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Abstract 

In the present research paper, the approximate analytical solutions of the modified radial Schrodinger 

equation (MSE) have been obtained with a newly proposed potential called generalized Hellmann–Kratzer 

potential (GHKP) model by using the improved approximation scheme to the centrifugal term for any l-states. 

The potential is a superposition of the Hellmann–Kratzer potential model and new terms proportional with 

( 3/1 r , 4/1 r , ( ) 2/exp rr− and ), appears as a result of the effects of noncommutativity 

properties of space and phase on the Hellmann–Kratzer potential model. We applied the generalized Bopp’s 

shift method and standard perturbation theory, in the nonrelativistic noncommutative three-dimensional real 

space phase (NC: 3D-RSP) instead to solving MSE directly with star product. The bound state energy 

eigenvalues for the some diatomic molecules such as 2N ,CO , NO  and CH  obtained in terms of the 

generalized the Gamma function, the discreet atomic quantum numbers ( slnj ,,, and m ), two infinitesimal 

parameters ( ),  which are induced automatically by position-position and phase-phase noncommutativity 

properties, in addition to, the dimensional parameters ( ee DrVV ,,,,1  ) of GHKP model. Furthermore, we have 

shown that the corresponding Hamiltonian operator in (NC: 3D-RSP) symmetries is the sum of the 

Hamiltonian operator of the HKP model and two operators, the first one is the modified spin-orbit interaction 

while the second is the modified Zeeman operator for the previous diatomic molecule. 

Keywords: Schrödinger Equation, Generalized Hellmann–Kratzer Potential Model, Nonrelativistic 

Noncommutative Quantum Mechanics, Star Product And Generalized Bopp’s Shift Method. 
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1. Introduction 

It is well known that the the Kratzer potential has attracted a great deal of interest over the years and has been 

one of the most useful models for study the molecular structure in quantum physics, recently has received a 

lot of attention for a wide range of interests generally. To be precise, this potential is very important in many 

fields of physics and chemistry such as atomic physics, molecular physics, and quantum chemistry. In 

particular, it is used to describe the interactions of diatomic molecules such as 2N ,CO , NO  and CH  in 

quantum mechanics. In addition, this potential has a long-range attraction behavior when dealing with 

relatively long distances between molecules in addition to the short-range (repulsive property) when the 

distance between the molecules becomes very small [1-4]. On the other hand, the Yukawa potential (the 

screened Coulomb potential) which is one of the exponential types and most realistic short-range potentials in 

nuclear Physics. It is characterized by its useful applications in many fields such as solid-state physics, 

condensed matter physics and charged particle in weakly non-ideal plasma [5-8]. C. O. Edet et al. [9-10] was 

studied the Hellmann–Kratzer potential model (the combined between the Kratzer potential, the Yukawa 

potential and the Coulomb potential) within the framework of Nikiforov and Uvarov method and obtained the 

nonrelativistic bound state energy eigenvalues of the diatomic molecules 2N ,CO , NO  and CH . In work, 

motivated by several recent studies such as the non-renormalizable of the standard model, string theory, 

quantum gravity, the noncommutative quantum mechanics NCQM has attracted much attention [11]. The 
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noncommutativity of space-time was known firstly by Heisenberg and was formalized by Snyder at 1947. In 

the present research paper, we want to extend, the study of C. O. Edet et al. in ref. [10] to the nonrelativistic 

NCQM case to the possibility of finding other applications and more profound interpretations in the sub-

atomics scales. The nonrelativistic energy levels for diatomic molecules ( 2N ,CO , NO  and CH ), which 

interacted with generalized Hellmann–Kratzer potential (GHKP) model in the context of the noncommutative 

space phase, have not been obtained yet. The main purpose of this paper is to solve the modified Schrödinger 

equation MSE with GHKP model: 
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in (NC: 3D-RSP) symmetries using the generalized Bopp’s shift method which depends on the concepts that 

we present below in the third section. The structure of nonrelativistic noncommutative quantum mechanics 

