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Abstract

The aim of in this paper, we introduced nIg-interior, nIg-closure and study some of its basic properties. we introduced

and studied nIg-continuous map, nIg-irresolute map and study their properties in nano ideal topological spaces.

Subjclass: [2010]54C10, 54C08, 54C05.

keywords: Nano ideal topological space, nIg-interior, nIg-closure, nIg-continuous map and nIg-irresolute map.

1 Introduction and preliminaries

Let (U, N , I) be an nano ideal topological space with an ideal I on U, where N = τR(X)and(.)∗n : ℘(U)→℘(U)

(℘(U) is the set of all subsets of U) [5, 6]. For a subset A ⊆U, A∗n(I, N )={x∈U : Gn∩ A /∈I , for every Gn∈

Gn(x)}, where{Gn = {Gn| x∈ Gn, Gn∈N}is called the nano local function(brielfy n-local function) of A with repect

to I and N . We will simply write A∗n for A∗n (I, N ).

Nano ideal generalized closed sets were introduced and studied by Parimala et al [6]. In this paper, we first

introduced nIg-interior, nIg-closure and study some of its basic properties. we introduced and studied nIg-continuous

map, nIg-irresolute map. We also discuss some properties of nIg-continuous in nano ideal topological spaces.

Definition 1.1 [4]

Let U be a non-empty finite set of objects called the universe and R be an equivalence relation on U named as

the indiscernibility relation. Elements belonging to the same equivalence class are said to be indiscernible with one

another. The pair (U, R) is said to be the approximation space. Let X ⊆ U.

1. The lower approximation of X with respect to R is the set of all objects, which can be for certain classified as X

with respect to R and it is denoted by LR(X).

Thatis, LR(X) =
⋃
xεU{R(X) : R(X)⊆ X} where R(x) denotes the equivalence class determined by X.
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2. The upper approximation of X with respect to R is the set of all objects, which can be possibly classified as X

with respect to R and it is denoted by UR(X).

Thatis, UR(X) =
⋃
xεU{R(X) : R(X)∩ X 6= φ}.

3. The boundary region of X with respect to R is the set of all objects, which can be neither in nor as not-X with

respect to R and it is denoted by BR(X).Thatis,BR(X) = UR(X)− LR(X).

Property 1.2 [4]

If (U, R) is an approximation space and X, Y ⊆ U, then

1. LR(X)⊆ X ⊆ UR(X).

2. LR(φ) = UR(φ) = φ , LR(U) = UR(U) = U.

3. UR(X∪ Y) = UR(X)∪ UR(Y ).

4. UR(X∩ Y) ⊆ UR(X)∩ UR(Y ).

5. LR(X∪ Y) ⊇ LR(X)∪ LR(Y ).

6. LR(X∩ Y) = LR(X)∩ LR(Y ).

7. LR(X)⊆ LR(Y )andUR(X)⊆ UR(Y )wheneverX⊆ Y.

8. UR( Xc ) = [LR(X)]c and LR(Xc ) = [UR(X)]c .

9. UR(UR(X)) = LR(UR(X)) = UR(X).

10. LR(LR(X)) = UR(LR(X)) = LR(X).

Definition 1.3 [4] Let U be an universe, R be an equivalence relation on U and τR(X) ={U, φ , LR(X), UR(X), BR(X)}whereX⊆

U. Then by property 1.2, τR(X) satisfies the following axioms

1. U , φ ε τR(X).

2. The union of the elements of any sub-collection of τR(X) is in τR(X).

3. The intersection of the elements of any finite sub collection of τR(X) is in τR(X).

Then τR(X) is called the Nano topology on U with respect to X.

The space (K, τR(X)) is the Nano Nano topological space. The elements of are called Nano open sets.

Definition 1.4 [4]

If (U, τR(X) is the Nano topological space with respect to X where X ⊆ U and if M ⊆ U, then
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1. The Nano interior of the set M is defined as the union of all Nano open subsets contained in M and it is denoted

by NInte(M). That is, NInte(M) is the largest Nano open subset of M.

2. The Nano closure of the set M is defined as the intersection of all Nano closed sets containing M and it is denoted

by NClo(M). That is, NClo(M) is the smallest Nano closed set containing M.

