
To Physics Journal Vol 6 (2020) ISSN: 2581-7396                                                         https://purkh.com/index.php/tophy 

 96 

Approximating electron states in a cylindrical quantum wire with an intrinsic inverse parabolic 

potential 

Gasenna G1, Maphage L1, Tshipa M1 

1Theoretical Group, Department of Physics, University of Botswana, Botswana 

Abstract 

A theoretical investigation on the comparison of electron states obtained from the exact wave functions 

and those obtained from approximate wave functions is presented. The functions used to approximate the 

exact wave functions are the parabolic and the cosine functions. For this purpose, oscillator strength for 

optical transitions in a cylindrical quantum wire due to circularly polarized electromagnetic radiation was 

evaluated using the exact wave functions and compared with those obtained using the approximate wave 

functions. These calculations were carried out within the effective mass approximation. The approximate 

wave functions preserve the functional form of the oscillator strength and other quantum mechanical 

quantities upon which it depends, namely the electron eigen energies and the interaction integral. Although 

the approximate wave functions preserve the functional form of the quantum quantities successfully, they 

fall short in producing accurate magnitudes of the quantum mechanical properties, which is apparent for 

excited states. 
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Introduction  

Nanofabrication, the process of making functional structures with patterns in the nanometer region, has 

been very instrumental in enabling the scientific community to realize nanostructures of all sizes and shapes: 

quantum dots, quantum wires, thin films and so forth. Top-down and Bottom-up methods are used to build 

nanostructures. In the Top-down method, nanomaterials are derived from a bulk substrate and obtained by 

progressive removal of material until the desired nanomaterial is obtained. It is used in the semiconductor 

industry to fabricate various elements of computer chips. These methods are collectively called lithography 

(Wang, Fedin, Zhang, & Talapin, 2017) and use a light or electron beam to selectively remove micro-scale 

structures. In the Bottom-up method, nanostructures are fabricated through a controlled fabrication route 

that starts from a single atom or molecule. Chemical Vapour Deposition (Zhao, Wei, Gai, Yu, & Ren, 2020) 

is a Bottom-up method where material to be deposited is firstly heated to its gas form then allowed to 

deposit as a solid on a surface. Molecular Beam Epitaxy (Zon et al., 2019) is a sophisticated method in which 

molecular beams interact on a heated crystalline substrate under ultrahigh vacuum to produce single crystal 

films. Nanostructures have immense applications in a wide range of disciplines. For example, in medicine 

and biology, they can stimulate, respond to and interact with target cells and tissues in controlled ways, due 

to their special properties (Xie et al., 2017). Nanostructures also curb the challenge of providing powerful 

electrochemical energy conversion and storage devices (Zhang, Cheng, & Zhang, 2016).  

It is desirable to develop theoretical models for various physical phenomena, including quantum processes 

in nanostructures. These models assist in comprehending physical processes and in predicting other 

properties. This is advantageous since different properties can be studied under different conditions (by 

choosing any desired values of different parameters upon which the studied phenomena depend) without 

having to fabricate the different nanostructures and performing experiments. The complexity of real systems 

makes it impossible in some cases to solve physical problems analytically. In such cases, methods of 

approximation are used. These include neglecting small contributions, and/or replacing the offending term 

with an approximation that has an analytical solution. The other method would be to approximate the wave 

function; very good examples were provided by Varshni (1998, 1999). In this way, one utilizes the 

approximate wave functions to approximate quantum quantities/properties. This has been used particularly 

in perturbation theory (Brody D. C., Hughston L. P., & J., 2003; Kim, Roznova, Satanin, & Stenberg, 2002; 

Schilling, Benavides-Riveros, & Vrana, 2017; Sil, Daripa, Kapoor, & Dey, 2017) and variational method 
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(Sarkar, Sarkar, & Bose, 2018; Yilmaz & Kirak, 2018) (wherein the approximate wave function can be fine-

tuned to yield the best possible approximation given the wave function).  

This paper has the following organizational structure. Section 2 deals with the theoretical component. The 

results and discussions can be found in Section 3 while the conclusions are presented in Section 4. 

