lnc hk( _to))*éis *exp(_”:lnc—hk(t_to))

. . 3)
gil (t)=exp(| ohk( ))é:ls exp( IHohk(t t)) é: () exp( nco- hk( to))*é:is *exp(_iano—hk(t_tO))

here&s =X, v P;. g (t): (Xi VP )(t) and &, (t): (XIi vV Py )(t) are the three representations (SP, HP and
d&, (t
IP) in NRQM, while the dynamics of new systems %() are described from the following motion equations

in NRNCQM:

dg(l;[(t) = [fiH (t)’ |:|hk]:> dé(';t(t) = [én—i (t)a’k H nchk:l )

A

the two operators H,, and I-Alnc_hk present the Hamiltonian operators for (HKP and GHKP) models in NRQM

and NRNCQM, respectively. The very small two parameters 6“"and 0" (compared to the energy) are

elements of two antisymmetric real matrixes and (*) denote to the star product. The generalized star product
between two arbitrary functions (f,g)(x, p) will be f(%, p)d(%, p)=(f *g)x, p) in 3-dimensional NC space-
phase [19-29]:

.
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(f=g)x, p)z(fg —lzewa;fazg —lzé”“agfafgj(x, p) (5)

The second and the third terms in the above equation are the effects of (space-space) and (phase-phase)
noncommutativity properties, respectively. The organization scheme of the recent work is given as follows: In
the next section, we briefly review the ordinary SE with HKP model on based ref. [10]. Section 3 is devoted to
studying the MSE by applying the generalized Bopp's shift method for GHKP model. In the next subsection, by
applying standard perturbation theory to find the quantum spectrum of n™ excited levels in for spin-orbit
interaction in the framework of the global group (NC-3D: RSP) and then, we derive the magnetic spectrum for
GHKP model. In the fourth section, we resume the global spectrum and corresponding NC Hamiltonian
operator for GHKP model and corresponding energy levels of the molecules N,, CO, NO and CH . Finally,

the achieved results are briefly summarized in the last section.
2. Overview of the eigenfunctions and the energy eigenvalues for HKP model in NRQM:

In this section, we shall recall here the time-independent SE for Hellmann—Kratzer potential modeIth(r),
which was studied by C. O. Edet et al. in ref. [10]:

V. (r)=--2 = =4 27 7 (6)
w(r) r r, r r rz2 ¢ r

2
V r—r V,exp(—ar) B-V, C V,exp(—ar

0 + De e + 1 Xp( ) 0 D + 1 Xp( )
where D, is the dissociation energy, I, is the equilibrium internuclear separation, V, and V| are the potential
strength of Coulomb and Yukawa potentials, & is the screening parameter, I is the distance between the two
particles, B =—2r,D, and C = D,r?. If we insert this potential into the SE, we obtain:

d?R
—nl(r) + zﬂ[Enl —Vetr i ]Rnl (I’) =0

d’U,(r) 2du,(r
drzl( )+F dll’( )"‘Zﬂ[Em _Veff—hk:pnl(r):0:> ar?

11 +1)

2

hereU,,(r)= Rmr(r)' Vet i (1) = Vi (r)+

is effective potential, x is the reduced mass of diatomic

molecules (N,, CO, NO and CH), E, is the rotational-vibrational energy spectra of the diatomic
molecules while Nand | are the radial and orbital angular momentum quantum numbers. The complete wave
function lI’(I’,H, (o)zUnl(l’)Ylm(@, (p), as a function of the Jacobi polynomial Pn(zﬂ"’zp)and the spherical

harmonic functions Y," (0, (o)is given by [10]:

P(r,0,0)= N, s™ (L-5)">* P (1- 25 )V, (6, 0) ®)

is the normalization

here N = 2nlp. ol (n+2+27n, +2p)
"\ T(n+1+27,)0(n+2+2p)

4uD,r
constant, s = exp(—ar ), n, =/, — -1 +0, p=A114+5, &, =2—/:(En| -D,), p=—ttee
(24

o

2uV,
§=2uD,r’ +1(1+) and y =— %0 the rotational-vibrational energy spectra E_, of the studied potential,
o

are given by [10]:

y
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2 2 _ _ 2
E - a5 4uD,r, V,a+D, ot [ AuDr + 2Ny 24N, b n+ & )
21 a 2.1 2(n+ &) 2

with £ = %(1+\/1+ 45)

3. Method and Theoretical Approach

3.1 Solution of MSE for GHKP model

In this sub-section, we shall give an overview or a brief preliminary for a GHKP modelV, . (r), in (NC: 3D-

RSP) symmetries. To perform this task the physical form of MSE, it is necessary to replace ordinary three-
-

dimensional Hamiltonian operators Iqhk(p#,xﬂ ) ordinary complex wave function ‘P(rj and E_, (in NRQM)

by three Hamiltonian operators an_hk(f)y,f(#), complex wave function‘i’(?) and new valuesE _,,,

respectively in NRNCQM. In addition to replacing the ordinary product by star product (*) which allows us to
construct the MSE in (NC-3D: RSP) symmetries as [30-33]:

Ho(p, X, )‘P(F)= Em\P(F): ﬁnc_hk(p#,f(#)*\y(a _ Enc_hk‘l’(a (10)

The Bopp's shift method employed in the solutions enables us to explore an effective way of obtaining the
modified potential in NRNCQM, is based on the following commutators [28-34]:

[x,.%,]=[%, @)%, t)=i6,,and [p,.p,]=[p,(t). p, ()] =i6. av

The generalized positions and momentum coordinates()?y,f)ﬂ) in (NC: 3D-RSP) are depended with

corresponding usual generalized positions and momentum coordinates (Xﬂ, p#) in NRQM by the following,

respectively [24-31]:

v nHY
(X,U’ pﬂ)j(ky’ f)//): X,Ll _% P, pﬂ +TXV (12)

