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Abstract 

The general understanding of the literature of clinical diseases is that the HIV attacks and feeds on the active cells that 

make up the human immune system. However, this process is associated with the gradual depletion and weakening of the 

active cells thereby resulting in a breakdown in the biological performance of the human system. This is a very correct 

statement but not a unique understanding. There is also a cause (vibration) that gives the HIV its own intrinsic 

characteristics, activity and existence. It is not the Human system that gives the HIV its life and existence, since the HIV 

itself is an active living organism and with its own peculiar wave characteristics even before it enters the system of Man. It 

is the vibration of an unknown force that causes life and existence. Therefore, for any active matter to exist it must possess 

vibration and vibration produces wave. The human heart stands as a transducer of this vibration. Fortunately, the blood 

stands as a means of conveying this vibration to all units of the human system. In this work, therefore, we primarily seek to 

determine the vibratory wave characteristics that are peculiar to both Man and the HIV. The spectrum of the velocity 

profile conveyed by the constituted carrier wave is characterised by the predominance of the radial velocity and with 

minimal contribution from the angular velocity. The characteristic spectrum of the velocities shows that within 21 hours 

after infection with HIV, the biological system of Man must imaginarily recognize and react to the interference of a strange 

velocity-like body whose influence may be destructive or constructive as the case may be. However, the recuperative 

inbuilt factor in the human system initially tends to annul this effect and renormalizes the frequency of vibration until it 

finally goes to zero after a specified time. It is also shown in this work that the radial and the angular velocity are 

oppositely related. 
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1.0. Introduction. 

The role of Human-Immunodeficiency Virus (HIV) in the normal circulating blood system of man (host) has in general been 

poorly understood. However, its role in clinical disease has attracted increasing interest. Human immunodeficiency virus 

infection / acquired immunodeficiency syndrome (HIV/AIDS) is a disease of the human immune system caused by 

the human immunodeficiency virus (HIV). The human immunodeficiency virus (HIV) is among the most pressing health 

problem in the world today. Since its discovery, AIDS has caused nearly 30 million deaths as of 2009. It has been estimated 

that as of 2010 approximately 34 million people have contracted HIV globally and greater proportion of the population 

coming from Africa and Asian countries. AIDS is considered a pandemic—a disease outbreak which is present over a large 

area and is actively spreading [1, 2]. 

After the virus enters the body there is a period of rapid viral replication, leading to an abundance of virus in the peripheral 

blood. During primary infection, the level of HIV may reach several million virus particles per millilitre of blood. This 

response is accompanied by a marked drop in the number of circulating CD4+ T cells. The CD8+ T cell response is thought 

to be important in controlling virus levels, which peak and then decline, as the CD4+ T cell counts recover. A good CD8+ T 

cell response has been linked to slower disease progression and a better diagnosis, though it does not eliminate the virus 

[3, 4]. 

The HIV fatal effect stems from the attack on a person’s CD4+ T cell counts. This attack of the HIV on the human system 

result to the progressive depletion of the CD4 cell counts which play a pivotal regulatory role in the immune response to 

infections and tumours. Ultimately, HIV causes AIDS by depleting CD4+T cells. This weakens the immune system and 

allows opportunistic infections. T cells are essential to the immune response and without them; the body cannot fight 

infections [5]. 

Two types of HIV have been characterized: HIV-1 and HIV-2. HIV-1 is the virus that was originally discovered. It is 

more virulent, more infective, and is the cause of the majority of HIV infections globally. The lower infectivity of HIV-2 as 

compared with HIV-1 implies that fewer people exposed to HIV-2 will be infected per exposure. Because of its relatively 

poor capacity for transmission, HIV-2 is largely confined to West Africa [6, 7]. 

In addition to the general understanding provided by the clinical literature about HIV/AIDS is that there is also a cause 

(vibration) that gives the HIV its own intrinsic characteristics, activity and existence. It is not the Human system that gives 

the HIV its life and existence, since the HIV itself is a living organism and with its own peculiar characteristics even before it 

entered the system of Man. It is the vibration of an unknown force that causes life and existence. Therefore, for any active 

matter to exist it must possess vibration. The human heart stands as a transducer of this vibration and fortunately the 

blood stands as a medium of conveying this vibration to all units of the human system.  

Man and the Human-Immunodeficiency Virus (HIV) are both active matter, as a result, they must have independent 

peculiar vibrations in order to exist. It is the vibration of the HIV that interferes with the vibration of Man (host) in the 

blood circulating system after infection. The resultant interference of the vibration is parasitically destructive and it slows 

down or makes the biological system of Man to malfunction since the basic intrinsic parameters of the resident host wave 

have been altered.  

The cyclic heart contraction generates pulsatile blood flow and latent vibration. The latent vibration is sinusoidal and 

central in character, that is, it flows along the middle of the vascular blood vessels. It orients the active particles of the 

blood and sets them into oscillating motion with a unified frequency as it passes. Elasticity of the vascular blood vessels 

supports pulsatile blood flow, connectivity network of the blood circulating system, and not the latent vibration. The 

human blood carries oxygen and food nutrients to nourish the human cells in the course of its flow from one region to 

another within the human micro-vascular blood circulating system. Any negative alteration to the normal flow of blood 

results to starvation and weakening of the human cells in the system. However, if this anomaly is not corrected after a 

period of time then a total loss of intended signal and a phenomenon called ‘death’ occurs and the affected system ceases 

to exist [8]. 