(NRNCQM) based to NC canonical commutations relations in Schrödinger, Heisenberg and interactions 

pictures (SP, HP and IP), respectively, as follows (Throughout this paper, the natural units 1== c  will be 

used) [12-18]: 
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here iiiS px = , ( ) ( )( )tpxt iiiH =  and ( ) ( )( )tpxt IiIiiI =  are the three representations (SP, HP and 

IP) in NRQM, while the dynamics of new systems 
( )

dt

d tiH
 are described from the following motion equations 

in NRNCQM: 
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the two operators hkĤ and hkncH −
ˆ  present the Hamiltonian operators for (HKP and GHKP) models in NRQM 

and NRNCQM, respectively. The very small two parameters 
 and 



  (compared to the energy) are 

elements of two antisymmetric real matrixes and 
( )

 denote to the star product. The generalized star product 

between two arbitrary functions ( )( )pxgf , ,  will be ( ) ( ) ( )( )pxgfpxgpxf ,ˆ,ˆˆˆ,ˆˆ   in 3-dimensional NC space-

phase [19-29]:  
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The second and the third terms in the above equation are the effects of (space-space) and (phase-phase) 

noncommutativity properties, respectively. The organization scheme of the recent work is given as follows: In 

the next section, we briefly review the ordinary SE with HKP model on based ref. [10]. Section 3 is devoted to 

studying the MSE by applying the generalized Bopp's shift method for GHKP model. In the next subsection, by 

applying standard perturbation theory to find the quantum spectrum of 
thn  excited levels in for spin-orbit 

interaction in the framework of the global group (NC-3D: RSP) and then, we derive the magnetic spectrum for 

GHKP model. In the fourth section, we resume the global spectrum and corresponding NC Hamiltonian 

operator for GHKP model and corresponding energy levels of the molecules 2N , CO , NO  and CH . Finally, 

the achieved results are briefly summarized in the last section. 

2. Overview of the eigenfunctions and the energy eigenvalues for HKP model in NRQM: 

In this section, we shall recall here the time-independent SE for Hellmann–Kratzer potential model ( )rVhk , 

which was studied by C. O. Edet et al. in ref. [10]: 

( )
( ) ( )

r

rV
D

r

C

r

VB

r

rV

r

rr
D

r

V
rV e

e

e

ehk

 −
+++

−


−
+









 −
+−=

expexp 1

2

01

2

0
 (6)  

where eD  is the dissociation energy, er  is the equilibrium internuclear separation, 0V  and 1V  are the potential 

strength of Coulomb and Yukawa potentials,   is the screening parameter, r  is the distance between the two 

particles, eeDrB 2−=  and
2

eerDC = . If we insert this potential into the SE, we obtain: 
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+−  is effective potential,   is the reduced mass of diatomic 

molecules ( 2N , CO , NO  and CH ),  nlE  is the rotational–vibrational energy spectra of the diatomic 

molecules while n and l  are the radial and orbital angular momentum quantum numbers. The complete wave 

function ( ) ( ) ( ) ,,, m

lnl YrUr = , as a function of the Jacobi polynomial 
( ) 2,2 n

nP and the spherical 
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3. Method and Theoretical Approach  

3.1 Solution of MSE for GHKP model  

In this sub-section, we shall give an overview or a brief preliminary for a GHKP model )(s-nc rV k , in (NC: 3D-

RSP) symmetries. To perform this task the physical form of MSE, it is necessary to replace ordinary three-

dimensional Hamiltonian operators ( ) xpH hk ,ˆ , ordinary complex wave function 




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r  and nlE  (in NRQM) 

by three Hamiltonian operators ( ) xpH hknc
ˆ,ˆˆ

− , complex wave function ( )r
))

  and new values hkncE − , 

respectively in NRNCQM. In addition to replacing the ordinary product by star product
( )