The above equation allows us to obtain the two operators f? and f)z in (NC-3D: RSP) [29-34]:
(2, p?)= (. |€)2)=(r2 -6, p? Lo j (13)
The two couplings L® and Eé are (LXG)12 +L,0,,+ LZ®13) and (Lxélz + Lyéza +L, 513), respectively and

P
(L,. L, andL,) are the three components of angular momentum operator L while®,, =6, /2. Thus, the

reduced Schrédinger equation (without star product) can be written as:

l:l nc—hk (f),u ' )zv )* \P(?j = Enc—hklP(Fj = H hk (ﬁ,u ' )zv )V(P) = Enc—hkl//(P) (14)
.
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the Hamiltonian operator H,_, (f;,%;) can be expressed as :

uv MY
hk(p,u #) an-hk(f’ )A(#)E H| X, =X, T PP, =P, +TXV (15)
Now, we want to find the GHKP modelV, , (f):
V(1) =V, ()= 8%, C ,p, o) epr(— af) (16)

£ e
r

. . —_ B-V, C Vel
After straightforward calculations, we can obtain the important terms (———, — and ————
r f?

will be used to determine the GHKP model in (NC: 3D- RSP) symmetries as:

Lo

B-V, B-V, B-V, . ,
T +(B vo)—2r3+o(®)
9:3:%+C€8+0(®2) 17)
r I r r

V,ep(—ar) -V, exp(-af)=V, exp(-ar)+V, %exp (—ar)+0(0?)

this gives the following immediately result:

Viep(-af) _V,exp(-or) v Lo
F r tor?

exp(— ar)+V1§exp(— ar)0(©?) )

By making the substitution above equations (18) and (17) into Eq. (15), we find the global our working
Hamiltonian operator an_hk (f) satisfies the equation in (NC: 3D-RSP) symmetries:

. B-V, C V,expl-ar V, expl—ar Ee
an_hk(py, y)—Hhk(pﬂ, ﬂ){ 2r3°+r—4+ ! 2r(3 a)+a L 2r2( a)jﬁg-}'— (19)

where the operator Hhk(p# , Xﬂ) is just the ordinary Hamiltonian operator with HKP model in NRQM :

2 - f—
Hhk(p#’xv) :p_"' BV, +£+D -:M

2 r re o f 20

while the rest terms are proportional with two infinitesimals parameters (® andg) and then we can be

considered as a perturbations terms H (r) in (NC: 3D-RSP) symmetries as :

per-hk

—

B-V, C V V. Ee
Hper_hk(r):{ 2r30 +r—4+2—r13exp(—ar)+%exp(—ar)}68+a (21)

.
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It is clear that the operator Hhk(p#,xv) is just the Hamiltonian operator for diatomic molecules N,, CO,

NO and CH in ordinary quantum mechanics while the generated part Hpen_hk(r,(@, 5) appears as results of
deformation of noncommutativity space phase. In recent work, we can disregard the second term in

Hpe,t_hk(r, O, 5) because we are interested in the corrections of first order ® and 6.

3.2 Spin-orbit Hamiltonian operator for studied diatomic molecules under GHKP model

In this subsection, we want to derive the physical form of the induced Hamiltonian Hpen_hk(r,G), §) due to

space-phase noncommutativity. To achieve this goal, we replace both (I}_)é and Eé) by useful physical forms
(&9SL and€OSL), respectively [32-37]:

_ B-V, C V V 0
Hso_hk(r,(@,@)zg{(TSO+r—4+2—rl3exp(—ar)+%exp(—ar)j®+z}ﬁg 22)

- [z2 -2 2 2
Here@z(@f2 +0, +®123)1/2,6’=(912 +02 4—913)l and & ~1/137 is the atomic fine structure constant and
R
S denotes the spin of diatomic molecules N,, CO, NO and CH . Thus, the spin-orbit interactions

HSO_hk(r,G, 5) appear automatically as a result of the deformation of the space phase. Now, physically, we

can rewrite the quantum spin-orbit coupling tg as follows :
2 2 2

J=l+s=208=J -L -5 @3

R
Here J is the total momentum of the studied diatomic molecule (N,, CO, NO and CH ). Substitution this
equation into Eq. (22) yields:

 el(B-v, C V aV. 0 |(=2 =2 =2
H re,o)== Ot 2+ L oxp(—ar)+—Lexn(—ar)|®@+— (J -L =S ) 24
N (XX 2{ St hep(-ar)to el )j Zﬂ} 24)

It is well known that, in quantum mechanics, the eigenvalues k(j,l,S) of the spin-orbit coupling tg are

1r.,. -
equal to > [J(j +1)—1(1+21) —s(s +1)] and the eigenvalues of the total operator J are:

=08 1 8 P bl sl

N-values

Which are obtained in the interval|| —S| <] S|| +S|. After straightforward calculation, the radial functions

Rm(l‘) satisfy the following differential equation in NRNCQ for diatomic molecules N,, CO, NO and
CH under GHKP model :

d’R
%(r) + 2lu(Enc—hk B Vnc—eff (r) )Rnl (r) =0 (25'1)

21
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with

Vo ()=V,, (r)+ g{( B _\3/0 + 24 o0 (3_ ar) LVe (2_ ar) )@ + i} 8 I( +3) (25.2)
2r r 2r 2r 2u 2ur

We have introduced the generalized effective potential V (r) in (NC: 3D-RSP) symmetries. We have seen

nc-eff
previously that the induced spin-orbit Hso_hk(r,®,§)is infinitesimal compared to the principal Hamiltonian
operator Hhk(p,X) in NRNCQM for diatomic molecules N,, CO, NO and CH under GHKP model . This

equation cannot be solved analytically for any state | because of the centrifugal term and the studied potential
itself. Therefore, we must use a suitable approximations type suggested by Greene and Aldrich and Dong et al.
(5,9, 10, 38, 39I:

L a’ (26.1)
r’ (l-ep(-ar)f

Thus, we have the following direct consequences:

op(-ar)  a’s op(-ar)  a’s

P -y o @-s) (26.2)
EN @ @ adls a’ __a'
r* (-ep(-ar)) @-s) r' Q-ep(-ar)’ @Q-s)

This allows applying standard perturbation theory to determine the nonrelativistic energy corrections E,

of diatomic molecules at first order of two infinitesimal parameters ® and @ due to noncommutativity
space-phase properties.