Blood Viscoelasticity is a property of human blood that is primarily due to the elastic energy that is stored in the 

deformation of red blood cells as the heart pumps the blood through the body. The energy transferred to the blood by the 

heart is partially stored in the elastic structure, another part is dissipated by viscosity, and the remaining energy is stored in 

the kinetic motion of the blood. When the pulsation of the heart is taken into account, an elastic regime becomes clearly 

evident. It has been shown that the previous concept of blood as a purely viscous fluid was inadequate since blood is not 

an ordinary fluid. Blood can more accurately be described as a fluidized suspension of elastic cells. Other factors 
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contributing to the viscoelastic properties of blood is the plasma viscosity, plasma composition, temperature, and the rate 

of flow or shear rate. Together, these factors make human blood viscoelastic, non-Newtonian, and thixotropic [9, 10]. 

In fluid dynamics, an incompressible fluid is a fluid whose density is constant. It is the same throughout space and it does 

not change through time. It is an idealization used to simplify analysis. In reality, all fluids are compressible to some extent. 

The linear Newtonian friction law is expected to hold for small rates of strain because higher powers of elasticity are 

neglected. However, for common fluids such as air and water the linear relationship is found to be surprisingly accurate for 

most applications. Some liquids important in the chemical industry, on the other hand, display non-Newtonian behaviour 

at moderate rates of strain [11, 12]. These include: (i) solutions containing polymer molecules, which have very large 

molecular weights and form long chains coiled together in spongy ball-like shapes that deform under shear; and (ii) 

emulsions and slurries containing suspended particles, two examples of which are blood and water containing clay. These 

liquids violate Newtonian behaviour in several ways-for example, shear stress is a nonlinear function of the local strain rate, 

it depends not only on the local strain rate, but also on its history. Such a “memory effect gives the fluid an elastic 

property, in addition to its viscous property. Most non-Newtonian fluids are therefore viscoelastic [13].  

The Navier-Stokes equations are always solved together with the continuity equation. The Navier-Stokes equations 

represent the conservation of momentum, while the continuity equation represents the conservation of mass. In that case, 

the density is assumed to be constant and the continuity equation reduces to divergence 0. = u . The motion of a non-

turbulent, Newtonian fluid is governed by the Navier-Stokes equation [14, 15].The Navier-Stokes equations are only valid 

as long as the representative physical length scale of the system is much larger than the mean free path of the molecules 

that make up the fluid. In that case, the fluid is referred to as a continuum. The ratio of the mean free path,  , and the 

representative length scale, L, is called the Knudsen number, LKn /= .The Navier-Stokes equations govern the motion of 

fluids and can be seen as Newton's second law of motion for fluids. The Navier-Stokes equations are a set of nonlinear 

partial differential equations that describe the flow of fluids. They model weather, the movement of air in the atmosphere, 

ocean currents, water flow in a pipe, as well as many other fluid flows [16]. 

In this work, we primarily seek to determine the vibratory wave characteristics that are peculiar to both Man and the HIV, 

also to compare our present work of Navier-Stokes equation approach with the previous work where we used Newtonian 

mechanics approach [17]. In another development we also want to use the information regarding the independent 

vibrations to investigate how it affects the velocity profile of blood in the blood circulating system of HIV/AIDS infected 

person.  

The organization of this paper is as follows. In section 1, we discuss the nature of wave and interference associated with 

fluid. In section 2, we show the mathematical theory of fluid dynamics and2D Navier-Stokes equation. The results 

emanating from this study is shown in section 3. The discussion of the results of our study is presented in section 4. 

Conclusion of this work is presented in section 5. The paper is finally brought to an end by a few lists of references.    

1.1 Research methodology 

We first use simple algebra to derive the constitutive carrier wave which is the resultant of the superposition of the HIV 

vibration (parasitic wave) on the Human vibration (host wave). We also use the information regarding the independent 

vibrations to investigate how it affects the velocity and pressure of blood in the blood circulating system of HIV/AIDS 

infected person by using Navier-Stokes equation.  

2.0. Mathematical theory and scientific research procedure. 

• The activity of the HIV which is resident within the human system is parasitic in nature and the condition is 

synonymous with the coexistence of the parasitic plant Mistletoe (Viscum album) with another plant. 

• The HIV transforms the latent vibration of the host to become equal to its own form and quality. The t Mistletoe 

plant also transforms the vibratory characteristics of the host plant to its own form and quality. 

• The HIV saps the energy and nutritive substances of the resident host vibration (host wave) the same way the 

Mistletoe plant saps the energy and nutritive substances of the resident host plant vibration.  

• The HIV dies off the moment the resident host (Man) is dead since it does not have the requirements for 

independent sustenance and existence. 

http://en.wikipedia.org/wiki/Viscoelasticity
http://en.wikipedia.org/wiki/Newtonian_fluid
http://en.wikipedia.org/wiki/Thixotropic
http://www.efunda.com/formulae/fluids/glossary.cfm?ref=lam#lam
http://www.efunda.com/formulae/fluids/glossary.cfm?ref=lam#lam
http://www.efunda.com/formulae/fluids/glossary.cfm?ref=newt#newt


 

62 

• The Mistletoe plant also withers and gradually dies off once the resident host plant is dead since there are no 

more nutritive substances left with the host plant to be sapped by the parasitic plant.  

• If the wave function of any given active system is known, then its characteristics can be predicted and altered by 

means of anti-vibratory component. 

• That the HIV kills slowly with time shows that the wave-functions of the HIV and that of the host were initially 

incoherent. As a result, the basic features of the Human vibration were initially greater than those of the HIV.  

• The wave properties of HIV are independent of intrinsic variables such as the number, size, mass and of course 

mutation.  

• Since the immune system of AIDS patient is almost zero, the measured wave function shall depend entirely on the 

vibrating property of the HIV only as every other active wave characteristics of the Human blood system would have been 

completely eroded.  

• The wave characteristic of HIV infected candidate is the same everywhere within the resident host (Man). That is, 

irrespective of the occupation of the HIV in the host system, the activity is the same. 

• The wave properties of HIV cannot be directly measured since it does not have its own independent existence 

outside the host system. As a result, the wave function of HIV can only be deductively measured.  