Theorem 1.5 [5, 6] Let (U, N ) be a nano topological space with ideal I, I ′ on U and A, B be subsets of U. Then

1. A ⊆ B ⇒ A∗n ⊆ B∗n.

2. I ⊆ I ′ ⇒ A∗n (I ′) ⊆ A∗n (I).

3. A∗n=n-cl(A∗n) ⊆ n-cl(A) (A∗n is a nano closed subset of n-cl(A)).

4. (A∗n)∗n ⊆ A∗n.

5. A∗n∪ B∗n =(A∪B)∗n

6. A∗n − B∗n = (A − B)∗n − B∗n ⊆ (A −B)∗n.

7. V ∈ N ⇒ V ∩ A∗n = V ∩ (V ∩A)∗n ⊆ (V ∩A)∗n and

8. J ∈ I ⇒ (A ∪ J)∗n = A∗n = (A -J)∗n

Lemma 1.6 [5, 6] Let (U, N , I) be an nano topological space with an ideal I and A⊆A∗n, then A∗n=n-cl(A∗n)=n-cl(A)

Definition 1.7 [5, 6] Let (U, N ) be an nano topological space with an ideal I on U. The set operator n-cl∗ is called

a nano ? -closure and is defined as n-cl∗(A)= A ∪ A∗n for A ⊆X.

Theorem 1.8 [5, 6] The set operator n-cl∗ satisfies the following conditions:

1. A ⊆ n-cl∗(A).

2. n-cl∗(φ) = φ and n-cl∗(U) = U.

3. If A ⊆B, then n-cl∗(A) ⊆ n-cl∗(B).

4. n-cl∗(A) ∪ n-cl∗(B) = n-cl∗(A ∪ B)

5. n-cl∗(n-cl∗(A)) =n-cl∗(A)

Definition 1.9 [5, 6] A subset A of a nano ideal topological space (U, N , I) is n?-closed if A∗n ⊆ A.
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Definition 1.10 [5, 6] A subset A of an nano ideal topological space (O, N , I) is said to be

1. nano-I-generalized closed (briefly, nIg-closed if A∗n ⊆ V whenever A⊆ V and V is n-open.

2. nIg-open if its complement is nIg-closed.

Remark 1.11 The collection of all nIg-closed(resp. nIg-open) sets is denoted by nIg-c(N ) (resp.nIg-o(N )).

Definition 1.12 [7] A subset A of a nano ideal topolgical space (U, N , I) is said to be nano-I-open (briefly, nI-open)

if A ⊆ n-int(A∗n).

Remark 1.13 1. Every n-closed set is n?-closed but not conversely [1].

2. Every n?-closed set is nIg-closed but not conversely [6].

Definition 1.14 A map f: (K, N , I) → (L, N ′) is said to be n?-continuous [3] if f−1(A) is n?-closed in (K, N , I)

for every n-closed set A of (L, N ′).

2 nIg-INTERIOR AND nIg-CLOSURE

Definition 2.1 For any M ⊆ O, nI-int(M) is defined as the union of all nI-open sets contained in M. i.e., nI-int(M)

= ∪ {G : G ⊆ M and G is nI-open}.

Definition 2.2 For any M ⊆ O, nIg-int(M) is defined as the union of all nIg-open sets contained in M. i.e., nIg-

int(M) = ∪ {G : G ⊆ M and G is nIg-open}.

Lemma 2.3 For any M ⊆ O, nI-int(M) ⊆ nIg-int(M) ⊆ M.

The proof follows from Definitions 2.1 and 2.2.

The following two Propositions are easy consequences from definitions.

Proposition 2.4 For any M ⊆ O, the following holds.

1. nIg-int(M) is the largest nIg-open set contained in M.

2. M is nIg-open if and only if nIg-int(M) = M.

Proposition 2.5 For any subsets M and P of (O, N , I), the following holds.
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1. nIg-int(M ∩ P) = nIg-int(M) ∩ nIg-int(P).

2. nIg-int(M ∪ P) ⊇ nIg-int(M) ∪ nIg-int(P).

3. If M ⊆ P, then nIg-int(M) ⊆ nIg-int(P).

4. nIg-int(O) = O and nIg-int(φ) = φ.