3.3 Bound State Solution for spin-orbit operator for diatomic molecules under GHKP model

The  principal goal of this subsection is to determine the energy  spectrum
Eso_hk(n,Vl,Vo,a, r,,D, ], S)E E., Which produced with the effect of the operator Hso_hk(l’,@,H) by
applying standard perturbation theory at first order of (® andé) and through the structure constants which
specified the dimensionality of GHKP model of diatomic molecules N,, CO, NO and CH . Thus, we obtain
the following results:

E, . =N2k(ji1,8) [ s (1—g) (P21 5)] @[B_\!" +C4+V13exp(—ar)+0N21exp(—ar)J+9 dr (27)
0 2r r* 2r 2r 2

. , 1ds : , ,
Where S = eXp(—ar), this allows us to obtain dr = ——— . After introducing a new variable Z =1—2s, we

a S
obtain dr =£ dz
al-z

Z+
andl-s= T the approximations (26.2) in that case have the following form:

.
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exp(—ar)  a’s oyt L1 exp(—ar)  a’s 4y 177

rz 1-s) - (z+1)7° e 1-sy (z+1)°
i~ o a® 8a’ 1 ~ at _ at _ 16a*

S oo ar) s (1 N T W enCar)  G_sf  (ze1)f

(28)

ylen

If we introduce the following five factors T. (n r,,D ) with (i = ]TS) as

T,(nr,,D,)= 2= Yo . Vo js2'7 @— )2 [pem2o) (1 - 2s)]
T,(n,r,,D,)=C j s (1— s)l*ZP[PQ” 20)(1 — 23)] —dr

(29)
or )dr

T,(nr.D,)= Vi jsz” (A—s)"20 [Pm20) (1 2s)]

T,(n,r,,D, )_ j s%h (L— s)l*zf’[P(z” 2P)(1— 25)] ar)dr

T,(n,r,,D,)= [ s @—s)*2[P"2")(2)f dr
0

Substituting Eqg. (28) Into Eq. (29), the five factors T (n r.,D ) become like the following forms:

1 len

B-V,

22p+27]

T,(nr,,D,)=2 a j(l z)""" (z+1)1+2”3[P2’7"2p ]dz

1les

8Ca?

2 2p+2n, g

T,(n,r,,D,) (@—z)m (2 +1)r20 [Pn(z”"'z”)(z)]zdz

1 lgy

.) v, T (1-z)" (z+)42° [Pn(z”n'zf’)(z)]2 dz (30)

2p+2
2p+ T 0

T,(n,r,,D

1l

)= o T2 @ P )f

22+2p+27]n 0

T,(n,r,,D

1lg

1 o 2, -1 142 2,,2 2
T (n,l’e,D ) m E‘;(l—Z)n (Z'i'].)+ p[Pn( 'In p)(Z)] dz
Instead of solving the modified-radial Schrédinger equation for the effective GHKP model V. eff( ) given by
Eq. (25.2), we now solve the MSE for the generalized effective potential V4 (r) given by the previous

approximations:

pe, a’lli+)) 3y,

sy o 2 ) zﬂ} ,u(l—S)

D,j.1,s)

Vnc-eff (r): a ——tna

B-V, «a’C Aos , B-V, a‘C  Va’s a¥V
+ -+D, -
1-s  (1-s) 1-s

Eso-hk(n’vl’VO' a, |l e’

On arranging Eq. (27), we obtain our nonrelativistic energy corrections at first

order of two infinitesimal parameters ® and 0 for the diatomic molecules N,, CO, NO and CH as:

2nln aF(n+2+277 -|-2p) . 4 0
E V.V, a.r, D, . L k(j,I,sk®XT,(n,r,,D,)+—T.(n,r,,D,
so-hk(n 170 a, e J S) (n+1+277n)F(n+2+2p) (J S E (n re )+ 2,u (n re ) (32)

.



To Physics Journal Vol 4 (2019) ISSN: 2581-7396 http://www.purkh.com/index.php/tophy

For the ground state (N =0), we have Po(ﬁ’y)(z):l, thus the above five factors in Eq. (30) reduced to the

following simple form:

B-V, + 8Cqad

Tn=0r.D,)= 5t 2e® [(-2) (2 +)7 P dr, Tyn =00, )= (-2 2+ e
N, ) vV o .
T,(n=0,r,,D,)= 22);21% g(l— )" (z+1)*2dz, T,(n=0,r,,D,)= 22”1;2% g(l_ 2P (2 +1)% dz 33)
L% i
e (A A

Comparing Eq. (33) with the integral of the form [40]:

mn

]‘1(1_ p)a(1+ p)ﬂ Pn(]a.ﬂ)Pn(a,ﬁ)dp _ pa+pl F(n +a +1)F(n +ﬂ+1)
-1

2n+a+,8+1)r(n+a+,8+l n!

T n+a B i  o2n+a+fil T(n+a+1)(n+p+1) _
_jl(l— p)' T+ p)"*Pdp=2 Grvaspincas piD) for (n=0,1,....) (34)

We have five factors as:

T(n,D,)= 2 oy Llmllo) p p)oces  TEn2o-2)

e 2 (200 +2p - 2)0 (53 + 29 - 2)' (2110 + 20 - 3) (27, + 2 -3)
T.(nr.D,)= oV, T(em+)l(2p-1) ¢ (n.r..D.)=V,a (25, +1)T(2p+2) 35)
3\ e e 2 (2m+2p -1 (2, +2p-1)" 4V 7T T (0 425 4 2)0(2n, + 20 + 2)

and T,(n,r,,D,) 1 Cln)lzp+2)

1 e =—

a (@ +2p +1)0 (2, +2p +1)

