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Abstract 

Among the multi-sensor information fusion estimation problems, this paper proposes the centralized robust 

recursive least-squares (RLS) Wiener filter and fixed-point smoother for estimating the signal and the state in 

linear wide-sense stationary stochastic systems with the uncertain parameters in the system and observation 

matrices. Previously, the robust RLS Wiener filter and fixed-point smoother are proposed by the author in the 

case of the single-sensor observation for linear discrete-time stochastic systems with uncertain parameters. This 

paper extends the robust RLS Wiener estimators in the case of the single-sensor observation to the centralized 

multi-sensor robust RLS Wiener estimators. The signal is observed at each station as degraded by the uncertain 

parameters in the observation matrix. The centralized multi-sensor robust RLS Wiener filter and fixed-point 

smoother, proposed in this paper, have the advantage of not using information such as probabilities about the 

uncertain parameters in the system and observation matrices. Related to the centralized multi-sensor robust 

RLS Wiener filter, the recursive algorithm for the filtering error variance function of the state is proposed. 

The estimation accuracies of the centralized multi-sensor robust RLS Wiener filter and fixed-point smoother are 

superior to the centralized multi-sensor RLS Wiener filter and fixed-point smoother, respectively. 

Keywords: Centralized robust RLS Wiener estimators; multi-sensor information fusion; base station; 

autoregressive model; uncertain stochastic systems  

1. Introduction  

Chen & Zhang (2011) design the robust Kalman filter in uncertain stochastic systems with time-invariant state 

delayed; bounded random observation delays and missing measurements in the case of the single-sensor 

observation. The redundant and complementary information, gained by the multi-sensor information fusion 

system, rather than using individual sensory data independently, enables us to get more accurate and less 

uncertain information (Zhang & Wei, 2014). A scalar weighting information fusion optimal Kalman filter has 

higher precision than each local filter in the case of the colored observation noise (Sun & Deng, 2005). Using 

the Kalman filtering technique, Sun (2004) proposes the multi-sensor optimal information fusion Kalman filter 

(IFKF). In the IFKF, the estimate of the state is calculated at the base station as the weighted sum of the estimates 

of the states at the local stations. Zhang, Qi & Deng (2014) devise the two-level robust measurement fusion 

Kalman filter over clustering sensor network systems with unknown noise variances. Zhang et al. (2016) propose 

the centralized fusion steady-state robust Kalman filter with the upper bound of noise variances. The multi-

sensor information fusion estimators are proposed for linear stochastic uncertain systems, with packet losses 

(Ma & Sun, 2015) or with delayed observations (Qi, Zhang & Deng, 2014b). The multi-sensor information fusion 

robust estimators in linear discrete-time stochastic systems have been studied extensively for the systems with 

uncertain parameters (Luo, Zyu, Luo, Zhou, Song & Wang, 2008; Qi et al., 2014, 2014a). Chen, Yu, Zhang & Liu 

(2011) and Chen et al. (2013) propose the multi-sensor information fusion robust Kalman filter in the stochastic 

systems with parameter uncertainties, randomly delayed measurements and sensor failures. 

By the way, the robust recursive least-squares (RLS) Wiener filter, fixed-point smoother (Nakamori, 2019a, 

2019b), fixed-lag smoother (Nakamori, 2019c) and fixed-interval smoother (Nakamori, 2019d) are present. 

Nakamori designs these robust estimators in the case of the single-sensor observation and have not taken into 

account the multi-sensor information fusion estimation problems. From this, Theorem 1 presents the centralized 

multi-sensor robust RLS Wiener filtering and fixed-point smoothing algorithms for the signal and the state in 

linear discrete-time wide-sense stationary stochastic systems with the uncertain parameters in the system and 

observation matrices. The proposed centralized multi-sensor robust RLS Wiener filter and fixed-point smoother 
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have the advantage of not using information such as probabilities about the uncertain parameters in the system 

and observation matrices. Theorem 2 presents the centralized multi-sensor RLS Wiener filtering and fixed-point 

smoothing algorithms for the signal and the state with the degraded observations. The centralized multi-sensor 

RLS Wiener filter and fixed-point smoother are obtainable as a natural extension of the RLS Wiener estimators 

(Nakamori, 1995). 

A numerical example shows the estimation characteristics of the proposed centralized multi-sensor robust RLS 

Wiener filter and fixed-point smoother in comparison with the centralized multi-sensor RLS Wiener estimators. 

The estimation accuracies of the centralized multi-sensor robust RLS Wiener filter and fixed-point smoother are 

superior to the centralized multi-sensor RLS Wiener filter and fixed-point smoother, respectively. 

Section 2 introduces the centralized multi-sensor information fusion robust estimation problem in wide-sense 

stationary stochastic systems.  In Section 3, Theorem 1 proposes the centralized multi-sensor robust RLS Wiener 

filtering and fixed-point smoothing algorithms. Theorem 2 presents the centralized multi-sensor RLS Wiener 

filtering and fixed-point smoothing algorithms. Related to the centralized multi-sensor robust RLS Wiener filter, 

Section 4 proposes the recursive algorithm for the filtering error variance function of the state, and shows the 

existence of the filtering estimate of the state. Section 5 demonstrates a numerical simulation example. 

2. Degraded signals in linear multi-sensor wide-sense stationary stochastic systems  

In linear discrete-time wide-sense stationary stochastic systems, at the local stations, let the multi-sensor signals 

z𝑖(𝑘), 𝑖 = 1,2, ⋯ 𝑚, be observed with additional observation noises 𝑣𝑖(𝑘) as follows when the state equation for 

𝑥(𝑘) is given in (1). 