Theory 

The envisaged system is a cylindrical nanowire of radius R  with an intrinsic inverse parabolic electric 

confining potential superimposed on an infinite cylindrical quantum well (ICQW), modeled mathematically 

as  
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and infinity elsewhere. Here, 
0

  is the angular frequency associated with the classical harmonic oscillator 

and   is the effective mass of an electron. This potential profile is very attractive due to its capacity to 

model cylindrical shells, single- and multi-walled carbon nanotubes. In addition, it can also model a 

nanostructure with acceptor impurity dopants appropriately nanopatterned by varying the lattice 

composition of the nanostructure. Due to the symmetry of the problem, cylindrical coordinates are used. 

Since the Hamiltonian is separable, the wave function can be written in the form 

( ) ( ) ( ) ( ), ,
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where ( )  , ( )Z z  and ( )  are wave functions in the radial, axial and azimuthal directions, respectively 

and 
ml

C  is the normalization constant. The wave function ( ), ,z   is a solution to the Schrödinger 

equation. The Schrödinger equation is a quantum mechanical energy conservation law 
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E  is the total energy of the electron, p̂ i= − h ( )2 1i = −  is the quantum 

mechanical momentum operator and V  is the potential energy of the system. This yields the equation 
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in which the Laplacian in cylindrical coordinates has the form 
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Using Eqs. (4) and (2) in Eq. (3) and separating variables shows that the azimuthal and axial components of 

the wave function satisfy the second order differential equations 
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with E  and 
z

E  being the azimuthal and axial contributions to the total energy of the system. Solutions 

to Eqs. (5) and (6) are  
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where 0, 1, 2,...m =    is the azimuthal quantum number that quantifies quantized angular momentum 

and 
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with 1
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C  , C , 
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C ,  and 
z

C being constants and 
z

k  the axial wave number of the electron. 

Quantum states with positive m  values are for electrons that have, say, anticlockwise angular momentum 

while those with negative m  values would then be associated with electrons with clockwise angular 

momentum. Similarly, quantum states with positive 
z

k  values may correspond to electrons moving up the 

cylindrical quantum wire while those with negative 
z

k  values would therefore be for electrons moving down 

the cylindrical quantum wire. The radial wave function  ( )   satisfies the second order differential equation 
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with 
ml

E  being the radial confinement energy and l  the radial quantum number that specifies the 

number of nodes a radial wave function has. The solution to the above equation is in terms of the Bessel 

J  functions (Tshipa, 2014), 
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The Bessel Y  function has been discarded due to the fact that it diverges at the origin (along the axis of 

the wire). The potential outside the nanowire is considered to be infinite, hence the electron wave function 

must vanish at the walls of the nanostructure. Imposing this condition yields the radial energy spectrum for 

an electron in a cylindrical nanowire with an inverse parabolic potential as 
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where 
0ml

j  are the roots of the Bessel J  functions of fractional order. In these investigations, the radial 

wave function is approximated by the functions 
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The radial confinement energy associated with the approximate wave functions has been calculated using 

the expression 
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where ml ml  is the usual quantum mechanical expectation value for the quantity  . The oscillator 

strength, which is an index of the strength of a transition, is given by (Tshipa, 2014) 

2

2
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2
m l ml m l ml

ER
f I
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                                                                                 (17) 

where ' '
' '

m l ml
I m l ml R=  is the scaled interaction integral coupling the initial state ml  to the final 

state ' 'm l  and transition energies 
' 'm l ml

E E E = −  are the differences in energies of the states between 

which  transitions may occur.   

This communication is aimed at introducing some wave functions that can also be utilized to yield functional 

forms of quantum mechanical quantities in question. In this way, a number of quantities can be explored 

without using high level mathematics, which include oscillator strengths, binding energies, transition rates, 

quantum blockade and so forth. 

Results and Discussion 

The effective electronic mass used in these computations is relevant to GaAs quantum structures, 

0.067
e

m = , 
e

m  being the free electron mass. The radius of the test quantum wire has been held constant 

at 150R Å= .  