2p

withg, = —?(EO, - De). Substituting Egs. (35) into Eq. (32), we obtain nonrelativistic energy corrections for

the ground state Eso_hk(n =0V, \V,,a,r1,,D,, j,|,S) at first order of two infinitesimal parameters ® and 0

1 les

for the diatomic molecules N,,CO, NO and CH as:

E,.(n=0V,V,a,r,D, j,I,s):Mk( j,I,s){@T(n:O,Vl,VO, B,C De)+2‘9T5(n:o r
"

D
T(L+2,)r(2+2p) )t 69

I

1 lay ey

17e1 "e 17e? e

4
With T(n:0,V1,VO,B,C r.,D ):ZTi (n:O r.,,D ) For the first excited state (N =1), we have Pl(a’ﬁ)(z)z
i1

1-z
a+l—(a+ [+ Z)T thus the five factors in Eq. (30) reduced to the following simple form:

:
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T,(n=1r,,D,)= sz+\2{7° 2a2+f(1—2)2’7"’1(z +1)27?[a—b(1-2z)[dz
T,(n=1r,D,)= ;on Tz (z+1%[a—b1-z) dz
T,(n=1r,,D, )Ezzp—w7 Tz @+ 2[a-b-2z)dz 67
T.(n=1r,,D, )522+2P+2’7 Tz @z +1)**[a—bl-z)Pdz
T.(h=1r,,D, )E ! Tz (z +)"*[a—b—2)fdz

1+2p+2
2 pP+ein 0

Witha=2mn, +1, b=n+p+l, n,=Jg-f-x+J andg, = 2—'L:(ElI —D,). A direct simplification to Eq.
a
(37) gives :

T,(n=1r,D,)= ;M; 2a%(a’ j(l 2" (z+1)%2dz - 2ab j(l 2" (z+1)% Mz +b? j(l 2" (2+1)% 7 dz)
T,(n=4r,D,)= 282Cjzﬂ (a j(l 2" Mz +1)% 2 dz - 2ab+jw(1 )" (z+1)%dz +b? j(l—z)z""”(z+l)2p‘3dz) (38.1)
0 0

T,(n= 1,re,De)5220;\+/21)7 (a® j(l 2f" (2+1)% 2dz— 2ab | (1 2" (z+1)% 2 dz +b? j(l 2™ (z+1)% 7 dz)
T,(h=1r,D,)= MM” (@ j(1—2)2”"(z+1)1+2”dz—2ab+jw(1—2)2’7"+1(z+1)1*2”dz+b2+jac(1—z)2””+2(z+1)“2”dz)

2 0 0 (38.2)
T,(n=1r,D,)= 21+2p]+.271 (a® j(l )" Nz +1)"* dz - 2ab j(l 2" (2+1)"% dz +b? j(l )"z +2) % dz)

"a 0

Comparing Egs. (38.1) and (38.2) with the integral (34), we have the five factors as:

_ a’ F(znl) (2p-1) o Tlom+1)l(2p-1) 2 Dlom +2)0(2p-1)
T(h=1r,D,)=2(B- V)a( )(y i —ab (-0 1) b ) )

T,(n=1r,,D,)=4Ca (; F((th)) (2P 3) ab F((Zyﬂl +3) ((ZP )2) b2 F(i?jl;%lézi; 2)) (39.1)

(-
s SRt

T,(1=1r.D, )= &V,a(a’ (2 +1)0(2p +2) 4ab T(2m +2)[ (20 + 2) ap2 Fem+ 3)(2p+2)

T (7+ 2)r(7+ 2) ) (7+3)F(7 +3) ' (7+4)F(7 +4) (39.2)
T.(=1r.D,)= é (a? 1“(52211);;((27/):5) _aab l"((27771+ +2 3%1"(52:) 2+) 2) +4b? F((2Z1++3§1l1252 +p3-; 2)

With y =21, +2p. This allows us to obtain nonrelativistic energy corrections for the first excited

state Eso_hk(n =1V, V,,a,r1,,D,, j,|,S) produced by spin-orbit operator H, ks(r,@,@) at first order of

two infinitesimal parameters ® and 6 for the diatomic molecules N,,CO, NO and CH:

:

s les
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~ 2,00(3+29, +2p)
" T(2+27,)0(3+2p)

E..(n=1V,V,,B,C,]1ls) k(j,l,s)g{@T(nzl,Vl,Vo,B,C r De)+20T5(n:1r De)} (40)

1ley 1 1ey
U

yley 1 ley

4
WithT(n=1V,,V,,B,C,r,,D,)=3T,(n=Lr,,D,). Thus, for any excited state, the nonrelativistic energy
i1

corrections Eso_hk(n,Vl,Vo,a r,,D,, j,I,S) which produced by spin-orbit operator Hso_hk(r,G, 5) at first

1 les
order of two infinitesimal parameters ® and @ for the diatomic molecules N,,CO, NO and CH can be
written as:

Eonc(nV,,Vy,a,1,,D,, j,1,8) = Bfk(j,l,s){m(n,vl,vo,B,c,re,De)+2iT5(n,re,De)} (41)
7]

1 les 1 les

4
with T(n,V,,V,,B,C,r,,D,)=3T,(n,r,,D,). This allow us to obtain the following important physical
i-1

results for diatomic molecules N,,CO, NO and CH under GHKP model:
Hso—hk(r’ ®’ g n,dm (r1 01 (0) = Eso—hk(n’vl’vo &, re ! De ! j’ I78)\Pnrlm (r' 0' (D) (42)

3.4 Bound state solution for modified Zeeman effect for GHKP model

In this subsection, it is possible to obtain the second automatically symmetry for diatomic molecules N,,CO,

NO and CH under GHKP model. This physical phenomenon is induced of the influence of an external

uniform magnetic field N, if we make the following two simultaneous transformations to ensure that previous
calculations are not reputed :

©.0)> (1o @3

here A and o are just two infinitesimal real proportional constants, and to simplify calculations without

compromising physical content we choose the magnetic field X =Xk . Then we transform the spin-orbit
coupling to new physical phenomena as follows:

p _
(B—V0 LoV exp(—ar)+avle>go(—ar)j8+0 R l(B—VO R exp(—ar)+avlexp(—ar)j+a \L, (@4
2 ! 2r’ 2r’ 2u 2t ! 2r ig 2u