 

𝑦
𝑖
(𝑘) = 𝑧𝑖(𝑘) + 𝑣𝑖(𝑘), 𝑧𝑖(𝑘) = 𝐻𝑖𝑥(𝑘), 𝑖 = 1,2, ⋯ 𝑚,

 𝑦(𝑘) = 𝑧(𝑘) + 𝑣(𝑘),

𝑦(𝑘) =

[
 
 
 
𝑦

1
(𝑘)

𝑦
2
(𝑘)

⋮

𝑦
𝑚
(𝑘)]

 
 
 

, 𝑧(𝑘) = 𝐻𝑥(𝑘) = [

𝑧1(𝑘)

𝑧2(𝑘)
⋮

𝑧𝑚(𝑘)

] , 𝐻 = [

𝐻1

𝐻2

⋮

𝐻𝑚

] , 𝑣(𝑘) = [

𝑣1(𝑘)

𝑣2(𝑘)
⋮

𝑣𝑚(𝑘)

] ,

𝐸[𝑣𝑖(𝑘)𝑣𝑖
𝑇(𝑠)] = 𝑅𝑖𝛿𝐾(𝑘 − 𝑠), 𝐸[𝑣𝑖(𝑘)𝑣𝑗

𝑇(𝑠)] = 0, 𝑖 ≠ 𝑗, 𝑖, 𝑗 = 1,2, ⋯ 𝑚,

𝐸[𝑣(𝑘)𝑣𝑇(𝑠)] = 𝑅𝛿𝐾(𝑘 − 𝑠), 𝑅 =

[
 
 
 
 
𝑅1 0 ⋯ 0 0

0 𝑅2 ⋯ 0 0
⋮

0

0

⋮

0

0

⋱

⋯

⋯

⋮

𝑅𝑚−1

0

⋮

0

𝑅𝑚]
 
 
 
 

,

𝑥(𝑘 + 1) = Φ𝑥(𝑘) + Γ𝑤(𝑘), 𝐸[𝑤(𝑘)𝑤𝑇(𝑠)] = 𝑄𝛿𝐾(𝑘 − 𝑠) 

 (1) 

Here, 𝑧(𝑘) : 𝑚 ∙ 𝑀 × 1 signal vector with components of m multi-sensor signals 𝑧𝑖(𝑘) , 𝑖 = 1,2, ⋯ 𝑚 ; 𝐻𝑖 : M× n 

observation matrix; 𝑥(𝑘): 𝑛 × 1 state vector to be estimated; 𝑣𝑖(𝑘): zero-mean white observation noise with 

variance R𝑖 ; Φ:  state transition matrix; 𝑤(𝑘):  white-noise input with variance  Q ; Γ : 𝑛 × 𝑙  input matrix. The 

notations 𝑦(𝑘), 𝑧(𝑘) and 𝑣(𝑘) represent the stacked vectors of the 𝑦
𝑖
(𝑘), 𝑧𝑖(𝑘) and 𝑣𝑖(𝑘) vectors, 𝑖 = 1,2, ⋯ 𝑚, 

respectively. The auto-covariance function of 𝑣(𝑘) is given in (1). Let the processes of the signals 𝑧𝑖(𝑘) and the 

observation noises 𝑣𝑖(𝑘) be independent mutually. Now, let the degraded multi-sensor observations �̆�
𝑖
(𝑘), i =

1,2, … , m, be generated by the state-space model with the uncertain quantities ∆Φ(𝑘) in the system matrix and 

∆H𝑖(k) in the observation matrices. Let �̆�
𝑖
(𝑘), 𝑖 = 1,2, ⋯ 𝑚, be given as the sum of the degraded signal �̆�𝑖(𝑘) and 

the white observation noise 𝑣𝑖(𝑘) at the i − th sensor.  

 

�̆�
𝑖
(𝑘) = �̆�𝑖(𝑘) + 𝑣𝑖(𝑘), �̆�𝑖(𝑘) = �̆�𝑖(𝑘)�̆�(𝑘),

�̆�(𝑘 + 1) = Φ̆(𝑘)�̆�(𝑘) + Γ𝑤(𝑘),

 Φ̆(𝑘) = Φ + ∆Φ(𝑘), �̆�𝑖(𝑘) = 𝐻𝑖 + ∆H𝑖(𝑘), i = 1, … , m

 (2) 
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Let the notations �̆�(𝑘)  and �̆�(𝑘)  denote the stacked vectors of the �̆�
𝑖
(𝑘)  and �̆�𝑖(𝑘)  vectors, 𝑖 = 1,2, ⋯ 𝑚 , 

respectively. Then the observation equations in (2) are expressed with the stacked vectors as follows. 

 

�̆�(𝑘) = �̆�(𝑘) + 𝑣(𝑘),

�̆�(𝑘) =

[
 
 
 
�̆�

1
(𝑘)

�̆�
2
(𝑘)

⋮

�̆�
𝑚

(𝑘)]
 
 
 

 

, �̆�(𝑘) = [

�̆�1(𝑘)

�̆�2(𝑘)
⋮

�̆�𝑚(𝑘)

]

 

. (3) 

Let the process of the degraded multi-sensor signal �̆�(𝑘) be fitted to the multivariate autoregressive (AR) model 

of the finite order N as follows.  

 
�̆�(𝑘) = −�⃡�1�̆�(𝑘 − 1) − �⃡�2�̆�(𝑘 − 2) ⋯ − �⃡�𝑁�̆�(𝑘 − 𝑁) + �⃡�(𝑘),

𝐸[�⃡�(𝑘)�⃡�
𝑇
(𝑠)] = 𝑄𝛿𝐾(𝑘 − 𝑠)

 (4) 

In (Nakamori, 2019a), the degraded signal is observed at a single station of m= 1, where the degraded signal is 

expressed in terms of the AR model of the finite order. In the case of the multi-sensor observations for m ≥ 2, 

we introduce the multi-sensor state �⃡�(𝑘), with components �̆�1(𝑘), �̆�2(𝑘), �̆�3(𝑘), …, �̆�𝑚(𝑘), �̆�1(𝑘 + 1), �̆�2(𝑘 + 1), …, 

�̆�𝑚(𝑘 + 1), ⋯,�̆�1(𝑘 + 𝑁 − 2), �̆�2(𝑘 + 𝑁 − 2), ⋯, �̆�𝑚(𝑘 + 𝑁 − 2), �̆�1(𝑘 + 𝑁 − 1), �̆�2(𝑘 + 𝑁 − 1), ⋯, �̆�𝑚(𝑘 + 𝑁 − 1). 