Definition 2.6 For every set M ⊆ O, we define the nIg-closure of M to be the intersection of all nIg-closed sets

containing M. i.e., nIg-cl∗(M) = ∩ {F : M ⊆ F ∈ nIgc(N ).

Lemma 2.7 For any M ⊆ O, M ⊆ nIg-cl∗(M) ⊆ n-cl∗(M).

The proof follows from Remark 1.13(2).

Remark 2.8 Both containment relations in Lemma 2.7 may be proper as seen from the following example.

Example 2.9 Let O = {a, b, c}, with O/ R= {{a}, {b, c}} and X= {a}. Then the Nano topology N = {φ, {a}, O}

and I = {∅}. Then nIg-closed sets are ∅, O, {b}, {c}, {a, b}, {a, c}, {b, c}. Let A= {a, b}. Here nIg-cl∗({a, b}) =

{a, b}, n-cl∗({a, b}) = O and so A ⊆ nIg-cl∗(A)⊆ n-cl∗(A).

The following two Propositions are easy consequences from definitions.

Proposition 2.10 For any M ⊆ O, the following holds.

1. nIg-cl∗(M) is the smallest nIg-closed set containing M.

2. M is nIg-closed if and only if nIg-cl∗(M) = M.

Proposition 2.11 For any two subsets M and P of (O, N , I), the following holds.

1. If M ⊆ P, then nIg-cl∗(M) ⊆ nIg-cl∗(P).

2. nIg-cl∗(M ∩ P) ⊆ nIg-cl∗(M) ∩ nIg-cl∗(P).

Proposition 2.12 Let M be a subset of a space O, then the following are true.

1. (nIg-int(M))c = nIg-cl∗(Mc).

2. nIg-int(M) = (nIg-cl∗(Mc))c.

3. nIg-cl∗(M) = (nIg-int(Mc))c.
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Proof

1. Clearly follows from definitions.

2. Follows by taking complements in (1).

3. Follows by replacing M by Mc in (1).

3 nIg-CONTINUOUS MAPS

Definition 3.1 [2] A map f: (O, N , I) → (P, N ′) is called nIg-continuous if f−1(V) is a nIg-closed set of (O, N ,

I) for every n-closed set V of (P, N ′).

Proposition 3.2 Every ?-continuous is nIg-continuous but not conversely.

The proof follows from Result 1.13(2).

Example 3.3 Let O, N and I be defined as Example 2.9. Then n?-closed sets are ∅, O, {b, c}. Let P = {a, b, c}

with with P/ R= {{c}, {a, b}} and X= {b, c}. Then the Nano topology N ′ = {φ, {c}, {a, b}, P} and J = {∅}. Then

nIg-closed sets are ∅, O, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}. Define f: (O, N , I) → (P, N ′) be the identity map.

Then f is nIg-continuous but not n?-continuous, since f−1({a, b})= {a, b} is not n?-closed in (O, N , I).

Remark 3.4 The composition of two nIg-continuous maps need not be nIg-continuous and this is shown from the

following example.

Example 3.5 Let O, N and I be as in Example 2.9. Let P = {a, b, c}, with P/ R= {{c}, {a, b}, {b, a}} and X=

{a, b}. Then the Nano topology N ′ = {φ, {a, b}, P} and I={∅, {a}}. Then nIg-closed sets are ∅, P, {a}, {c}, {a,

c}, {b, c}. Let Q = {a, b, c} with Q/ R= {{c}, {a, b}} and X= {b, c}. Then the Nano topology N ′∗= {φ, {c}, {a,

b}, Q} and K = {φ, {Q}}. Define f: (O, N , I) → (P, N ′, J ) by f(a) = a, f(b) = c and f(c) = b. Define g : (P, N ′,

J ) → (Q, N ′∗, K) by g(a) =c, g(b)= b and g(c)= a. Clearly f and g are nIg-continuous but their g ◦ f : (O, N , I)

→ (Q, N ′∗, K) is not nIg-continuous, because V = {c} is n-closed in (Q, N ′∗) but ( g ◦ f −1({c})= f−1(g−1({c})) =

f−1({a}) = {a}, which is not nIg-closed in (O, N , I) .

Proposition 3.6 A map f: (O, N , I) → (P, N ′) is nIg-continuous if and only if f−1(U) is nIg-open in (O, N , I)

for every n-open set U in (P, N ′).