• If HIV exists it must have its own peculiar vibration which must be independent of the vibration of the Human 

(host) system.  

• The wave and vibrating characteristics of blood in the circulating system of a normal individual free from 

HIV/AIDS infection shall be assumed to be measured and the four independent variables following the observations about 

the wave recorded function are: (i) the amplitude, a (ii) the phase angle,   (iii) the angular frequency, n and(iv) the wave 

number, k . Note that na ,,   and k   are assumed to be   constant with time in a normal human system, except for some 

fluctuating factors, e.g. illness, which of course can only alter them slightly and temporarily.  

• The wave and vibrating characteristics of blood in the circulating system of HIV/AIDS infected candidate, whose 

immune count rate is very low or almost zero is also assumed to be measured and the four independent variables 

following the observations of the recorded wave functions are: (i) the amplitude, b  (ii) the phase angle, ' (iii) the angular 

frequency, 'n and (iv) the wave number, k .  

• Now, suppose we consider the wave function of the human vibration as the ‘host wave’ which can be described 

by the cosine sinusoidal function 

               








−−=  tnrkatry


.cos),(1                                                                                                                       (2.1) 

Where kjkik +=


 and the position vector yjxir +=


 are two dimensional (2D) vectors in Cartesian coordinate system 

and t is the time. Although, in polar coordinate system cosrx = and sinry = . The equation contains an inbuilt 

lowering or raising multiplier   which is capable of lowering or raising the intrinsic wave characteristics of the host wave, 

but the lowering is slightly and temporary during illness. The wave characteristics of the host wave renormalizes to its 

initial values after the illness.  

• Also, suppose we consider the wave function of HIV vibration as the ‘parasitic wave’ which we can also described 

by the cosine sinusoidal function 

       
( ) −−= tnrkbtry


.cos),(2                                                                                                                           (2.2) 

As it is from the equation, the ‘parasitic wave’ has an inbuilt raising multiplier  (  = 0, 1, 2 max,,  ). The inbuilt multiplier 

is dimensionless and as the name implies, it has the ability of gradually raising the basic intrinsic parameters of the HIV 

‘parasitic wave’ with time.  
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When equation (2.2) is superposed on equation (2.1) after some lengthy algebra we get a resultant wave equation given 

by, 

 =+= ),(),(),( 21 trytrytry



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
.cos
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(2.5) 

Hence (2.4) is the resultant wave function which describes the superposition of the ‘parasitic wave’ on the ‘host wave’. 

However, without loss of dimension we can recast (2.4) with subtractive terms as  
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                                   (2.6) 

Here the wave number and the position vector are 2D in character and respectively given as yx kikk += , yx kikk +=

and )sincos( jirr  +=


, where )(  −=  and eventually )sincos()(.  +−= rkkrck


, )(  −= where

kkk yx == . However, with the assumption that the effects of the resultant waves are subtractive and with the view that 

the basic parameters of the ‘host wave’ are constant with time, that is, 1=  and leave its variation for future study, then we 

get 
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Equation (2.7) is regarded as the constitutive carrier wave (CCW) necessary for our study. It is the equation that governs 

the dynamical behaviour of the coexistence of the HIV parasite in the human micro-vascular blood circulating system. It is 

obvious and readable from the equation that once the dynamic constituent parameters of the HIV parasite become equal 

to those of the Man the host, as a result of the raising multiplier  , then the CCW goes to zero and the resident host (Man) 

ceases to exist. As the equation stands, it is a corrupt wave function, in which it is only the variation in the intrinsic 

parameters of the ‘parasitic wave’ that determines the life span of the physically active system which it describes. This 

equation describes a propagating carrier wave with non-stationary and frequency dependent amplitude modulated by a 

spatial oscillating cosine function. Thus, the reliability and the life span of most active systems are determined by the 

reluctance and willingness of the active components of the ‘host wave’ to the destructive influence of the ‘parasitic wave’.  

• The wave mechanics of HIV in the Human Blood circulating system is two dimensional 2D in character since it is a 

transverse wave, the position vector of the whole blood (particles and fluid) in motion can be represented as 

)sincos( jirr  +=


and hence the motion is constant with respect to the z -axis. jkkikkkc )()(  −+−=


. 

• While on interpretation ( ) sincos)(. +−= rkkrkc


 is the coordinate of two dimensional (2D) position vector,

)(  −−= ,the total phase angle of the CCW is represented by )(tE . By definition: )( nn −  is the modulation 

angular frequency, the modulation propagation constant is )( kk − , the phase difference  between the two interfering 

waves is )(  − , and of course we have that the interference term is ( ) ( ) −−−− ()(cos2
2

tnnba , while waves 

out of phase interfere destructively according to ( )2ba − , however, waves in-phase interfere constructively according to 

( )2ba + .  



 

64 

• Driving forces in anti-phase )(  =−  provide full destructive superposition and the minimum possible 

amplitude; driving forces in phase )(  =  provides full constructive superposition and maximum possible amplitude.   

The total phase angle of the CCW given by (2.8) is not constant with time. The variation as a function of time is 
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where we have introduced a new variable defined by the symbol )(tZ as                                               
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This is the characteristic angular velocity of the constitutive carrier wave. It has the dimension of rad./s. Note that we used 

the trigonometric identity yxyxyx sinsincoscos)(cos = to reduce the work.  Also, for the purpose of further 

application we may also determine the variation of the characteristic angular velocity of the constitutive carrier wave )(tZ  

with respect to time. Thus   
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Hence )(tQ is the characteristic group frequency of the CCW and it has the dimension of 2/srad . 