By introducing the observation matrix �⃡�   and the state �⃡�(𝑘), the degraded multi-sensor signal �̆�(𝑘) is expressed 

as  

 

�̆�(𝑘) = �⃡�  �⃡�(𝑘), �⃡�  =

 

[𝐼𝑀∙𝑚×𝑀∙𝑚 0 ⋯ 0 0],

�⃡�(𝑘) =

[
 
 
 
 

�̆�(𝑘)

�̆�(𝑘 + 1)
⋮

�̆�(𝑘 + 𝑁 − 2)

�̆�(𝑘 + 𝑁 − 1)]
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

�̆�1(𝑘)

�̆�2(𝑘)
⋮

�̆�𝑚(𝑘)

�̆�1(𝑘 + 1)

�̆�2(𝑘 + 1)
⋮

�̆�𝑚(𝑘 + 1)
⋮

�̆�1(𝑘 + 𝑁 − 2)

�̆�2(𝑘 + 𝑁 − 2)
⋮

�̆�𝑚(𝑘 + 𝑁 − 2)

�̆�1(𝑘 + 𝑁 − 1)

�̆�2(𝑘 + 𝑁 − 1)
⋮

�̆�𝑚(𝑘 + 𝑁 − 1)]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

.

 

 (5) 

From (4) and (5), the state equation for �⃡�(𝑘) is given by 

 

�⃡�(𝑘 + 1) = Φ⃡  �⃡�(𝑘) + Γ⃡�⃡�  (𝑘),

Φ⃡  =

[
 
 
 
 

0 𝐼𝑀∙𝑚×𝑀∙𝑚 0 ⋯ 0

0 0 𝐼𝑀∙𝑚×𝑀∙𝑚 ⋯ 0

⋮ ⋮ ⋮ ⋱ ⋮

0 0 0 ⋯ 𝐼𝑀∙𝑚×𝑀∙𝑚

−�⃡�𝑁 −�⃡�𝑀−1 −�⃡�𝑀−2 ⋯ −�⃡�1 ]
 
 
 
 

,

𝐸[�⃡�  (𝑘)�⃡�  
𝑇
(𝑠)] = 𝑄𝛿𝐾(𝑘 − 𝑠), �⃡�  (𝑘) = �⃡�(𝑘 + 𝑁),

Γ⃡ =

[
 
 
 

0
0
⋮
0

𝐼𝑀∙𝑚×𝑀∙𝑚]
 
 
 
, (6) 
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using the system matrix Φ⃡   in the controllable canonical form. The AR parameters �⃡�𝑖, 1 ≤ 𝑖 ≤ 𝑁, are calculated, 

by the Yule-Walker equations (Nakamori, 2019b), using the auto-covariance function of the degraded multi-

sensor signal �̆�(𝑘), �̆�(𝑘, 𝑠) = 𝐸[�̆�(𝑘)�̆�𝑇(𝑠)] = �̆�(𝑖), 𝑖 = 𝑘 − 𝑠, 0 ≤ 𝑖 ≤ 𝑁.  

 �⃡� (𝑘, 𝑘)

[
 
 
 
 
 �⃡�1

𝑇

�⃡�2
𝑇

⋮

�⃡�𝑁−1
𝑇

�⃡�𝑁
𝑇

]
 
 
 
 
 

= −

[
 
 
 
 
 �̆�

𝑇
(1)

�̆�
𝑇
(2)
⋮

�̆�
𝑇
(𝑁 − 1)

�̆�
𝑇
(𝑁) ]

 
 
 
 
 

 (7) 

Here, the auto-variance function �⃡� (𝑘, 𝑘) of the multi-sensor state �⃡�(𝑘) is expressed as follows 

 

�⃡� (𝑘, 𝑘) = 𝐸[�⃡�(𝑘)�⃡�
𝑇
(𝑘)] 

=

[
 
 
 
 
 

𝐾(0) 𝐾𝑇(1) ⋯

𝐾(1) 𝐾(0) ⋯
⋮ ⋮ ⋱

𝐾(𝑁 − 2) 𝐾(𝑁 − 3) ⋯

𝐾(𝑁 − 1) 𝐾(𝑁 − 2) ⋯

𝐾𝑇(𝑁 − 2) 𝐾𝑇(𝑁 − 1)

𝐾𝑇(𝑁 − 3) 𝐾𝑇(𝑁 − 2)
⋮ ⋮

𝐾(0) 𝐾𝑇(1)

𝐾(1) 𝐾(0) ]
 
 
 
 
 

. 

(8) 

Also, the equation for the cross-covariance function 𝐾𝑥�⃡�(𝑘, 𝑠) = 𝐸[𝑥(𝑘)�⃡�
𝑇
(𝑠)] of the state 𝑥(𝑘) with the state 

�⃡�(𝑠) is 

 
𝐾𝑥�⃡�(𝑘, 𝑠) = 𝛼(𝑘)𝛽𝑇(𝑠),0 ≤ 𝑠 ≤ 𝑘,

𝛼(𝑘) = Φ𝑘, 𝛽𝑇(𝑠) = Φ−𝑠𝐾𝑥�⃡�(𝑠, 𝑠).
 (9) 

 

3. Centralized multi-sensor robust RLS Wiener filtering and fixed-point smoothing algorithms in linear 

stochastic systems with uncertain parameters 

Under the centralized multi-sensor robust estimation problem in Section 2, Theorem 1 presents the centralized 

multi-sensor robust RLS Wiener filtering and fixed-point smoothing algorithms for estimating the signal 𝑧(𝑘) 

and the state 𝑥(𝑘) in linear wide-sense stationary stochastic systems with the uncertain parameters in the system 

and observation matrices.  