This allowed deriving the modified magnetic Hamiltonian operator Hz_hk(r,/l, g‘) for previous diatomic
molecules under GHKP model in global (NC: 3D-RSP) symmetries as:

— B-V, C V,exp(-ar) aV,en(-ar)) o
Hz—hk<r’ﬁ“’o_):{ﬂ“( 2r30 +r_4+ - 2r(3 )+ : 2r2( )J-i_Z}Nmod—z (45)

-

- =
Here N, =—S¥X denote to Zeeman effect in commutative quantum mechanics, while N =NJ-N,is

the modified Zeeman effect. To obtain the exact NC magnetic modifications of energy for ground state, first
excited state and N" excited states of diatomic molecules N,,CO, NO and CH under GHKP model

%

mod-z
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Erag1=0.M IV Vg, 0, D), Ep iy (N=11mV, V00, D,) and E,(01,MV,Vy,.1,,D,) and just replacek(j,1,s)

el Ze e e

and © in the Egs. (36), (40) and (41) by the following parameters m and y , respectively:

2n.al(2+2n, +2 c
Eeg c(1=0,1,MV, .V, ,1,,D, )= 117(01+Z(UH)F272‘3+Z;))gx{/lT(n=0,Vl,V0,B,C,re,De)+;Ts(n=0, re,De)}m
E....(n=11,mV,V, ar,D,)= 2mal(3+2n, +2p) AT(1=1V,V,,B,C,r,,D,)+-ZT,(n=1r,,D, )'m (46)
‘ T(2+27,)0(3+2p) 2u

2nly,al(n+2+2, +2p)

E I,mV,V D, )=
mag—hk(n’ MYy, Vy,a.r, D) I(n+1+27,)0(n+2+2p)

yles

eN{/lT(n,Vl,VO, B.C,r,,D,)+ ZiTs(n, r,,D, )}m
U

We have — | <m < +l, which allow us to fix (2l +1) values for discreet numbers m . It should be noted that
the results obtained in Eq. 43) could find it by direct calculation

Eagnk = <‘P(r, 0, goj H. (r, X g‘l‘P(r, 0, go)> that takes the following explicit relation:

E

mag—hk

. - oo, B-V, C V.ep(-ar) aV,ep(-ar)) o
(n7 j,m,S): NliNm £ g2 (1_5)1 Zp[Pn(Zn 20)(1—28)]2{3{ 2r30 +F+ 1 2[,(3 ).|. 1 ZrS )j+2ﬂ}dr 47)

It is clear that, the Eq. (47) can be rewritten as follows:

. B 2n!77nozl“(n+2+277n +2p) 4 o
Epag_nic (N, 1M, 8.V, Vg, 0,1, D, ) = F(n+1+2nn)1“(n+2+2p)xm /ETi(n,re,De)Jr 2ﬂTs(n,re,De) (48)

The 5-factors T, (n r De) are given by Eq. (30). Then we find the magnetic specters of energy produced by

1l

the operator H

ks (I’,ﬂ.,O') for the ground state and first excited states repeating the same calculations in

the previous subsection. We end this subsection by addressing the important results :
H z-hk (r’ ®' 9)\Pnrlm (r’ 0’ (P) = Emag—hk (n' j’ m, S'VI’VO 1 &, re’ De )\Pnrlm (r' 9’ ¢) (49)

4. Results and discussion

In the previous subsections, we obtained the solution of the MSE for GHKP model, which is given in Eq. (25.2)
by using the generalized Bopp's shift method and standard perturbation theory. The energy eigenvalues are

th
calculated in the 3D space-phase. The modified eigenenergies for the ground state, first excited state and 1

excited states of diatomic  molecules N, CO,NO and CH under GHKP  model
E . (n=0V,V,ar,D,jlms), E_. (n=1V,V,ar,D,, jlms) and E,_,(0V,V,,ar,D,, jlms)

yles

5
with spin S are obtained in this paper on based to our original results presented on the Egs. (36), (40), (41)
and (46), in addition to the ordinary energy E_, for Hellmann—Kratzer potential model which presented in the

Eq. (9) take the form:

.
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E,.(n=0V,V,,ar,D, jl,ms)=E, +m2'7°r(2+2'7°+2p){(®k(j,|,s)+ Bﬂm)l’(n:O,Vl,VO,B,C,re,De)+T5(n:0’re'De)(k(j,I,s)9+z\’om)}
T+ 25,)0(2 +2p) 2u (50)
. nI(3+2n,+2 . Tn=L0,D )/ \s o
E..(1=L1V,V, ar,D, jl,ms)=E, +&XW{(GK(],|,S)+ Blm)T(n:l,Vl,VO,B,C,re,De)+%(k(J,l,s)6 " Bo-m)}
. 2nin I(n+2+2n,+2 . Ts(n,r,, D, . - =
E.n(WV,Vy .1, D, j 1, m,s)=E, +ax r(anEZUH)F(nZZ+Zp;){(®k(l'l's)+ B/Im)r(n,vl,VO,B,C,re,De)+5(27ﬂ)(k(],l,s)9 + Bam)}

Where E, and E,; are the energy of ground state and first excited state of diatomic moleculesN,, CO,

NO and CH in the symmetries of quantum mechanics under Hellmann—Kratzer potential model:

2 2 _ _ 2
E, - a5 4uD,r, V4D, ot | 4Dt + 2N, 2N, b &
2u a 2u 25 2 1)
2 4uD.r 2T 4D x, + 24N, — 24N, — ?
ElI:a_ 5—Q _V0a+De_a_ /’l ee+ /’l 0 /’l 1 &_1—'—5
2.1 a 2 20+ &) 2

Thus, the total energy Enc_ks(n,Vl,VO,a r,,D,, j,l,m,S) for GHKP model in (NC: 3D-RSP) symmetries, is the

1lay
sum of the ordinary part of energy E_,and the two corrections of energy Eso_hk(n, IAAAS B,C) and
Emag_hk(n, j,m,s,V,,V,, B,C). This is one of the main objectives of our research. Finally, we end this section

by introducing the important result of this work as :

{H hk(r)+ Hso-hk(r’®’ §)+ Hz-hk(r'ﬂ” g-)}‘\Pnlm(r'e’ (0):
= {Enl + Eso-hk(n'vl’VO &, re1 De’ j’ |,S)+ Ez-hk(n'vl’VO O De ’ m)}\Pnlm(r’ 6' (0)

sley

(52)

Now it is very necessary to return to some special cases, we adjust some parameters of eq. (1) to have the
following.