 

Figure 1. Comparison between the ground state exact wave functions (solid plots) and the approximations 

given by Eq. (14) (plots with dots) and Eq. (15) (dashed curves), in a cylindrical nanowire of radius 150R Å=

. The curves with the highest intercepts are for an infinite cylindrical quantum well (ICQW) while the graphs 

with least intercepts are for a nanowire with an inverse parabolic potential superimposed on an ICQW 

Figure 1 depicts the comparison between approximate electron wave functions and the exact wave 

functions in a cylindrical quantum wire of radius 150R Å= . The solid plots represent the exact wave 

functions, the plots with dots were obtained using Eq. (14) 
a

  and those obtained by Eq. (15) 
b

  have been 

dashed. The wave functions have been plotted for an ICQW ( ).0
0 =h , denoted by 

1
 , and for an inverse 

parabolic potential superimposed on an ICQW ( )2 .0
5 meV = =h . The inverse parabolic potential expels 

electrons away from the axis of the nanowire, signified by shifting of peaks of wave functions towards the 

outer walls of the nanowire. As can be seen in the figure, there is very good agreement between the 

approximate wave functions and the exact, with the approximate wave function 
a

  given by Eq. (14) proving 

to be a more accurate approximation. 
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Figure 2. The dependence of the energy eigenvalues on strength of the inverse parabolic potential in a 

cylindrical quantum wire of radius 150R Å=  for the ground state and the first excited state. Solid plots are 

the exact values (Eq. 13) while the plots with dots are generated from Eq. (16) using Eq. (14) 
a

  as the 

approximate wave function and the dashed plots are also obtained from using Eq. (16) but using the 

approximate wave function given in Eq. (15) (
b

 ). 

The dependence of the energy eigenvalues on the inverse parabolic potential for the ground state and first 

excited state can be viewed in Fig. 2. The energy eigenvalues obtained from the approximate wave functions 

portray the same functional form as the exact energy eigenvalues in their variation with the inverse parabolic 

potential. The approximate wave functions give accurate energy eigenvalues for the ground state, but less 

accurate values for the excited state. This implies that the approximate wave functions will not be accurate 

in determining transition energies. The accuracy of the transition energies obtained from the approximate 

wave functions increases with increasing radius of the nanowire, therefore the approximate wave functions 

will be more accurate for wide nanowires. 

 

Figure 3. Variation of the scaled interaction integral with the inverse parabolic potential in a cylindrical 

quantum wire of radius 150R Å= , for transitions from the ground sate ( )0m =  to the first excited state 

( )' 1m =   and from the first excited state ( )1m =   to the second excited state ( )' 2m =  . As regards the 

different wave functions, the legend in Fig. 2 is adopted. 
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Figure 4. The oscillator strength as a function of strength of the inverse parabolic potential, for transition 

from the ground state ( )0m =  to the first excited state ( )' 1m =  . The legend in Fig. 2 is adopted. 

Figure 3 illustrates the dependence of the scaled interaction integral on the inverse parabolic potential. The 

exact results are depicted with solid lines, those of the approximate wave function Eq. (14) 
a

  are 

represented by plots with dots, and those due to Eq. (15) 
b

  are depicted by dashed curves. As can be 

appreciated from the figure, the functional form of the dependence of the interaction integral is preserved 

by the approximations. However, the accuracy of determining the magnitude of the interaction integral 

diminishes with increasing m . This preservation of functional forms of these quantum quantities can be 

found also in the dependence of the oscillator strength on the inverse parabolic potential, shown in Fig. 4. 

The parameters for this figure are the same as those for Fig. 3. As can be appreciated from the figure, the 

inverse parabolic potential decreases the magnitude of the oscillator strength, specifically due to the 

reduction of transition energies as the potential intensifies. As with the interaction integral, the 

approximations still fall short when it comes to determining the magnitude of the oscillator strength. 

Conclusions 

Quantum properties of an electron confined in a cylindrical quantum wire with an inverse parabolic potential 

obtained from approximate wave functions have been compared with those obtained from the exact wave 

function. The exact wave function was obtained by solving the Schrödinger equation within the effective 

mass approximation. The approximate wave functions considered here are a parabolic function and a cosine 

function. Although the approximate wave functions do not yield very accurate magnitudes of quantum 

properties, they are very successful in preserving the functional forms of the variations of the quantities with 

the inverse parabolic potential. It should, thus, be possible to use simpler wave functions to obtain a very 

representative picture of the quantum world. In addition to being used as a tool to approximate the 

variations of quantum quantities before, say, an experiment or a higher level mathematics calculation is 

performed, it can be used as a tool to train undergraduate students in the rigors and subtleties of Quantum 

Mechanics in particular, and theoretical physics as a whole. 
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