Theorem 1 Let the state-space model for the state 𝑥(𝑘) be given by (1). Let the state-space model with the 

uncertain quantities ΔΦ(𝑘) and Δ𝐻𝑖(𝑘), i = 1, … , m, be given by (2). Let the process of the degraded multi-

sensor signal �̆�(𝑘) be fitted to the AR model of the order N. Let the variance �⃡� (𝑘, 𝑘) of the multi-sensor state 

�⃡�(𝑘) and the cross-variance 𝐾𝑥�⃡�(𝑘, 𝑘) of the state 𝑥(𝑘) with the multi-sensor state �⃡�(𝑘) be given by (8) and (9), 

respectively. Let the variance of the multi-sensor white observation noise 𝑣(𝑘) be 𝑅. Then the centralized multi-

sensor robust RLS Wiener filtering and fixed-point smoothing algorithms for the signal 𝑧(𝑘) and the state 𝑥(𝑘) 

consist of (10)-(20) in linear wide-sense stationary stochastic systems with the uncertain parameters in the 

system and observation matrices. 

Fixed-point smoothing estimate of the signal 𝑧(𝑘) at the fixed point k: �̂�(𝑘, 𝐿)  

 �̂�(𝑘, 𝐿) = 𝐻�̂�(𝑘, 𝐿) (10) 

Fixed-point smoothing estimate of the state 𝑥(𝑘) at the fixed point k: �̂�(𝑘, 𝐿) 

 
�̂�(𝑘, 𝐿) = �̂�(𝑘, 𝐿 − 1) + ℎ(𝑘, 𝐿, 𝐿)(�̆�(𝐿) − �⃡�  Φ⃡  �̂⃡�(𝐿 − 1, 𝐿 − 1)),

�̂�(𝑘, 𝐿)|
𝐿=𝑘

= �̂�(𝑘, 𝑘)
 (11) 

Smoother gain for �̂�(𝑘, 𝐿) in (11): ℎ(𝑘, 𝐿, 𝐿)   
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ℎ(𝑘, 𝐿, 𝐿) = [𝐾𝑥�⃡�(𝑘, 𝑘)(Φ⃡  

𝑇
)𝐿−𝑘�⃡�  

𝑇
− 𝑞(𝑘, 𝐿 − 1)Φ⃡  

𝑇
�⃡�  

𝑇
]

× {𝑅 + �⃡�  [�⃡� (𝐿, 𝐿) − Φ⃡  𝑆0(𝐿 − 1)Φ⃡  
𝑇
]�⃡�  

𝑇
}
−1  (12) 

 

 
𝑞(𝑘, 𝐿) = 𝑞(𝑘, 𝐿 − 1) + ℎ(𝑘, 𝐿, 𝐿)�⃡�  [�⃡� (𝐿, 𝐿) − Φ⃡  𝑆0(𝐿 − 1)Φ⃡  

𝑇
],

𝑞(𝑘, 𝑘) = 𝑆0(𝑘)
 (13) 

Filtering estimate of the signal 𝑧(𝑘): �̂�(𝑘, 𝑘)  

 �̂�(𝑘, 𝑘) = 𝐻�̂�(𝑘, 𝑘) (14) 

Filtering estimate of the state 𝑥(𝑘): �̂�(𝑘, 𝑘)  

 
�̂�(𝑘, 𝑘) = Φ�̂�(𝑘 − 1, 𝑘 − 1) + 𝐺(𝑘)(�̆�(𝑘) − �⃡�  Φ⃡  �̂⃡�(𝑘 − 1, 𝑘 − 1)),

�̂�(0,0) = 0
 (15) 

Filter gain for �̂�(𝑘, 𝑘) in (15): 𝐺(𝑘)  

 

𝐺(𝑘) = [𝐾𝑥�̆�(𝑘, 𝑘) − Φ𝑆(𝑘 − 1)Φ⃡  
𝑇
�⃡�  

𝑇
]

× {𝑅 + �⃡�  [�⃡� (𝑘, 𝑘) − Φ⃡  𝑆0(𝑘 − 1)Φ⃡  
𝑇
]�⃡�  

𝑇
}
−1

,

𝐾𝑥�̆�(𝑘, 𝑘) = 𝐾𝑥�⃡�(𝑘, 𝑘)�⃡�  
𝑇

 (16) 

Filtering estimate of �⃡�(𝑘): �̂⃡�(𝑘, 𝑘)  

 
�̂⃡�(𝑘, 𝑘) = Φ⃡  �̂⃡�(𝑘 − 1, 𝑘 − 1) + 𝑔(𝑘)(�̆�(𝑘) − �⃡�  Φ⃡  �̂⃡�(𝑘 − 1, 𝑘 − 1)),

�̂⃡�(0,0) = 0
 (17) 

Filter gain for �̂⃡�(𝑘, 𝑘) in (17): 𝑔(𝑘) 

 
𝑔(𝑘) = [�⃡� (𝑘, 𝑘)�⃡�  

𝑇
− Φ⃡  𝑆0(𝑘 − 1)Φ⃡  

𝑇
�⃡�  

𝑇
]

× {𝑅 + �⃡�  [�⃡� (𝑘, 𝑘) − Φ⃡  𝑆0(𝑘 − 1)Φ⃡  
𝑇
]�⃡�  

𝑇
}
−1 (18) 