1-Generalized Hellmann potential model: For D, — 0, Eq. (1) becomes the generalized Hellmann potential

model of the form (under investigation):

00, - o).

Vo Vi ep(-ar) LV exp (-~ ar)jﬁg 3
2r’ 2r’ 2r?

Its corresponding energy eigenvalues, in (NC: 3D-RSP) symmetries, is obtained as (under investigation):

Encnp(MK(j1S) 20,8, .l ms)=E, ,+ anlgb{/ﬂ(n, |,5)+23T4(n, l, 6)]m+ NZek(j,l, s)[@T(n, l, 5)+2£T4(n, |,5)] (54)
i H

hp-n

where E in ordinary quantum mechanics, is given by [41]

hp-nl

- 52 ((2yl5)(a—b)—(n+l T +1)J2 Y +1)+2Tﬂa 55

et T 2(n+1+1)

2-Generalized Kratzer potential model: For(VO,Vl) - (0,0), Eg. (1) becomes the Generalized Kratzer potential
model of the form [42]:

28
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vhk(f>»vhk(r>=ae[r j +De[%—r—zJ&8 56
r r

r

e

Its corresponding energy eigenvalues, in (NC: 3D-RSP) symmetries, is obtained as:

2nin.el(n+2+2n,+2p . (/0 \s o—
Epenp = Epn +€ F(n+l+(277n)F(n+2+2p)) {(@k(], l,s)+BAmJT(n,V, >0V, - 0,r,, De)+2ﬂ(k(1, l,5)0 + Bo-m)Ts(n, re)}(57)
Where E,; , in ordinary quantum mechanics, is given by [43] :

—2

E :De_Zi[(4yoere)2(1+2n+\/1+4(2yDere+|(|+1)) }(58)
y7s

kp—nl

Paying attention to the behavior of the spectrums that appears in Eq. (50) (Encfhk(n =0V,,V,, a1, D, J,1,m, S),
Encfhk(n =1V,V, a.r,D,, j,I,m,S) E, i (n,Vl,Vo,a, r.,D., J,l, m,s) ), it is possible to recover the results of

commutative space (9), which was obtained in [10], when we consider the two simultaneously limits

(©,6)— (00).
5. Conclusions

In this paper, three-dimensional modified radial Schrédinger equation has been performed for the generalized
Hellmann-Kratzer potential model by using the improved approximation scheme to the centrifugal term for
any |-states and generalized Bopp's shift method, in addition to the standard perturbation theory in (NC: 3D-
RSP) symmetries, we resume the main obtained results:

e The energy eigenvalues of the bound  states Enc_hk(n =0,V,.\V,.a,r,

' e!Del jlllmls)l
Enc_hk(n =1V, \V,,a,r1,,D,, j,I,m,s) and Enc_hk(n,Vl,Vo,a, r,,D,, j,I,m,s) for the ground state,

first excited state and N excited states of diatomic molecules N,, CO, NO and CH under GHKP

N
model with spin S have been analytically found via both generalized Bopp's shift method and standard

perturbation theory within the previous approximations type suggested by Greene and Aldrich and Dong
et al.

e The Hamiltonian operator an_ks(r,®,§)in (NC: 3D-RSP) is the sum of Hamiltonian operator of GHKP
Hoon (1, ©,0)

model Hks(l’)and two operators, the first one is the modified spin-orbit interaction while

the second is the modified Zeeman operator HZ-hk(r'ﬂ“’ 0) for the diatomic molecules N,, CO, NO and
CH.

It has been shown that, the MSE presents useful rich spectrums for improved understanding the diatomic
molecules N,, CO, NO and CH influenced by the GHKP model and we have seen also that the modified

of spin-orbit and modified Zeeman effect appeared du the presence of the two infinitesimal parameters
(@,5) and (/1,5) which are induced by position-position noncommutativity property of space. It should be
noted that the results obtained in this research would be identical with corresponding results in ordinary
quantum mechanics when the two parameters (@, 5) are reduced to the values (0,0). They are also identical

to some of the special cases in the same field of our research. The results of our present work give us some
special cases for example generalized Hellmann potential model and generalized Kratzer potential model.

s



To Physics Journal Vol 4 (2019) ISSN: 2581-7396 http://www.purkh.com/index.php/tophy

Acknowledgments

The author thanks to the reviewers for their kind recommendations that led to several improvements in the
article. The Algerian Ministry of Higher Education and Scientific Research has supported this work under Grant
No. BOOL0O2UN280120180001.

References

1

10.

11.

12.

13.

14.

15.