, which allows us to 

construct the MSE in (NC-3D: RSP) symmetries as [30-33]:  
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The Bopp’s shift method employed in the solutions enables us to explore an effective way of obtaining the 

modified potential in NRNCQM, is based on the following commutators [28-34]: 
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The above equation allows us to obtain the two operators 
2r̂  and

2p̂  in (NC-3D: RSP) [29-34]: 
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the Hamiltonian operator ( )iihknc xpH ˆ,ˆ
−  can be expressed as : 
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while the rest terms are proportional with two infinitesimals parameters (  and ) and then we can be 
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It is clear that the operator ( ) xpHhk ,  is just the Hamiltonian operator for diatomic molecules 2N , CO , 

NO  and CH in ordinary quantum mechanics while the generated part ( ),,hk-pert rH  appears as results of 

deformation of noncommutativity space phase. In recent work, we can disregard the second term in 

( ),,hk-pert rH  because we are interested in the corrections of first order   and . 

3.2 Spin-orbit Hamiltonian operator for studied diatomic molecules under GHKP model  

In this subsection, we want to derive the physical form of the induced Hamiltonian ( ),,hk-pert rH  due to 

space-phase noncommutativity. To achieve this goal, we replace both ( 

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) by useful physical forms 

( LS  and LS ), respectively [32-37]: 
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r

C

r
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








  (24)

It is well known that, in quantum mechanics, the eigenvalues ( )sljk ,,  of the spin-orbit coupling S


L  are 

equal to  )1()1()1(
2

1
+−+−+ sslljj  and the eigenvalues of the total operator J  are:  

  
valuesN

,1,....0,...1 ,

−

+−++−−= slslslslj , 

Which are obtained in the interval sljsl +− . After straightforward calculation, the radial functions 

( )rRnl  satisfy the following differential equation in NRNCQ for diatomic molecules 2N , CO , NO  and 

CH under GHKP model : 

( )
( )( ) ( )  0 V2 eff-nc2

2

=−+ − rRrE
dr

rRd
nlhknc

nl   (25.1) 
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with 

( ) ( )
( ) ( ) ( )

22

1

3

1

43

0

eff-nc
2

1

22

exp

2

exp

2
  V

r

ll
S

r

rV

r

rV

r

C

r

VB
rVr hk






+
+









+






 −
+

−
++

−
+=


L  (25.2)

We have introduced the generalized effective potential ( ) V eff-nc r  in (NC: 3D-RSP) symmetries. We have seen 

previously that the induced spin-orbit ( ),,hk-so rH is infinitesimal compared to the principal Hamiltonian 

operator ( )xpH hk ,  in NRNCQM for diatomic molecules 2N , CO , NO  and CH  under GHKP model . This 

equation cannot be solved analytically for any state l because of the centrifugal term and the studied potential 

itself. Therefore, we must use a suitable approximations type suggested by Greene and Aldrich and Dong et al. 

[5, 9, 10, 38, 39]: 

( )( )2

2

2
exp1

1

rr 



−−
  (26.1) 

Thus, we have the following direct consequences: 

( )

( )

( )

( )

( )( ) ( ) ( )( ) ( )4

4

4

4

43
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3

3

3

3

2

32
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1
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1

1
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       , 

1
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srrsrr

s

s

r

r

s

s

r

r

−
=

−−


−
=

−−


−


−

−


−













 (26.2) 

This allows applying standard perturbation theory to determine the nonrelativistic energy corrections kssoE −  

of diatomic molecules at first order of two infinitesimal parameters   and   due to noncommutativity 

space-phase properties. 