Auto-variance function of �̂⃡�(𝑘, 𝑘): 𝑆0(𝑘) = 𝐸[�̂⃡�(𝑘, 𝑘)�̂⃡�
𝑇
(𝑘, 𝑘)]  

 
𝑆0(𝑘) = Φ⃡  𝑆0(𝑘 − 1)Φ⃡  

𝑇
+ 𝑔(𝑘)�⃡�  [�⃡� (𝑘, 𝑘) − Φ⃡  𝑆0(𝑘 − 1)Φ⃡  

𝑇
],

𝑆0(0) = 0
 (19) 

Cross-variance function of �̂�(𝑘, 𝑘) with �̂⃡�(𝑘, 𝑘): 𝑆(𝑘) = 𝐸[�̂�(𝑘, 𝑘)�̂�𝑇(𝑘, 𝑘)]  

 
𝑆(𝑘) = Φ𝑆(𝑘 − 1)Φ⃡  

𝑇
+ 𝐺(𝑘)�⃡�  [�⃡� (𝑘, 𝑘) − Φ⃡  𝑆0(𝑘 − 1)Φ⃡  

𝑇
],

𝑆(0) = 0
 (20) 

Theorem 1 is obtained by extending the robust RLS Wiener estimators (Nakamori, 2019a, 2019b) for the case of 

the single-sensor observation to the centralized multi-sensor robust RLS Wiener estimators in linear discrete-

time stochastic systems with the uncertain parameters.  

For the stability of the centralized multi-sensor robust RLS Wiener estimators, from (12), (15), (16), (17) and (18), 

the following conditions are required. (1) The matrix 𝑅 + 𝐻[𝐾(𝑘, 𝑘) − Φ⃡  𝑆0(𝑘 − 1)Φ⃡  𝑇]𝐻𝑇 is positive definite. (2) 

The system matrix Φ is stable.  (3) The matrix  Φ⃡  − 𝑔(𝑘)�⃡�  Φ⃡   is stable. Namely, (2) and (3) mean that all the 

eigenvalues of the matrices Φ and Φ⃡  − 𝑔(𝑘)𝐻Φ⃡   lie inside the unit circle, respectively. 

Theorem 2 proposes the centralized multi-sensor RLS Wiener filtering and fixed-point smoothing algorithms. 
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Theorem 2 Let the state-space model for the state 𝑥(𝑘) be given by of (1). Then the centralized multi-sensor 

RLS Wiener filtering and fixed-point smoothing algorithms for the signal 𝑧(𝑘) and the state 𝑥(𝑘) consist of (21)-

(28). The centralized multi-sensor RLS Wiener estimators use the degraded multi-sensor observed value �̆�(𝑘) 

instead of the observation 𝑦(𝑘)  in (1). The centralized multi-sensor RLS Wiener filtering and fixed-point 

smoothing algorithms use the system matrix Φ, the observation matrix 𝐻, the auto-variance function of 𝑥(𝑘), 

𝐾𝑥(𝑘, 𝑘) = 𝐸[𝑥(𝑘)𝑥𝑇(𝑘)], and the degraded multi-sensor observed value �̆�(𝑘) in linear discrete-time wide-sense 

stationary stochastic systems.  

Fixed-point smoothing estimate of the signal 𝑧(𝑘): �̂�(𝑘, 𝐿)  

 �̂�(𝑘, 𝐿) = 𝐻�̂�(𝑘, 𝐿) (21) 

Fixed-point smoothing estimate of the state  𝑥(𝑘): �̂�(𝑘, 𝐿) 

 
�̂�(𝑘, 𝐿) = �̂�(𝑘, 𝐿 − 1) + ℎ(𝑘, 𝐿, 𝐿)(�̆�(𝐿) − 𝐻Φ�̂�(𝐿 − 1, 𝐿 − 1)),

�̂�(𝑘, 𝐿)|
𝐿=𝑘

= �̂�(𝑘, 𝑘)
 (22) 

Smoother gain for �̂�(𝑘, 𝐿) in (22): ℎ(𝑘, 𝐿, 𝐿)  

 
ℎ(𝑘, 𝐿, 𝐿) = [𝐾𝑥(𝑘, 𝑘)(Φ𝑇)𝐿−𝑘𝐻𝑇 − 𝑞(𝑘, 𝐿 − 1)Φ𝑇𝐻𝑇]

× {𝑅 + 𝐻[𝐾𝑥(𝐿, 𝐿) − Φ𝑆𝑥(𝐿 − 1)Φ𝑇]𝐻𝑇}−1
 (23) 

 

 
𝑞(𝑘, 𝐿) = 𝑞(𝑘, 𝐿 − 1)Φ𝑇 + ℎ(𝑘, 𝐿, 𝐿)𝐻[𝐾𝑥(𝐿, 𝐿) − Φ𝑆𝑥(𝐿 − 1)Φ𝑇],

𝑞(𝑘, 𝑘) = 𝑆𝑥(𝑘)
 (24) 

Filtering estimate of the signal 𝑧(𝑘): �̂�(𝑘, 𝑘)  

 �̂�(𝑘, 𝑘) = 𝐻�̂�(𝑘, 𝑘) (25) 

Filtering estimate of the state 𝑥(𝑘): �̂�(𝑘, 𝑘)  

 
�̂�(𝑘, 𝑘) = Φ�̂�(𝑘 − 1, 𝑘 − 1) + 𝐺𝑥(𝑘)(�̆�(𝑘) − 𝐻Φ�̂�(𝑘 − 1, 𝑘 − 1)),

�̂�(0,0) = 0
 (26) 

Filter gain for �̂�(𝑘, 𝑘) in (26): 𝐺𝑥(𝑘)  