2.1. The Pressure-force law obeyed by the CCW in 3D Navier – Stokes   Equation. 

The Navier-Stokes equation can be viewed as an application of Newton’s second law, amf = , which states that force is 

the product of the mass of an object times its acceleration. (Note, we will now be using f to represent forces, not scalar or 

vector fields). The Navier-Stokes equations are the fundamental partial differentials equations that describe the flow of 

incompressible fluids. Using the rate of stress and rate of strain tensors, it can be shown that the components of a viscous 

force f in a nonrotating frame are given by the Navier-Stokes equation 
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where 𝜌 denotes the density of the fluid and is equivalent to mass, uu
t

u
+




. is the acceleration and u is velocity, and 

∇∙𝜎 + 𝑓 is the total force, with ∇∙𝜎 being the shear stress and f being all other forces. The Navier-Stokes equations are 

always solved together with the continuity equation:  
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Now consider the irrotational Navier-Stokes equations in particular coordinate systems. In Cartesian coordinates with the 

components of the velocity vector given by ),,( wvu=u  , the continuity equation is 
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In cylindrical coordinates with the components of the velocity vector given by ),,( zr uuu =u  , the continuity equation is 
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In spherical coordinates with the components of the velocity vector given by ),,(  uuur=u , the continuity equation is 
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We may also write equation (2.13) as 
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where p  is pressure and   is dynamic viscosity. Viscosity is defined as the measure of the resistance of a fluid which is 

being deformed by the shear stress. The different terms correspond to: (i) the inertial forces (ii), pressure forces (iii), viscous 

forces and (iv), external forces applied to the fluid. The Navier-Stokes equations were derived by Navier, Poisson, Saint-

Venant, and Stokes between 1827 and 1845. In unidirectional flows such as blood, all nonlinear terms in the Navier-Stokes 

equations vanish: the convective term 0. =uu [15, 16].Navier-Stokes explicitly models changes in the directional velocity 

using four components: (i) The first of these is uu .).( − , which is the divergence on a velocity, or in simpler terms, it is 

how the divergence affects the velocity.(ii) The factor p−  may be thought of as how the particles move as pressure 

changes, specifically, the tendency to move away from areas of higher pressure.(iii) Next we consider the term u2  . The 

two key parts are viscosity ( ) and Laplacian 2 . It may be a little hard to make sense of this part, but think of it as the 

difference between what a particle does and what its neighbours do. (iv)finally we have f, which again, is any other forces 

acting on the substance. 

Here, u and p are the time-averaged velocity and pressure respectively. However, in this work we shall only focus on the 

cylindrical coordinate system since we assume that the Human blood vessels have a similar geometry with that of the 

cylinder. Now in cylindrical coordinate system, the radial pressure and the angular pressure in Navier-Stokes 

representation are respectively given by 
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Since our work is restricted to 2D we have to ignore the z - axes or assume that the motion of the CCW is constant with 

respect to the z - axes. We also take the body forces rF = F = 0. Consequent upon this the Navier-Stokes equation 

becomes 
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Both equations (2.20) and (2.21) eventually reduces to 
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(2.24) 

Thus the bulk pressure of the CCW as it propagates in the human micro-vascular blood circulating system is the addition 

of the radial pressure and the angular pressure. Hence 
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The reader should note that we have ignored the terms in the brackets of the left hand side of (2.20) and (2.21) since they 

are equal to zero base on the continuity equation of (2.16) as compare with (2.14).  Hence we have two independent 

pressure gradients, the radial pressure gradient and the angular pressure gradient associated by the propagation of the 

CCW in the Human micro-vascular blood circulating system. However, if the pressure gradients are zero then 0=P and 

(2.25) becomes
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(2.26) 

2.2       Determination of the bulk velocityU , radial velocity rU and the angular velocity U of the CCW.  

The bulk velocity is related to the constitutive carrier wave according to the equation below. 
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The radial velocity and the angular velocity of the CCW as it propagates in the micro-vascular blood circulating system are 

given by the equation below.  
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The radial velocity and the angular velocity of the CCW as it propagates in the micro-vascular blood system are related to 

each other according to the equation below. That is the radial and angular velocities components of the CCW are related 

to each other by the stream-function given below. 
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Thus radial velocity of the constitutive carrier wave rU has a unit of srad / .  Also 
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Thus angular velocity of the constitutive carrier wave U has a unit of srad / .
 

2.3. Determination of the latent wave characteristics Man (Host) ( a , n ,  , k ) contained in the CCW. 

Now let us subject the constitutive carrier wave given by equation (2.7) to the 2D constant velocity-pressure gradient of 

Navier-Stokes equation given by (2.26). The differential equations we have derived for the conservation laws are subject to 

boundary conditions in order to properly formulate any problem. After a careful isolation and substitution of the various 

derivatives of U with respect to r  and  into the combined equation of the radial and the angular pressure given by 

(2.26), the resulting equation can be further simplified and rearranged by eliminating equal and oppositely related terms. 

However, we have also imposed boundary conditions to reduce the complexity of the resulting equation. 

The boundary conditions require that at, 0=t , 0= , for even and symmetric function )(cos)(cos  =−  while for odd 

and anti-symmetric function )(sin)(sin  −=− , 0= , =)(tE , 0)()( == tQtZ . 
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To make our work easy we may need to adopt the “third world approximation” to linearize (2.34) by removing the term
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n− )(cos21  . The “third world approximations are the differential minimization of the resulting binomial expansion of 

a given variable function. The approximations have the advantage of converging results easily and also producing 

expected minimum value of results. Now the ‘third world approximation’ states that 
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   cossin)(cos21 2/1 =−                                                                                                                                             (2.38) 

When equation (2.36), (2.37) and (2.38) are now substituted into (2.34) and after rearrangement we get  
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❖ Calculation of the phase angle (  ) of the latent 

Human vibration (host wave) 

From the clinical literature, blood leaves the Human heart at a rate of about 5 litres per minute (0.08333 litres per second 

or 0.00008333 cubic meters per second) since litresm 10001 3 = . Also, from clinical literature, it is given that the cross-

sectional area A ( 2rA = ) of the Human Aorta is about 253 cm− . In this work, we used the maximum value of the 

radius from the given range which is 25cm ( 20005.0 m ). Now from these data mr 01262.0= where r is the radius of the 

Human Aorta assumed to be a circular cylinder. Now, we know from the clinical literature that the elasticity   of the 

Human blood is domicile in the red blood cells. Therefore, the quantity or volume of blood that leaves the Human heart 

can be found from the equation below.  
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Thus, the Human heart pumps a volume of 3510333.8 m− or 510333.8 −  cubic meter of blood per second. Now there 

are several possible ways of determining the wave characteristics of the host vibration, although, the results obtained may 

also be different. However, the careful choice we make must be relevant and applicable to the problem under study. 