3.3 Bound State Solution for spin-orbit operator for diatomic molecules under GHKP model  

The principal goal of this subsection is to determine the energy spectrum 

( ) kssoeehkso EsljDrVVnE −− ,,,,,,, 01   which produced with the effect of the operator ( ),,hk-so rH  by 

applying standard perturbation theory at first order of (  and ) and through the structure constants which 

specified the dimensionality of GHKP model of diatomic molecules 2N , CO , NO  and CH . Thus, we obtain 

the following results: 

( ) ( ) ( )  ( ) ( ) drr
r

V
r

r

V

r

C

r

VB
sPsssljkNE nn

nnlhkso









+







−+−++

−
−−= +

+

−








2
exp

2
exp

22
21)1(,,

2

1

3

1

43

022,2212

0

2  (27) 

Where )exp( rs −= , this allows us to obtain
s

ds
dr



1
−= . After introducing a new variable sz 21−= , we 

obtain 
z

dz
dr

−
=

1

1


 and

2

1
1

+
=−

z
s , the approximations (26.2) in that case have the following form: 
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( )

( ) ( )
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
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
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1

8
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1
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s
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 (28) 

If we introduce the following five factors ( )eei DrnT ,,  with ( )5,1=i  as: 

 

( ) ( ) ( ) 

( ) ( ) ( ) 
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( ) ( ) ( )  ( )
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 (29) 

Substituting Eq. (28) Into Eq. (29), the five factors ( )eei DrnT ,,  become like the following forms: 

( ) ( ) ( ) ( ) 
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 (30)

Instead of solving the modified-radial Schrödinger equation for the effective GHKP model  ( )reff-ncV  given by 

Eq. (25.2), we now solve the MSE for the generalized effective potential ( )reff-ncV  given by the previous 

approximations: 

( )
( ) ( ) ( ) ( ) ( )

( )
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
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L  (31) 

On arranging Eq. (27), we obtain our nonrelativistic energy corrections 
( )sljDrVVnE ee ,,,,,,, 01hk-so 

 at first 

order of two infinitesimal parameters   and   for the diatomic molecules 2N , CO , NO  and CH as:  

( )
( )

( ) ( )
( ) ( ) ( )
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  (32) 
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 For the ground state ( 0=n ), we have
( )( ) 1,

0 =zP 
, thus the above five factors in Eq. (30) reduced to the 

following simple form: 
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V
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Comparing Eq. (33) with the integral of the form [40]: 
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We have five factors as: 
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 (35)

with ( )el DE −−= 020

2




 . Substituting Eqs. (35) into Eq. (32), we obtain nonrelativistic energy corrections for 

the ground state ( )sljDrVVnE ee ,,,,,,,,0 01hk-so =  at first order of two infinitesimal parameters   and   

for the diatomic molecules 2N ,CO , NO  and CH as: 
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With ( ) ( )ee
i

iee DrnTDrCBVVnT ,,0,,,,,,0
4

1
01 ===

=

. For the first excited state ( 1=n ), we have 
( )( )=zP  ,

1  

2

1
)2(1

z−
++−+  , thus the five factors in Eq. (30) reduced to the following simple form: 
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With 12 1 += a , 11 ++= b ,  +−−= 11  and ( )el DE −= 121

2




 . A direct simplification to Eq. 

(37) gives : 
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Comparing Eqs. (38.1) and (38.2) with the integral (34), we have the five factors as: 
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With  22 1 += . This allows us to obtain nonrelativistic energy corrections for the first excited 

state ( )sljDrVVnE ee ,,,,,,,,1 01hk-so =  produced by spin-orbit operator ( ),,ks-so rH  at first order of 

two infinitesimal parameters   and   for the diatomic molecules 2N ,CO , NO  and CH : 
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With ( ) ( )ee
i

iee DrnTDrCBVVnT ,,1,,,,,,1
4

1
01 ===

=

. Thus, for any excited state, the nonrelativistic energy 

corrections ( )sljDrVVnE ee ,,,,,,,, 01hk-so   which produced by spin-orbit operator ( ),,hk-so rH  at first 

order of two infinitesimal parameters   and   for the diatomic molecules 2N ,CO , NO  and CH can be 

written as: 