 
𝐺𝑥(𝑘) = [(𝐾𝑥(𝑘, 𝑘) − Φ𝑆𝑥(𝑘 − 1)Φ𝑇)𝐻𝑇]

× {𝑅 + 𝐻[𝐾𝑥(𝑘, 𝑘) − Φ𝑆𝑥(𝐿 − 1)Φ𝑇]𝐻𝑇}−1 (27) 

Variance of filtering estimate �̂�(𝑘, 𝑘): 𝑆𝑥(𝑘) 

 
𝑆𝑥(𝑘) = Φ𝑆𝑥(𝑘 − 1)Φ𝑇 + 𝐺𝑥(𝑘)𝐻[𝐾𝑥(𝑘, 𝑘) − Φ𝑆𝑥(𝑘 − 1)Φ𝑇],

𝑆𝑥(0) = 0
 (28) 

Theorem 2 is obtained, in a straightforward manner, by an extension of the RLS Wiener estimators (Nakamori, 

1995) to the case of the multi-sensor observations. 

Section 4 presents the recursive algorithm for the filtering error variance function of the state 𝑥(𝑘) for the 

centralized multi-sensor robust RLS Wiener filtering algorithm, and the existence of the state is shown. 

4. Filtering error variance function of state 𝒙(𝒌) 

This section, at first, proposes the recursive algorithm for the filtering error variance function 𝑃�̃�(𝑘, 𝑘) of the state 

𝑥(𝑘) for the centralized multi-sensor robust RLS Wiener filtering algorithm. From (15) and (16), the variance 

𝑃�̂�(𝑘, 𝑘) of the filtering estimate �̂�(𝑘, 𝑘) is given by 

E[�̂�(𝑘, 𝑘)�̂�𝑇(𝑘, 𝑘)] = ΦE[�̂�(𝑘 − 1, 𝑘 − 1)�̂�𝑇(𝑘 − 1, 𝑘 − 1)]Φ𝑇 + 𝐺(𝑘)[�̆� + 𝐻[𝐾(𝑘, 𝑘) − Φ⃡  𝑆0(𝑘 − 1)Φ⃡  𝑇]𝐻𝑇]𝐺𝑇(𝑘).  
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That is, 𝑃�̂�(𝑘, 𝑘) is updated by 

𝑃�̂�(𝑘, 𝑘) = Φ𝑃�̂�(𝑘 − 1, 𝑘 − 1)Φ𝑇 + 𝐺(𝑘)[�̆� + �⃡�  [�⃡� (𝑘, 𝑘) − Φ⃡  𝑆0(𝑘 − 1)Φ⃡  
𝑇
]�⃡�  

𝑇
]𝐺𝑇(𝑘), 

𝑃�̂�(0,0) = 0. 

(29) 

The filtering error variance function 𝑃�̃�(𝑘, 𝑘) of 𝑥(𝑘) is given by 

𝑃�̃�(𝑘, 𝑘) = 𝐾𝑥(𝑘, 𝑘) − 𝑃�̂�(𝑘, 𝑘). (30) 

Here, 𝐾𝑥(𝑘, 𝑘) and 𝑃�̂�(𝑘, 𝑘) represent the variance of the state 𝑥(𝑘) and the variance of the filtering estimate 

�̂�(𝑘, 𝑘), respectively. It is noted that the filtering error variance function 𝑃�̃�(𝑘, 𝑘) is calculated by (16), (18), (19), 

(20), (29) and (30) recursively.   

From 𝐾𝑥(𝑘, 𝑘) ≥ 0 and 𝑃�̃�(𝑘, 𝑘) ≥ 0, the following relationship holds. 

0 ≤ 𝑃𝑥(𝑘, 𝑘) ≤ 𝐾𝑥(𝑘, 𝑘) 

The variance of the filtering estimate of the state is lower bounded by the zero matrix and upper bounded by 

the variance of the state. This validates the existence of the filtering estimate �̂�(𝑘, 𝑘) of the state 𝑥(𝑘). 

Section 5 shows a numerical simulation example of the centralized multi-sensor robust RLS Wiener filter and 

fixed-point smoother in Theorem 1. We compare their estimation accuracies with those of the centralized multi-

sensor RLS Wiener estimators of Theorem 2. 

5. A numerical simulation example 

Let the observation equations in the two-sensor information fusion network system of m = 2 and the state 

equation for 𝑥(𝑘) be given by 

 

𝑦
𝑖
(𝑘) = 𝑧𝑖(𝑘) + 𝑣𝑖(𝑘), 𝑧𝑖(𝑘) = 𝐻𝑖𝑥(𝑘),𝑖 = 1,2,

𝑦(𝑘) = 𝑧(𝑘) + 𝑣(𝑘), 𝑧(𝑘) = 𝐻𝑥(𝑘), 𝐻 = [
𝐻1

𝐻2
] , 𝑥(𝑘) = [

𝑥1(𝑘)

𝑥2(𝑘)
] ,

𝐻1 = [1 −0.1], 𝐻2 = [0.1 1],

𝑦(𝑘) = [
𝑦

1
(𝑘)

𝑦
2
(𝑘)

] , 𝑧(𝑘) = [
𝑧1(𝑘)

𝑧2(𝑘)
] = [

𝑥1(𝑘) − 0.1𝑥2(𝑘)

0.1𝑥1(𝑘) + 𝑥2(𝑘)
] , 𝑣(𝑘) = [

𝑣1(𝑘)

𝑣2(𝑘)
] ,

𝑥(𝑘 + 1) = Φ𝑥(𝑘) + Γ𝑤(𝑘), Φ = [
0 1

0.8 0.1
] , Γ = [

0

1
] ,

𝐸[𝑣(𝑘)𝑣(𝑠)] = 𝑅𝛿𝐾(𝑘 − 𝑠), 𝑅 = [
𝑅1 0

0 𝑅2
] , 𝑅1 = 𝑅2,

𝐸[𝑤(𝑘)𝑤(𝑠)] = 𝑄𝛿𝐾(𝑘 − 𝑠), 𝑄 = 0. 52.