Suppose we select our choice from the first, second and the forth terms of the equation with coefficient  then we get 
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                                    .4924.0 rad=                                                                                                                              (2.45) 

Where we have used the fact that at the critical point, which is at time 0=t the critical value of any time dependent 

variable at the origin is given by 
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❖ Calculation of the spatial frequency ( k ) of the 

latent Human vibration (host wave). 

Now to determine the spatial frequency or the wave number of the host vibration we can also combine the first four terms 

of the coefficient of  in equation (2.39). 
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❖ Calculation of the angular frequency ( n ) of the 

latent Human vibration (host wave) 

In other to calculate the angular frequency or the angular velocity of the host wave we select the first two terms from 

coefficient of  (viscosity of blood) and the first four terms from the coefficient of  (density of blood). 

=−−− 







)(coscossin2)(sincossin6 23223  rkrkanrkrkan  





+−− )(sincossin15 322  rkrkan )(sincossin3 222  −rkrkan +  

+− )(coscossin6 222  rkrkan 



− )(sincossin22  rkrkan                                                                          (2.55)                                   

 

=−− 






 22 2)(tansin6 krkk  



−− )(tansin15 2  rkn + )(tancos3  −rkn + sin6n +  

                                                                                                     
))(tan −rkn
                                                                

(2.56)
                                        

 



 

71 

           


















−++−+−−

−−
=

)(tansin6)(tancos3)(tansin15

2)(tansin6

2

22





rkrkrk

krkk
n

                                                    

(2.57) 

                  

( )









−++−+−−

−−
=

)(tansin6)(tancos3)(tansin15

2)(tansin6

2

2





rkrkrk

krk
n

                                             

(2.58) 

     

( )
( )

( )
( )95352.2/1060

/.)4714.163(6401806.2/004.0

95352.2

6401806.2
3

222

mkg

mradsmkgk
n


==




srad /.09014.0=                        (2.59) 

❖ Calculation of the amplitude ( a ) of the latent 

Human vibration (host wave). 

It is not very possible to calculate the amplitude or the maximum displacement a  of the host wave from the available 

equation (2.39). As a result, we are going to use a slightly different approach to calculate it. Now, the radial acceleration 

has a unit of 2/. srad and the angular acceleration has a unit of 2/ sm . These two concepts can be verified from the density 

 part of (2.39) respectively so that the units are at variant with one another. However, we are going to calculate the 

amplitude from the radial acceleration because the direction of flow of blood is along the radius of the blood vessels. Now, 

if we multiply the radial acceleration by mass m  then the result is radial force which produces a change in the motion of 

the CCW along the radius of the cylindrical blood vessels.  The radial force will cause a change in the elasticity  of the 

blood which is stored in the red blood cell. Accordingly, we shall select the first four terms in the coefficient of  (density) 

in (2.39) that has no radial term so that the equation becomes 
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                                        ma 610252.5 −=                                                                                                                  (2.66) 

The reader should note that we have also used the critical value equations as stipulated by (2.46). 

2.4. Determination of the latent wave characteristics HIV/AIDS ( b , 'n , ' , 'k ) and the raising multiplier     

 contained in the CCW. 

Let us now determine the basic parameters of the ‘parasitic wave’ which were initially not known before the interference 

from the calculated values of the resident ‘host wave’ using the below method. We can do this by understanding that the 

gradual depletion in the physical vibrating parameters of the Host system would mean that after a sufficiently long period 

of time all the active constituents of the resident ‘host wave’ would have been completely attenuated and the residual of 

the constituents CCW is the predominance of the destructive influence of the ‘parasitic wave’. On the basis of these 

arguments, we can now write as follows. 
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Upon dividing the sets of relations in (2.67) with one another with the view to eliminating  we get 
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                                                                                                                    (2.68) 

Suppose we equate the forth and the fifth terms of (2.68), then based on simple proportion rule it be shown that 

mradk /.1831.0= : .0005514.0 rad=  : sradn /.0001009.0= :   mb 910881.5 −=                                     (2.69)                    

Any of these values of the ‘parasitic wave’ shall produce a corresponding value of lambda 892max = upon substituting it 

into (2.67). Hence the interval of the multiplier is 8920   and λ = 0, 1, 2, ⋯, 892. Also, we choose to classify the raising 

multiplier slowly so that we can study clearly all the parameter space assessable to the CCW as it propagates along the 

human blood circulating system of HIV/AIDS infected person. 

2.5. Determination of the attenuation constant ( ). 

Attenuation is a decay process. It brings about a gradual reduction and weakening in the initial strength of the basic 

parameters of a given physical system.  In this study, the parameters are the amplitude ( a ), phase angle ( ), angular 

frequency ( n ) and the spatial frequency ( k ). The dimension of the attenuation constant ( )is determined by the system 

under study. However, in this work, attenuation constant is the relative rate of fractional change FC in the basic 

parameters of the carrier wave. There are 4 (four) attenuating parameters present in the carrier wave. Now, if a , n ,  , k

represent the initial basic parameters of the ‘host wave’ that is present in the carrier wave and ba − , nn − ,  − , 

kk −  represent the basic parameters of the ‘host wave’ that survives after a given time. Then, the FC is 
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Thus (2.71) gives 100112.0 −= s for all values of )892,,2,1,0( = .In another development, we can as well select the 

first two terms of (2.68) so that 5.8265 x 10-5𝑛′= 1.0666 x 10-5  𝜀′ ; then 𝜀′=0.00005827 radians and 𝑛′= 0.00001067 rad/s.  