( ) ( ) ( ) ( )






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+= eeeenee DrnTDrCBVVnTsljkBsljDrVVnE ,,
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


  (41) 

With ( ) ( )ee
i

iee DrnTDrCBVVnT ,,,,,,,,
4

1
01 =

=

. This allow us to obtain the following important physical 

results for diatomic molecules 2N ,CO , NO  and CH under GHKP model: 

( ) ( ) ( ) ( ) ,,,,,,,,,,,,,, 01hk-so rsljDrVVnErrH lmneehksolmn rr
= −  (42)  

3.4 Bound state solution for modified Zeeman effect for GHKP model  

In this subsection, it is possible to obtain the second automatically symmetry for diatomic molecules 2N ,CO , 

NO  and CH  under GHKP model. This physical phenomenon is induced of the influence of an external 

uniform magnetic field  , if we make the following two simultaneous transformations to ensure that previous 

calculations are not reputed : 

( ) ( )     ,, →   (43)  

here  and   are just two infinitesimal real proportional constants, and to simplify calculations without 

compromising physical content we choose the magnetic field k= . Then we transform the spin-orbit 

coupling to new physical phenomena as follows: 
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 (44) 

This allowed deriving the modified magnetic Hamiltonian operator ( )  ,,hk-z rH  for previous diatomic 

molecules under GHKP model in global (NC: 3D-RSP) symmetries as: 
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Here 
→→

− Sz  denote to Zeeman effect in commutative quantum mechanics, while zz J −
→→

−mod is 

the modified Zeeman effect. To obtain the exact NC magnetic modifications of energy for ground state, first 

excited state and 
thn  excited states of diatomic molecules 2N ,CO , NO  and CH  under GHKP model  
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( )eehkmag DrVVlmnE ,,,,,,,0 01 =− , ( )eehkmag DrVVmlnE ,,,,,,,1 01 =−  and ( )eehkmag DrVVmlnE ,,,,,,, 01 −  and just replace ( )sljk ,,  

and   in the Eqs. (36), (40) and (41) by the following parameters  m  and  , respectively: 
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We have lml +− , which allow us to fix ( 12 +l ) values for discreet numbers m . It should be noted that 

the results obtained in Eq. (43) could find it by direct calculation 

( ) ( ) ( ) ,,,,,, rrHrE hkmhkmag = −− that takes the following explicit relation: 
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It is clear that, the Eq. (47) can be rewritten as follows: 
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The 5-factors ( )eei DrnT ,,  are given by Eq. (30). Then we find the magnetic specters of energy produced by 

the operator ( ),,rH ksm−  for the ground state and first excited states repeating the same calculations in 

the previous subsection. We end this subsection by addressing the important results :  

( ) ( ) ( ) ( ) ,,,,,,,,,,,,,, 01hk-z rDrVVsmjnErrH lmneehkmaglmn rr
= −  (49) 

4. Results and discussion 

In the previous subsections, we obtained the solution of the MSE for GHKP model, which is given in Eq. (25.2) 

by using the generalized Bopp’s shift method and standard perturbation theory. The energy eigenvalues are 

calculated in the 3D space-phase. The modified eigenenergies for the ground state, first excited state and 
thn  

excited states of diatomic molecules 2N ,CO , NO  and CH  under GHKP model  

( )smljDrVVnE eehknc ,,,,,,,,,0 01 =− , ( )smljDrVVnE eehknc ,,,,,,,,,1 01 =−  and ( )smljDrVVnE eehknc ,,,,,,,,, 01 −  

with spin 
→

S  are obtained in this paper on based to our original results presented on the Eqs. (36), (40), (41) 

and (46), in addition to the ordinary energy nlE  for Hellmann–Kratzer potential model which presented in the 

Eq. (9) take the form: 
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Where lE0  and lE1  are the energy of ground state and first excited state of diatomic molecules 2N , CO , 