Let f: (O, N , I) → (P, N ′) be nIg-continuous and U be an n-open set in (P, N ′). Then Uc is n-closed in (P, N ′) and

since f is nIg-continuous, f−1(Uc) is nIg-closed in (O, N , I) . But f−1(Uc) = f−1((U))c and so f−1(U) is nIg-open
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in (O, N , I).

Conversely, assume that f−1(U) is nIg-open in (O, N , I) for each n-open set U in (P, N ′). Let F be a n-closed set

in (P, N ′). Then Fc is n-open in (P, N ′) and by assumption, f−1(Fc) is nIg-open in (O, N , I). Since f−1(Fc) =

f−1((F))c , we have f−1(F) is n-closed in (O, N , I) and so f is nIg-continuous.

We introduce the following definition

Definition 3.7 A map f: (O, N , I) → (P, N ′, J ) is called nIg-irresolute if f−1(V) is a nIg-closed set of (O, N ,

I)for every nIg-closed set V of (P, N ′, J ).

Theorem 3.8 Every nIg-irresolute map is nIg-continuous but not conversely.

Let f: (O, N , I) → (P, N ′, J ) be a nIg-irresolute map. Let V be a n-closed set of (P, N ′). Then by the Result 1.13

(1) and (2), V is nIg-closed. Since f is nIg-irresolute, then f−1(V) is a nIg-closed set of (O, N , I). Therefore f is

nIg-continuous.

Example 3.9 Let O, N with I be as in the Example 2.9. Let P, N ′ with J be as in the Example 3.3. Define f: (O,

N , I) → (P, N ′, J ) be the identity map. It is clear that {a} is nIg-closed set of (P, N ′, J ) but f−1({a}) ={a} is

not a nIg-closed set of (O, N , I). Thus f is not nIg-irresolute map. However f is nIg-continuous map.

Theorem 3.10 Let f: (O, N , I) → (P, N ′, J ) and g : (P, N ′, J ) → (Q, N ′∗, K) be any two maps. Then

1. g ◦ f is nIg-continuous if g is n?-continuous and f is nIg-continuous.

2. g ◦ f is nIg-irresolute if both f and g are nIg-irresolute.

3. g ◦ f is nIg-continuous if g is nIg-continuous and f is nIg-irresolute.

Omitted.

Definition 3.11 Let (O, N , I) be a nano ideal topological space. Let o be a point of O and G be a subset of O. Then

G is called an nIg-neighbourhood of o (briefly, nIg-nbhd of o) in O if there exists an nIg-open set S of O such that o

∈ S ⊆ G.

Proposition 3.12 Let M be a subset of (O, N , I). Then o ∈ nIg-cl∗(M) if and only if for any nIg-nbhd Go of o in

(O, N , I), M ∩ Go 6= φ.

Necessity. Assume o ∈ nIg-cl∗(M). Suppose that there is an nIg-nbhd G of the point o in (O, N , I) such that G ∩

M = φ. Since G is nIg-nbhd of o in (O, N , I), by Definition 3.11, there exists an nIg-open set So such that o ∈ So

⊆ G. Therefore, we have So ∩ M = φ and so M ⊆ (So)
c. Since (So)

c is an nIg-closed set containing M, we have by
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Definition 2.6, nIg-cl∗(M) ⊆ (So)
c and therefore o /∈ nIg-cl∗(M), which is a contradiction.

Sufficiency. Assume for each nIg-nbhd Go of o in (O, N , I), M ∩ Gk 6= φ. Suppose that o /∈ nIg-cl∗(M). Then by

Definition 2.6, there exists an nIg-closed set F of (O, N , I) such that M ⊆ F and o /∈ F. Thus o ∈ Fc and Fc is

nIg-open in (O, N , I) and hence Fc is a nIg-nbhd of o in (O, N , I). But M ∩ Fc =φ, which is a contradiction.

In the next theorem we explore certain characterizations of nIg-continuous maps.

Theorem 3.13 Let f: (O, N , I) → (P, N ′) be a map. Then the following statements are equivalent.