2.6. Determination of the time ( t ) that the CCW lasted.  

The maximum time the CCW lasted as a function of the raising multiplier  is also calculated from the attenuation 

equation shown by (2.71). The reader should note that we have adopted a slowly varying regular interval for the raising 

multiplier since this would help to delineate clearly the physical parameter space accessible to our model. However, it is 

clear from the calculation that the different attenuating fractional changes contained in the carrier wave are approximately 

equal to one another. We can now apply the attenuation time equation given below. 
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The equation is statistical and not a deterministic law. It gives the expected basic intrinsic parameters of the ‘host wave’ 

that survives after time t . Clearly, we used (2.73) to calculate the exact value of the decay time as a function of the raising 

multiplier. Thus (2.73) yield 5.8, max210 =+++= ttttt  years for all values of the multiplier

398278, max210 =+++=   . 

However, in another development, we can as well select the first two terms of (2.68) so that 5.8265 x 10-5𝑛′= 1.0666x10-5  𝜀′ 

; then 𝜀′=0.00005827 radians and 𝑛′= 0.00001067 rad/s. These values will yield a corresponding approximate value of 𝜆 = 

8426. Although, we are not using these values of 𝜀′  and  𝑛′ since the corresponding total time these sets of values 

produced is 7100, max210 =+++= ttttt  years which is not a realistic value. 

2.0. Presentation of results. 

The results of the calculated values of the wave characteristics of the human vibration (host wave) and those of the HIV 

vibration (parasitic wave) are shown in Table 3.1 below. The reader should note that the total value of the raising multiplier 

 and the corresponding successive time t that the constitutive carrier wave lasted can be found from the addition of 

successive values. That is, max210max210 ; ttttt ++++=++++=   . However, in the previous work which we 

also carried out by using Newtonian mechanics approach we did not add successive terms of the multiplier and time in 

other to get the actual time taken by the propagating constitutive carrier wave. What we did was to pick a given value of 

the multiplier and the corresponding value of the time.  We may also represent interval or coordinate of the multiplier and 

time as ].[ t . 

First of all, we want to explain that fig.2 is merely inferred from fig.1 while fig. 4 is also inferred from fig.3.  The inferred 

figures are necessary so that all the initial behaviour associated with the spectrum of the constitutive carrier wave within 

the given initial range or interval of the raising multiplier can be clearly and totally accessed. Finally, fig. 5 is a 

generalization of figs. 6 – 10. The reason is also to understand the physics initially available to the spectrum of the 

propagating constitutive carrier wave within the stipulated intervals of the multiplier. For instance, fig. 5 does not revealed 

completely or give detailed information about the radial and angular velocity of the CCW for a whole range of the raisng 

multiplier and time taken the same time.  

Table 3.1: shows the summary of the calculated values of the latent Human vibration (host wave) and latent HIV vibration 

(parasitic wave). The table also show comparison of two models our present work of Navier-Stokes and with a previous 

one of Newtonian mechanics approach.  

S/N Physical Quantity Symbol Navier-Stokes Approach Newtonian Approach 



 

74 

Human wave 

characteristics 

(Present work) 

Value / unit 

(Previous work) 

Value/units 

1 Amplitude a  610252.5 − m  6101.2 − m  

2 Angular velocity n  09014.0 srad /  71051.2 − srad /  

3 Phase angle   4924.0 rad ( radians ) 6109.0 rad ( radians ) 

4 Spatial frequency k  4714.163 mrad /  166 mrad /  

S/N HIV Parasitic wave 

characteristics 
Symbol Value Value 

1 Amplitude b  910881.5 − m  10106.1 − m  

2 Angular velocity n  0001009.0 srad /  111091.1 − srad /  

3 Phase angle    0005514.0 rad ( radians ) 0000466.0 rad ( radians ) 

4 Spatial frequency k  1831.0 mrad /  0127.0 mrad /  

Raising Multiplier 
  892 )8920(  

Dimensionless constant 

13070 )130700(  

Dimensionless constant 

 

 

Fig. 1: shows the spectrum of the latent vibration of the resident host (Man – blue colour) and the parasitic wave (HIV/ 

AIDS – brown colour) in the whole interval of the raising multiplier ]8920[ −  and with a corresponding total time interval 

of ]25567710[ −t seconds or 8.5 years. The spectrum of the human vibration shows frequency separation gap beyond t

1368374s while the spectrum of the HIV vibration show frequency separation gap t 1140825 s. The respective total time 

are sttttt 2212815741368374210 =++++=  (85 months or 7.1 years) and sttttt 1987550261140825210 =++++=  (76 

months or 6.3 years). The graph represents equation (2.1) for 1= and equation (2.2) for )892,,2,1,0( = . 
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. 

Fig. 2: shows the spectrum of the latent vibration of the resident host (Man – blue colour) and the parasitic wave (HIV/ 

AIDS – brown colour) in the interval of the raising multiplier ]1000[ − . The host vibration shows anomaly at st 2193= while 

the HIV vibration progresses from the origin with increasing frequency and small amplitude. The total time taken for the 

host wave to show the anomaly is sttttt 481732193210 =++++=   (13 hours). The graph represents equation (2.1) for

1= and equation (2.2) for )100,,2,1,0( = . 