Kratzer, Die ultraroten Rotationsspektren der Halogenwasserstoffe, Zeitschrift ffir Physik, 3 (1920) 289.
https://doi.org/10.1007/BF01327754

J Sadeghi, Factorization Method and Solution of the Non-Central Modified Kratzer Potential ACTA
PHYSICA POLONICA A 112 (2007) 23

R.J. LeRoy and R. B. Bernstein, Dissociation Energy and Long-Range Potential of Diatomic Molecules from
Vibrational Spacings of Higher Levels. The Journal of Chemical Physics 52(8) (1970) 3869-
3879. doi:10.1063/1.1673585

O. Bayrak, I. Boztosun and H. Ciftci, Exact analytical solutions to the Kratzer potential by the asymptotic
iteration method. International Journal of Quantum Chemistry 107(3) (2006) 540-544.
doi:10.1002/qua.21141

S. dong, G. H. Sun and S. H. Dong, Arbitrary |-wave solutions of the Schrodinger equation for the screen
Coulomb potential, International Journal of Modern Physics E 22(06) (2013)
1350036.d0i:10.1142/50218301313500365

S. Ikhdair and R. Sever, On solutions of the Schrédinger equation for some molecular potentials: wave
function ansatz. Open Physics, 6(3 (2008) .d0i:10.2478/s11534-008-0060-y

E. Z Liverts, E. G. Drukarev, R. Krivec and V. B. Mandelzweig, Analytic presentation of a solution of the
Schrédinger equation, Few-Body Systems 44(1-4) (2008) 367-370. doi:10.1007/s00601-008-0328-1

A. N. Ikot, E. Maghsoodi, S. Zarrinkamar and H. Hassanabadi, Relativistic Spin and Pseudospin
Symmetries of Inversely Quadratic Yukawa-like plus Mobius Square Potentials Including a Coulomb-like
Tensor Interaction, Few-Body Systems, 54(11) (2013) 2027-2040. doi:10.1007/s00601-013-0701-6

C. O. Edet, US. Okorie, A. T. Ngiangia and A. N. Ikot, Bound state solutions of the Schrodinger equation
for the modified Kratzer potential plus screened Coulomb potential. Indian J Phys (2019).
doi:10.1007/s12648-019-01477-9

C. O. Edet, K. O. Okorie, H Louis and N. A. Nzeata-Ibe, Any I-state solutions of the Schrodinger equation
interacting with Hellmann—Kratzer potential model. Indian J Phys (2019). https://doi.org/10.1007/s12648-
019-01467-x

S. Capozziello, G. Lambiase, G. Scarpetta, Generalized uncertainty principle from quantum geometry. Int. J.
Theor. Phys. 39 (2000) 15

P.-M. Ho and H.-C. Kao, Noncommutative Quantum Mechanics from Noncommutative Quantum Field
Theory. Physical Review Letters 88(15) (2002). doi:10.1103/physrevlett.88.151602

M. Darroodi, H. Mehraban and H. Hassanabadi, The Klein-Gordon equation with the Kratzer potential in
the noncommutative space. Modern Physics Letters A 33 No. 35 (2018) 1850203.
doi:10.1142/s0217732318502036

Abdelmadjid Maireche, Solutions of Two-dimensional Schrodinger Equation in Symmetries of Extended
Quantum Mechanics for the Modified Pseudoharmonic Potential: an Application to Some Diatomic
Molecules, J. Nano- Electron. Phys. 11 No 4, 04013 (2019). DOL https://doi.org/10.21272/jnep.11(4).04013

P. Gnatenko, Parameters of noncommutativity in Lie-algebraic noncommutative space. Physical Review D
99(2) (2019) 026009-1. doi:10.1103/physrevd.99.026009

.


https://doi.org/10.1007/BF01327754

To Physics Journal Vol 4 (2019) ISSN: 2581-7396 http://www.purkh.com/index.php/tophy

16.

17.

18.

19.

20.

21

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

Abdelmadjid Maireche, The Klein-Gordon Equation with Modified Coulomb Potential Plus Inverse-
Square-Root Potential in Three-Dimensional Noncommutative Space. To Physics Journal, 3 (2019) 186-
196. Retrieved from https://purkh.com/index.php/tophy/article/view/489

P. Gnatenko and V. M. Tkachuk, Weak equivalence principle in noncommutative phase space and the
parameters of noncommutativity. Physics Letters A 381(31) (2017) 2463-2469.
doi:10.1016/j.physleta.2017.05.056

O. Bertolami; J. G. Rosa; C. M. L. De aragao; P. Castorina and D. Zappala,, Scaling of varialbles and the
relation between noncommutative parameters in noncommutative quantum mechanics, Modern Physics
Letters A 21(10) (2006) 795-802. doi:10.1142/s0217732306019840

Abdelmadjid Maireche, A Recent Study of Excited Energy Levels of Diatomics for Modified more General
Exponential Screened Coulomb Potential: Extended Quantum Mechanics. J. Nano- Electron. Phys. 9(3)
(2017) 03021. DOI10.21272/jnep.9(3).03021

E. F. Djemai and H. Smail, On Quantum Mechanics on Noncommutative Quantum Phase Space. Commun.
Theor. Phys. (Beijing, China). 41(6) (2004) 837-844. doi:10.1088/0253-6102/41/6/837

Yi YUAN, LI Kang, WANG Jian-Hua and CHEN Chi-Yi, Spin-1/2 relativistic particle in a magnetic field in NC
phase space, Chinese Physics C 34(5) (2010) 543-547. doi:10.1088/1674-1137/34/5/005

O. Bertolami and P. Leal: Aspects of phase-space noncommutative quantum mechanics. Physics Letters B
750 (2015) 6-11. doi:10.1016/j.physletb.2015.08.024

C. Bastos; O. Bertolami; N. C. Dias, and J. N. Prata, Weyl-Wigner formulation of noncommutative quantum
mechanics. Journal of Mathematical Physics 49(7) (2008) 072101. doi:10.1063/1.2944996

J. Zhang, Fractional angular momentum in non-commutative spaces, Physics Letters B, 584(1-2) (2004)
204-209. doi:10.1016/j.physletb.2004.01.049

J. Gamboa, M. Loewe and J. C. Rojas: Noncommutative quantum mechanics, Phys. Rev. D 64 (2001)
067901. DOL https://doi.org/10.1103/PhysRevD.64.067901.

M. Chaichian, Sheikh-Jabbari and A. Tureanu, Hydrogen Atom Spectrum and the Lamb Shift in
Noncommutative QED, Physical Review Letters 86(13) (2001) 2716-2719. doi:10.1103/physrevlett.86.2716.