 (31) 

Let the observation equation for the degraded observed value �̆�(𝑘) be given by (32). The degraded observation 

�̆�(𝑘)  consists of the two components �̆�
1
(𝑘)  and �̆�

2
(𝑘) , and the degraded signal �̆�(𝑘)  consists of the two 

components �̆�1(𝑘) and �̆�2(𝑘) as follows. 

 

�̆�(𝑘) = �̆�(𝑘) + 𝑣(𝑘), �̆�(𝑘) = �̆�(𝑘)�̆�(𝑘), �̆�(𝑘) = [
�̆�

1
(𝑘)

�̆�
2
(𝑘)

] , �̆�(𝑘) = [
�̆�1(𝑘)

�̆�2(𝑘)
] ,

�̆�(𝑘) = [
�̆�1(𝑘)

�̆�2(𝑘)
] , �̆�(𝑘) = [

�̆�1(𝑘)

�̆�2(𝑘)
]

 (32) 

Here, the state-space model contains the uncertain quantities ∆H𝑖(𝑘), 𝑖 = 1,2, and ΔΦ(𝑘) as follows.  

 

�̆�
𝑖
(𝑘) = �̆�𝑖(𝑘) + 𝑣𝑖(𝑘), �̆�𝑖(𝑘) = �̆�𝑖(𝑘)�̆�(𝑘),

�̆�(𝑘 + 1) = Φ̆(𝑘)�̆�(𝑘) + Γ𝑤(𝑘),

Φ̆(𝑘) = Φ + ∆Φ(𝑘), �̆�𝑖(𝑘) = 𝐻𝑖 + ∆H𝑖(𝑘), 𝑖 = 1,2,

 (33) 
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ΔΦ(𝑘) = [
0 0

0.2𝜁1(𝑘) 0.1𝜁2(𝑘)
],  

∆H1(𝑘) = [0.1𝜁
3
(𝑘) 0], ∆H2(𝑘) = [0.05𝜁

4
(𝑘) 0] 

It should be noted that the centralized multi-sensor robust RLS Wiener estimators in Theorem 1 do not use the 

information related to the uncertain quantities. 𝜁
𝑖
(𝑘) , i = 1,2, … ,4,  are mutually independent uniformly 

distributed random variables taking values in the range 0 to 1. The degraded multi-sensor signal �̆�(𝑘) is fitted 

to the multivariate AR model (4) of the order N = 5 as an example. Thus, the multi-sensor state �⃡�(𝑘) of (5) 

consists of 10 vector components. 

By substituting 𝐻, Φ, �⃡�  , Φ⃡  , �⃡� (𝐿, 𝐿), 𝐾𝑥�⃡�(𝑘, 𝑘) and 𝑅 into Theorem 1, the centralized robust RLS Wiener filtering 

and fixed-point smoothing estimates of the states 𝑥1(𝑘) and 𝑥2(𝑘) are calculated. Here, in the evaluations of  

�⃡� (𝐿, 𝐿) and 𝐾𝑥�⃡�(𝑘, 𝑘), 𝑥(𝑘) and  �⃡�(𝑘), 1 ≤ k ≤ 350, are used. The observed values are degraded by the uncertain 

parameters in the system and observation matrices. Fig. 1 illustrates the state 𝑥1(k), the filtering estimate �̂�1(𝑘, 𝑘) 

and the fixed-point smoothing estimate �̂�1(𝑘, 𝑘 + 5) vs. time k by the centralized multi-sensor robust RLS 

Wiener estimators in Theorem 1 for the white Gaussian observation noise N(0,0. 52). Fig. 2 illustrates the state 

𝑥2(k) , the filtering estimate �̂�2(k, k) and the fixed-point smoothing estimate �̂�2(𝑘, 𝑘 + 5)  vs. time k by the 

centralized multi-sensor robust RLS Wiener estimators in Theorem 1 for the white Gaussian observation noise 

N(0,0. 52). The centralized multi-sensor RLS Wiener estimators in Theorem 2 use the information Φ, 𝐻, and the 

auto-variance function of the state 𝑥(𝑘), 𝐾𝑥(𝑘, 𝑘). 𝐾𝑥(𝑘, 𝑘) equals 𝐾𝑥(0) in wide-sense stationary stochastic 

systems. 𝐾𝑥(𝑘, 𝑘) is calculated by 𝐾𝑥(𝑘 + 1, 𝑘 + 1) = Φ𝐾𝑥(𝑘, 𝑘)Φ𝑇 + ΓQΓ𝑇, with the initial value 𝐾𝑥(𝑘, 𝑘) = 02×2, 

iteratively until 𝐾𝑥(𝑘, 𝑘) attains its stationary value.  