NO  and CH in the symmetries of quantum mechanics under Hellmann–Kratzer potential model: 
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 (51) 

Thus, the total energy ( )smljDrVVnE eeksnc ,,,,,,,,, 01 −  for GHKP model in (NC: 3D-RSP) symmetries, is the 

sum of the ordinary part of energy nlE and the two corrections of energy ( )CBVVsljnE hkso ,,,,,,, 01−  and 

( )CBVVsmjnE hkmag ,,,,,,, 01− . This is one of the main objectives of our research. Finally, we end this section 

by introducing the important result of this work as : 
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Now it is very necessary to return to some special cases, we adjust some parameters of eq. (1) to have the 

following. 

1-Generalized Hellmann potential model: For 0→eD , Eq. (1) becomes the generalized Hellmann potential 

model of the form (under investigation): 
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Its corresponding energy eigenvalues, in (NC: 3D-RSP) symmetries, is obtained as (under investigation): 
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where nlhpE − , in ordinary quantum mechanics, is given by [41] 
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2-Generalized Kratzer potential model: For ( ) ( )0,0, 10 →VV , Eq. (1) becomes the Generalized Kratzer potential 

model of the form [42]: 
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Its corresponding energy eigenvalues, in (NC: 3D-RSP) symmetries, is obtained as: 
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Where nlkpE − , in ordinary quantum mechanics, is given by [43] : 
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Paying attention to the behavior of the spectrums that appears in Eq. (50) ( ( )smljDrVVnE eehknc ,,,,,,,,,0 01 =− ,  

( )smljDrVVnE eehknc ,,,,,,,,,1 01 =−  ( )smljDrVVnE eehknc ,,,,,,,,, 01 −  ), it is possible to recover the results of 

commutative space (9), which was obtained in [10], when we consider the two simultaneously limits 

( ) ( )0,0, →  .  

5. Conclusions 

In this paper, three-dimensional modified radial Schrödinger equation has been performed for the generalized 

Hellmann–Kratzer potential model by using the improved approximation scheme to the centrifugal term for 

any l-states and generalized Bopp’s shift method, in addition to the standard perturbation theory in (NC: 3D-

RSP) symmetries, we resume the main obtained results: 

• The energy eigenvalues of the bound states ( )smljDrVVnE eehknc ,,,,,,,,,0 01 =− , 

( )smljDrVVnE eehknc ,,,,,,,,,1 01 =−  and ( )smljDrVVnE eehknc ,,,,,,,,, 01 −  for the ground state, 

first excited state and 
thn  excited states of diatomic molecules 2N , CO , NO  and CH  under GHKP 

model with spin 
→

S  have been analytically found via both generalized Bopp’s shift method and standard 

perturbation theory within the previous approximations type suggested by Greene and Aldrich and Dong 

et al. 

• The Hamiltonian operator ( ),,ks-nc rH in (NC: 3D-RSP) is the sum of Hamiltonian operator of GHKP 

model ( )rH ks and two operators, the first one is the modified spin-orbit interaction 
( ),,hk-so rH

while 

the second is the modified Zeeman operator 
( )  ,,hk-z rH

 for the diatomic molecules 2N , CO , NO  and 

CH . 

It has been shown that, the MSE presents useful rich spectrums for improved understanding the diatomic 

molecules 2N , CO , NO  and CH  influenced by the GHKP model and we have seen also that the modified 

of spin-orbit and modified Zeeman effect appeared du the presence of the two infinitesimal parameters 

( ),  and ( ),  which are induced by position-position noncommutativity property of space. It should be 

noted that the results obtained in this research would be identical with corresponding results in ordinary 

quantum mechanics when the two parameters ( ),  are reduced to the values ( )0,0 . They are also identical 

to some of the special cases in the same field of our research. The results of our present work give us some 

special cases for example generalized Hellmann potential model and generalized Kratzer potential model. 
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