Abdelmadjid Maireche: New Relativistic Atomic Mass Spectra of Quark (u, d and s) for Extended Modified
Cornell Potential in Nano and Plank’s Scales, J. Nano- Electron. Phys. 8(1) (2016) 01020-1 - 01020-7. DOL
10.21272/jnep.8(1).01020

Abdelmadjid Maireche, New Bound State Energies for Spherical Quantum Dots in Presence of a Confining
Potential Model at Nano and Plank’s Scales, NanoWorld J. 1(4) (2016) 122-129. doi: 10.17756/nw;j.2016-
016

J. Wang and K. Li, The HMW effect in noncommutative quantum mechanics. Journal of Physics A:
Mathematical and Theoretical 40(9) (2007) 2197-2202.d0i:10.1088/1751-8113/40/9/021

K. Li and J. Wang, The topological AC effect on non-commutative phase space. The European Physical
Journal C 50(4) (2007) 1007-1011.d0i:10.1140/epjc/s10052-007-0256-0

Abdelmadjid Maireche, A Complete Analytical Solution of the Mie-Type Potentials in Non-commutative
3-Dimensional Spaces and Phases Symmetries, Afr. Rev Phys. 11 (2016) 111-117.

Abdelmadjid Maireche, A New Nonrelativistic Investigation for the Lowest Excitations States of
Interactions in One-Electron Atoms, Muonic, Hadronic and Rydberg Atoms with Modified Inverse Power
Potential, International Frontier Science Letters 9 (2016) 33-46. DOL
https://doi.org/10.18052/www.scipress.com/IFSL.9.33

Abdelmadjid Maireche, New quantum atomic spectrum of Schrédinger equation with pseudo harmonic
potential in both noncommutative three dimensional spaces and phases, Lat. Am. J. Phys. Educ. 9(1)

.


https://jnep.sumdu.edu.ua/en/component/search/index.php?option=com_content&task=full_article&id=1733
https://jnep.sumdu.edu.ua/en/component/search/index.php?option=com_content&task=full_article&id=1733
http://www.aphysrev.org/index.php/aphysrev/article/view/995/403
http://www.aphysrev.org/index.php/aphysrev/article/view/995/403
https://doi.org/10.18052/www.scipress.com/IFSL.9.33
http://jnep.sumdu.edu.ua/en/component/content/full_article/1567
http://jnep.sumdu.edu.ua/en/component/content/full_article/1567

To Physics Journal Vol 4 (2019) ISSN: 2581-7396 http://www.purkh.com/index.php/tophy

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

(2015)1301.

Abdelmadjid Maireche, New Bound States for Modified Vibrational-Rotational Structure of Supersingular
Plus Coulomb Potential of the Schrodinger Equation in One-Electron Atoms, International Letters of
Chemistry, Physics and Astronomy 73 (2017) 31-45. DOL:
https://doi.org/10.18052/www.scipress.com/ILCPA.73.31

Abdelmadjid Maireche: Extended of the Schrédinger Equation with New Coulomb Potentials plus Linear
and Harmonic Radial Terms in the Symmetries of Noncommutative Quantum Mechanics. J. Nano-
Electron. Phys. 10(6) (2018) 06015-1 - 06015-7. DOLI : https://doi.org/10.21272/jnep.10(6).06015

Abdelmadjid Maireche, Investigations on the Relativistic Interactions in One-Electron Atoms with
Modified Yukawa Potential for Spin 1/2 Particles, International Frontier Science Letters 11 (2017) 29 DOL
https://doi.org/10.18052/www.scipress.com/IFSL.11.29

Abdelmadjid Maireche, A New Model for Describing Heavy-Light Mesons in The Extended Nonrelativistic
Quark Model Under a New Modified Potential Containing Cornell, Gaussian And Inverse Square Terms in
The  Symmetries Of NCQM.To Physics Journal, 3, (2019) 197-215. Retrieved from
https://purkh.com/index.php/tophy/article/view/500

R. L. Greene and C. Aldrich, Variational wave functions for a screened Coulomb potential, Physical Review
A 14(6) (1976) 2363-2366.d0i:10.1103/physreva.14.2363

S.H. Dong, W.C. Qiang, G.H. Sun, V.R. Bezerra, Analytical approximations to the I-wave solutions of the
Schroédinger equation with the Eckart potential, J. Phys. A 40 (2007) 10535. https://doi.org/10.1088/1751-
8113/40/34/010

S. Gradshteyn and 1. M. Ryzhik: Table of Integrals, Series and Products, 7th. Ed.; Elsevier, edited by Alan
Jeffrey (University of Newcastle upon Tyne, England) and Daniel Zwillinger (Rensselaer Polytechnic
Institute USA) 2007.

M. Hamzavi, K. E. Thylwe and A. A. Rajabi, Approximate Bound States Solution of the Hellmann Potential.
Commun. Theor. Phys. 60(1), 1-8 (2013). doi:10.1088/0253-6102/60/1/01

Abdelmadjid Maireche, Effects of Two-Dimensional Noncommutative Theories on Bound States
Schroédinger Diatomic Molecules under New Modified Kratzer-Type Interactions, International Letters of
Chemistry, Physics and Astronomy, Vol. 76, 1-11, 2017.
https://doi.org/10.18052/www.scipress.com/ILCPA.76.1

C. Berkdemir, A. Berkdemir and J. Han, Bound state solutions of the Schrédinger equation for modified
Kreutzer's molecular potential, Chemical Physics Letters  417(4) (2006) 326-329.
doi:10.1016/j.cplett.2005.10.039

.


http://jnep.sumdu.edu.ua/en/component/content/full_article/1567
https://doi.org/10.18052/www.scipress.com/ILCPA.73.31
https://doi.org/10.21272/jnep.10(6).06015
https://doi.org/10.18052/www.scipress.com/IFSL.11.29
https://purkh.com/index.php/tophy/article/view/500
https://doi.org/10.1088/1751-8113/40/34/010
https://doi.org/10.1088/1751-8113/40/34/010
https://doi.org/10.18052/www.scipress.com/ILCPA.76.1