 

Fig. 1 State 𝑥1(𝑘), the filtering estimate x̂1(k, k) and the fixed-point smoothing estimate x̂1(𝑘, 𝑘 + 5) by the 

centralized multi-sensor robust RLS Wiener estimators in Theorem 1 vs. time k using the observations 

degraded by the uncertain parameters in the system and observation matrices for the white Gaussian 

observation noise N(0,0. 52). 
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Fig. 3 illustrates the mean-square values (MSVs) of the filtering errors 𝑥1(𝑘) − �̂�1(𝑘, 𝑘) and the fixed-point 

smoothing errors 𝑥1(k) − �̂�1(𝑘, 𝑘 + 𝐿𝑎𝑔), 1 ≤ k ≤ 2000, vs. Lag, 1 ≤ Lag ≤ 10, by the centralized multi-sensor 

robust RLS Wiener estimators in Theorem 1 and the centralized multi-sensor RLS Wiener estimators in Theorem 

2, using the observations degraded by the uncertain parameters in the system and observation matrices, for the 

white Gaussian observation noises N(0, 0.52), N(0,1) and N(0, 1.52). Fig. 4 illustrates the MSVs of the filtering 

errors 𝑥2(𝑘) − �̂�2(𝑘, 𝑘) and the fixed-point smoothing errors 𝑥2(k) − �̂�2(𝑘, 𝑘 + 𝐿𝑎𝑔), 1 ≤ k ≤ 2000, vs. Lag, 1 ≤

Lag ≤ 10, by the centralized multi-sensor robust RLS Wiener estimators in Theorem 1 and the centralized multi-

sensor RLS Wiener estimators in Theorem 2, using the observations degraded by the uncertain parameters in 

the system and observation matrices, for the white Gaussian observation noises N(0, 0.52), N(0,1) and N(0, 1.52). 

From Fig. 3 and Fig. 4, the followings can be seen on the estimation characteristics of both 𝑥1(𝑘) and 𝑥2(𝑘). 

(1) The MSVs of the fixed-point smoothing errors by the centralized multi-sensor robust fixed-point smoother 

are convergent for each observation noise. For the observation noises N(0, 0.52), N(0,1) and N(0, 1.52), the 

MSVs of the fixed-point smoothing errors 𝑥𝑖(k) − �̂�𝑖(𝑘, 𝑘 + 𝐿𝑎𝑔), i = 1,2, decrease little by little as 𝐿𝑎𝑔 

increases for 1 ≤ 𝐿𝑎𝑔 ≤ 3. 

(2) The estimation accuracies of the centralized multi-sensor robust RLS Wiener filter and fixed-point smoother 

are superior to the centralized multi-sensor RLS Wiener filter and fixed-point smoother, respectively, for the 

observation noises N(0, 0.52), N(0,1) and N(0, 1.52) . In the centralized multi-sensor RLS Wiener fixed-point 

smother, as Lag increases, 2 ≤ 𝐿𝑎𝑔 ≤ 10, the MSV of the fixed-point smoothing errors increases for each 

observation noise.  

 

 

Fig. 2 State 𝑥2(𝑘), the filtering estimate x̂2(k, k) and the fixed-point smoothing estimate x̂2(𝑘, 𝑘 + 5) by the 

centralized multi-sensor robust RLS Wiener estimators in Theorem 1 vs. time k using the observations 

degraded by the uncertain parameters in the system and observation matrices for the white Gaussian 

observation noise N(0,0. 52). 



Computer Reviews Journal Vol 8 (2020) ISSN: 2581-6640                                       https://purkh.com/index.php/tocomp 

 10 

 

 

Fig. 3 Mean-square values of the filtering errors 𝑥1(𝑘) − �̂�1(𝑘, 𝑘) and the fixed-point smoothing errors 𝑥1(k) −

�̂�1(𝑘, 𝑘 + 𝐿𝑎𝑔), 1 ≤ Lag ≤ 10, 1 ≤ k ≤ 2000, vs. Lag by the centralized multi-sensor robust RLS Wiener 

estimators in Theorem 1 and the centralized multi-sensor RLS Wiener estimators in Theorem 2 using the 

observations degraded by the uncertain parameters in the system and observation matrices for the white 

observation noises N(0, 0.52), N(0,1) and N(0, 1.52). 
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Fig. 4 Mean-square values of the filtering errors 𝑥2(𝑘) − �̂�2(𝑘, 𝑘) and the fixed-point smoothing errors 𝑥2(k) −

�̂�2(𝑘, 𝑘 + 𝐿𝑎𝑔), 1 ≤ Lag ≤ 10, 1 ≤ k ≤ 2000, vs. Lag by the centralized multi-sensor robust RLS Wiener 

estimators in Theorem 1 and the centralized multi-sensor RLS Wiener estimators in Theorem 2 using the 

observations degraded by the uncertain parameters in the system and observation matrices for the white 

observation noises N(0, 0.52), N(0,1) and N(0, 1.52). 

6. Conclusions 

This paper has proposed, in Theorem 1, the centralized multi-sensor robust RLS Wiener filtering and fixed-point 

smoothing algorithms for the signal and the state in linear discrete-time wide-sense stationary stochastic 

systems with uncertain parameters. Theorem 2 has proposed the centralized RLS Wiener filtering and fixed-

point smoothing algorithms for the signal and the state. Section 4 has proposed the recursive algorithm for the 

filtering error variance function of the state 𝑥(𝑘) for the centralized multi-sensor robust RLS Wiener filter, and 

has shown the existence of the state.  

In the centralized multi-sensor robust RLS Wiener filter and fixed-point smoother, the MSVs of the fixed-point 

smoothing errors for 𝑥1(k) and 𝑥2(k) are convergent for each observation noise. The MSVs of the fixed-point 

smoothing errors 𝑥𝑖(k) − �̂�𝑖(𝑘, 𝑘 + 𝐿𝑎𝑔), i = 1,2, decrease little by little as 𝐿𝑎𝑔 increases for 1 ≤ 𝐿𝑎𝑔 ≤ 3. For the 

estimations of both 𝑥1(𝑘)  and 𝑥2(𝑘) , the estimation accuracies of the centralized multi-sensor robust RLS 

Wiener filter and fixed-point smoother are superior to the centralized RLS Wiener filter and fixed-point smoother, 

respectively, for the observation noises N(0, 0.52), N(0,1) and N(0, 1.52). In the centralized RLS Wiener fixed-

point smother, as Lag increases, 2 ≤ Lag ≤ 10, the MSVs of the fixed-point smoothing errors for 𝑥1(k) and 𝑥2(k) 

tend to be large for each observation noise.  
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