 

Fig. 3: shows the spectrum of the CCW in the interval ]6000[ − . The spectrum shows irregular frequency beyond [492, 

1292903s] and the time taken is 2145957141292903210 =++++= ttttt  seconds (82 months or 6.8 years). The spectrum 

of the HIV/AIDS vibration ceases to exist when [892, 2556771s]. Hence the total time that the CCW lasted is 

2556771210 ttttt ++++=  s81065.2 =  (3067 days or 102 months or 8.5 years). The spectrum represents equation (2.7) 

for 892,,2,1,0 = . 
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Fig. 4: shows the spectrum of the CCW in the interval ]1000[ − . The spectrum shows a partial separation when [33, 554s] 

and [76, 3000 s]. The corresponding time taken for the multiplier to reach these values is 6354554210 =++++= ttttt 

seconds (1 hour) and 771253000210 =++++= ttttt  seconds (21 hours). The spectrum represents equation (2.7) for

892,,2,1,0 = . 

 

Fig. 5: shows the spectrum of the radial velocity rU (blue colour) and the angular velocity U (brown colour) of the 

constitutive carrier wave in the whole interval of the raising multiplier ]8920[ −  and with a corresponding total time 

interval of ]25567710[ −t seconds or 8.5 years. The graph represents equation (2.32) and (2.33) for )892,,2,1,0( = . 
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Fig. 6: shows the spectrum of the radial velocity rU (blue colour) and the angular velocity U (brown colour) of the 

constitutive carrier wave in the interval of the raising multiplier ]1000[ − . The spectrum of both velocities shows 

separation at 554s, 3000s and a significant peak at 4668s. The total time to display these separations and the peak value 

are respectively: sttttt 6354554210 =++++=  (1.7 hours), sttttt 77125300210 =++++=  (21 hours) and 

sttttt 1465654668210 =++++=  (1 day).  The graph represents equation (2.32) and (2.33) for )100,,2,1,0( = . 

 

Fig. 7: shows the spectrum of the radial velocity rU (blue colour) and the angular velocity U (brown colour) of the 

constitutive carrier wave in the interval of the raising multiplier ]3000[ −  and with a corresponding total time interval of 

]52237050[ −t seconds or 2 months. The graph represents equation (2.32) and (2.33) for )300,,102,101,100( = . 
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Fig. 8: shows the spectrum of the radial velocity rU (blue colour) and the angular velocity U (brown colour) of the 

constitutive carrier wave in the interval of the raising multiplier ]5000[ −  and with a corresponding total time interval of 

]273648010[ −t . The spectrum shows several constrictions but the significant ones are at time 52022s, 162691s and 

173174s. The various total time are: sttttt 484838552022210 =++++=  (1.8 months), 

sttttt 23379986162691210 =++++=  (8 months) and sttttt 25399930173174210 =++++=  (9 months). The graph 

represents equation (2.32) and (2.33) for )500,,2,1,0( = . 

 

Fig. 9: shows the spectrum of the radial velocity rU (blue colour) and the angular velocity U (brown colour) of the 

constitutive carrier wave in the interval of the raising multiplier ]7000[ −  and with a corresponding total time interval of 

]4787570[ st − . Thus, the total time taken in this interval is sttttt 89339250478757210 =++++=  (34 months or 2.8 

years). The spectrum also displays several constrictions beyond t 100000s.  The graph represents equation (2.32) and 

(2.33) for )700,,2,1,0( = . 
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Fig. 10: shows the spectrum of the radial velocity rU (blue colour) and the angular velocity U (brown colour) of the 

constitutive carrier wave in the interval of the raising multiplier ]700500[ − . It is obvious that both spectra go to zero 

when t 1011535s. Hence the total time both velocities go to zero is sttttt 1825926581011535210 =++++=  (70 

months). Both velocities finally cease to exist or come rest at 2556771s. The total time taken before coming to rest is

sttttt 2650922652556771210 =++++=  (102 months or 8.5 years). The graph represents equation (2.32) and (2.33) for

)892,,702,701,700( = . 

4.0 Discussion of Results. 

Table 3.1 shows the values of the latent human vibration and the HIV latent vibration which we calculated in a previous 

study using Newtonian mechanics approach. However, the two results are quite at variance with the present results in 

which case we applied Navier-Stokes equation approach. Although, the amplitude and the spatial frequency of the host 

wave are slightly in agreement but we feel that the results of the present work are more sensible and reliable since the 

Navier-Stokes equation are strictly meant for fluid that are incompressible like blood.  

The spectrum of the vibration of the Man (host wave) and the HIV (parasitic wave) as shown in fig. 1 are oppositely related. 

Initially the HIV oscillating phase increases with time as the multiplier is increased from the origin while the host wave 

almost have a stable oscillating phase with an amplitude of about m6102336.5 −  starting from the origin.  It is clear 

from the figure that both Man and HIV vibrate at a very high frequency, with that of Man been higher. It is the high 

frequency of vibration that accounts for the blurred nature of the spectrum.  However, the frequency of both wave become 

low with increasing wavelength beyond t 1420639s. The total time when both vibrations display this low frequency and 

hence increase in wavelength is 225489864 seconds (86 months or 7 years). However, one final remark is that both 

independent vibrations under the given condition do not finally go to zero. That means within the given interval ]8920[ −

and ]5.80[ −t years there exists a residual vibration (positive or negative) which could still be felt even after the 

termination of the independent waves. 

Fig. 2 is inferred from fig. 1. The spectrum of the independent vibrations of Man and HIV shows that the source function of 

both vibrations is actually incoherent. While that of the HIV takes off from the origin with zero phase angle the human 

vibration has a specific phase angle from the origin. This is evident of the fact that it is not possible to determine the origin 

of the human vibration. The fig. 2 also shows that the frequency and oscillating amplitude of the human vibration are 

much higher than those of the HIV vibration, although the wavelength of the HIV vibration is longer. The frequency of the 

HIV vibration increases as the multiplier is increased with time.  