1. The map f is nIg-continuous.

2. The inverse of each n-open set is nIg-open.

3. For each point o in (O, N , I) and each n-open set V in (P, N ′) with f(o) ∈ V, there is an nIg-open set U in

(O, N , I) such that o ∈ U, f(U) ⊆ V.

4. The inverse of each n-closed set is nIg-closed.

5. For each o in (O, N , I), the inverse of every neighbourhood of f(o) is an nIg-nbhd of o.

6. For each o in (O, N , I) and each neighbourhood N of f(o), there is an nIg-nbhd G of o such that f(G) ⊆ N.

7. For each subset A of (O, N , I), f(nIg-cl∗(A)) ⊆ cl∗(f(A)).

8. For each subset B of (P, N ′), nIg-cl∗(f−1(B)) ⊆ f−1(cl∗(B)).

(1) ⇔ (2). This follows from Proposition 3.6.

(1) ⇔ (3). Suppose that (3) holds and let V be an n-open set in (P, N ′) and let o ∈ f−1(V). Then f(o) ∈ V and thus

there exists an nIg-open set Uo such that o ∈ Uo and f(Uo) ⊆V. Now, o ∈ Uo ⊆ f−1(V) and f−1(V) = ∪o∈f−1(V)

Uo. By assumption, f−1(V) is nIg-open in (O, N , I) and therefore f is nIg-continuous.

Conversely, Suppose that (1) holds and let f(o) ∈ V. Then o ∈ f−1(V) ∈ nIgo(N ), since f is nIg-continuous. Let U

= f−1(V). Then o ∈ U and f(U) ⊆ V.

(2) ⇔ (4). This result follows from the fact if A is a subset of (P, N ′), then f−1(Ac) = (f−1(A))c.

(2) ⇔ (5). For o in (O, N , I), let N be a neighbourhood of f(o). Then there exists an n-open set U in (P, N ′) such

that f(o) ∈ U ⊆ N. Consequently, f−1(U) is an nIg-open set in (O, N , I) and o ∈ f−1(U) ⊆ f−1(N). Thus f−1(N) is

an nIg-nbhd of o.

(5) ⇔ (6). Let o ∈ O and let N be a neighbourhood of f(o). Then by assumption, G = f−1(N) is an nIg-nbhd of o

and f(G) = f(f−1(N)) ⊆ N.

(6) ⇔ (3). For o in (O, N , I), let V be an n-open set containing f(o). Then V is a neighborhood of f(o). So by

assumption, there exists an nIg-nbhd G of o such that f(G) ⊆ V. Hence there exists an nIg-open set U in (O, N , I)

such that o ∈ U ⊆ G and so f(U) ⊆ f(G) ⊆ V.
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(7)⇔ (4). Suppose that (4) holds and let A be a subset of (O, N , I). Since A ⊆ f−1(A), we have A ⊆ f−1(cl∗(f(A))).

Since cl∗(f(A)) is a n-closed set in (P, N ′), by assumption f−1(cl∗(f(A))) is an nIg-closed set containing A. Conse-

quently, nIg-cl∗(A) ⊆ f−1(cl∗(f(A))). Thus f(nIg-cl∗(A)) ⊆ f(f−1(cl∗(f(A)))) ⊆ cl∗(f(A)).

Conversely, suppose that (7) holds for any subset A of (O, N , I). Let F be a n-closed subset of (P, N ′). Then by

assumption, f(nIg-cl∗(f−1(F))) ⊆ cl∗(f(f−1(F))) ⊆ cl∗(F) = F. i.e., nIg-cl∗(f−1(F))⊆ f−1(F) and so f−1(F) is nIg-

closed.

(7) ⇔ (8). Suppose that (7) holds and B be any subset of (P, N ′). Then replacing A by f−1(B) in (7), we obtain

f(nIg-cl∗(f−1(B))) ⊆ cl∗(f(f−1(B))) ⊆ cl∗(B). i.e., nIg-cl∗(f−1(B)) ⊆ f−1cl∗(B).

Conversely, suppose that (8) holds. Let B = f(A) where A is a subset of (O, N , I) . Then we have, nIg-cl∗(A) ⊆

nIg-cl∗(f−1(B)) ⊆ f−1(cl∗(f(A)) and so f(nIg-cl∗(A)) ⊆ cl∗(f(A)).

This completes the proof of the theorem.
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