It is obvious from fig. 3that the spectrum of the constitutive carrier wave almost becomes zero with amplitude of 2.5385 x 

10-7m when the raising multiplier is 892and after a total time of 265092265 seconds or 8.5 years. Although, there are 

regions of anomaly in the frequency of the amplitude at the coordinate ][ 1265932,860 s and ][ 1600821,878 s . Now by 
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summation we get that the total time taken for the first anomaly counting from the origin as212023594seconds (81 

months or 6.8 years) while for the second anomaly is 237617409 seconds (91 months or 7.6 years). These two results agree 

suitably with the time for the low frequency regime of the independent vibrations of fig. 1.  Beyond this regime is 

characterised by highly reduced amplitude and irregular frequency before the CCW finally goes to zero and ceases to exist 

when the raising multiplier attains a critical value of 892. 

Fig. 4 is deduced from fig. 3. It is evident from the figure that the spectrum of the propagating constitutive carrier wave 

display anomalous behaviour at the coordinate [76, 3000s]. The total time taken for this anomalous behaviour in the 

spectrum of the CCW counting from the origin is 77125 seconds (21 hours). This characteristic in the spectrum shows that 

within 21 hours after infection with HIV the biological system of Man must imaginarily recognize and react to the 

interference of a strange velocity-like body whose influence may be destructive or constructive as the case may be. 

However, the recuperative inbuilt factor in the human system tends to annul this effect and renormalizes the frequency of 

vibration.  

We are only going to discuss the physics associated with fig. 6 – 10 since they are inferred from fig. 5 which covers the 

whole range of the multiplier and time. This full coverage as we have already explained does not provide the full 

information about the behaviour of the CCW. The spectrum of the radial velocity rU (blue colour) and the angular velocity 

U (brown colour) of the constitutive carrier wave have some features in common. It is shown in fig. 6 that the velocities 

spectrum show anomalous behaviour at the coordinate [33, 554 s] and [76, 3000s]. The total time taken for the first 

anomalous behaviour of the CCW counting from the origin is 6354 seconds (1.7 hours) while for the second anomalous 

behaviour of the CCW is 77125 seconds (21 hours). This shows that the velocities of the propagating CCW are altered 

within the first 21 hours counting from the moment one is infected with HIV.  

There are two anomalous broad peaks display by the spectrum of the radial velocity of the propagating CCW. The peaks 

are at the coordinate [94, 4668 s] and [133, 9576 s] in fig. 6 and 7 respectively. The total time taken for the first anomalous 

peak behaviour counting from the origin is 146565 seconds (1 day). The peaks represent the constructive (positive value) 

and destructive (negative value) interference between the human vibration and the HIV vibration respectively with regard 

to the radial velocity until it displayed the last pulse in fig. 10.  

The last pulse has a coordinate of [832, 1011535s] with velocities amplitude of srad /100147.3 8− . The total time taken 

for the radial and angular velocity to show the last pulse behaviour is 182592658 s (70months or 5.8 years). Thereafter, 

both velocities go to zero and ceases to exist with a final value of about  2.5477 x 10--12 srad / when the multiplier attains 

a critical value of 892 and with a corresponding total time of 265092265seconds (8.5 years).    

Another obvious significant feature common to the fig. 6 – 10 is the depletion in the spectra of the radial and angular 

velocity. The interpretation of this depletion is that the HIV is now taking active dominant control of the host biological 

system. Thus, the constituent parameters of the HIV wave function are gradually becoming equal to those of the host. 

Under this situation the destructive effect of the HIV in the host system is now becoming very intense and difficult to 

control. 

The spectra of the radial velocity and the angular velocity are characterized by two major phases with respect to the time 

taken. The first phase is between time 0=t and the time of the last pulse which took about 69 months or 5.7 years, the 

second phase is between the time of the last pulse to when the radial velocity and the angular velocity of the CCW goes to 

zero which is about (102 – 69) months and this is equal to 33 months (2.7 years). Now let us classify or relate these phases 

with special reference to the clinical literature on HIV/AIDS. 

The first phase is related to the HIV infection when it is now taking absolute destructive and noticeable effect in the 

Human biological system. Because of the significant behaviour of the radial velocity and the angular velocity of the 

constitutive carrier wave in this interval we believe that the HIV infection becomes more intensive and pronounced during 

the first 5 years. According to the clinical literature this is the region of increase in viral load.  

The second phase is related to AIDS condition, that is when all the active constituents of the resident Host wave (Human 

vibration) contained in the constitutive carrier wave are now becoming completely eroded by the destructive tendency of 

the interfering parasitic wave (HIV vibration). In the absence of specific treatment, the HIV infection suddenly degenerates 

to AIDS after about 5.7 years. This period involves a steady decay process which results in a gradual reduction and 

weakening in the initial strength of the intrinsic parameters of the host biological system.  
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5.0. Conclusion 

The spectrum of the vibration of the Man (host wave) and the HIV (parasitic wave) are oppositely related. Initially, the HIV 

oscillating phase increases with time as the multiplier is increased from the origin while the host wave almost have a stable 

oscillating phase starting from the origin.  It is clearly established in this study that both Man and HIV vibrate at a very high 

frequency, with that of Man been higher. The wave characteristics of Man and that of the HIV are actually incoherent and 

are initially out of phase. The characteristic spectrum of the radial velocity and the angular velocity show that within 21 

hours after infection with HIV the biological system of Man must imaginarily recognize and react to the interference of a 

strange velocity-like body (HIV) whose influence may be destructive or constructive as the case may be. However, the 

recuperative inbuilt factor in the human system initially tends to annul this effect and renormalizes the frequency of 

vibration until it finally goes to zero or ceases to exist after a specified time. It is also shown in this work that the radial and 

angular velocity are oppositely related.  
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