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Abstract 

The means of realizing or approximating the Lebesgue space-filling curve (SFC) with binary arithmetic on a 

uniformly spaced binary grid are not obvious, one problem being its formulation in terms of ternary 

representations; that impediment can be overcome via use of a binary-oriented Cantor set.  A second 

impediment, namely the Devil’s Staircase feature, also created by the role of the Cantor set, can be overcome 

via the definition of a “working inverse,” thereby providing means of achieving compatibility with such a grid. 

The results indicate an alternative way to proceed, in realizing an approximation to Lebesgue’s SFC, which 

circumvents any complication raised by Cantor sets and is compatible with binary and integer arithmetic. Well-

known constructions such as the z-curve or Morton order, sometimes considered in association with Lebesgue’s 

SFC, are treated as irrelevant. 

Introduction 

The unit interval R = [0,1] and the unit square X = {R,R}. A SFC is a continuous mapping from R onto X. 

The first space-filling curve (SFC) was proposed by Peano [1], whose construction is based on ternary 

representations as distinct from the later binary-based Hilbert SFC [2], Such curves are continuous everywhere 

and not differentiable, and are referred to here as being of the “Peano class”; the Hilbert class is a sub-class of 

the Peano class. No SFC is 1-to-1, i.e., possessing an inverse. Quantized versions of the Peano and Hilbert curves 

have been generalized to n-dimensional spaces [3-6]. 

SFCs have been used or proposed in diverse applications, for example numerical computations [7-10], image 

processing and retrieval [11-12], computational fluid dynamics [13], data storage [14-20], antenna design [21], 

reservoir simulation [22], pattern analysis [23], geophysical data processing [24], VLSI architectures [25], 

scheduling in parallel processing [26], graph layout [27], and MR imaging [28]. The Hilbert SFC has been favored 

in applications partly because it is naturally compatible with binary representations and a binary-based 

rectangular grid in the n-dimensional space of interest; a quantized version of the Hilbert SFC and its inverse, 

for general dimension n, have been coded by Moore [29]. No SFC in the Peano class is differentiable, which can 

be a drawback, especially in numerical applications. 

Lebesgue’s SFC has been described by Sagan [30] and is evidently disfavored in applications of SFCs, one reason 

being perhaps its poor “compaction” properties, which is the tendency of the curve to remain in some small 

neighborhood of space once that neighborhood has been entered in filling the space. Another discouraging 

feature, from computation, has been its expression in terms of ternary representations via the standard or 

generic Cantor set. A third discouraging feature has been the lack, filled here, of a specific way to generate a 

quantized version. Finally, Lebesgue’s SFC has an important “Devil’s Staircase” feature that might seem 

meaningless on a finite grid. Lebesgue’s SFC is differentiable a.e., a feature that can be desirable in some 

applications. A credible and useful realization of Lebesgue’s SFC on a finite binary grid is the central result here. 

The “working inverse” of Lebesgue’s SFC is the key to achieving that. Our result is unrelated to the “Morton 

order” or “z-curve”, though the Lebesgue SFC is sometimes viewed as a version of, or helper to, the Morton 

order. Haverkort [31] and Bader [14] noted the Morton order is not an SFC at all, i.e., its expression in a continuum 
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is not continuous. Both Haverkort and Bader, with general remarks, treated Lebesgue’s SFC as a fix for the 

discontinuous Morton order, but the details are not clear and important possibilities, such as an inverse, which 

naturally should apply to realizations on a finite binary grid, are not confronted. We treat the Morton order and 

z-curve as irrelevant and derive results and conclusions from Lebesgue’s SFC as proposed, but using an 

alternative Cantor set. 

Lebesgue’s description of his SFC was terse [32]. Earlier SFCs had not been differentiable, but Lebesgue’s is 

differentiable a.e.. 

The principal objective here is to express Lebesgue’s SFC in a way compatible with binary arithmetic, bitwise 

operations on integer representations, and a binary grid. An alternative Cantor set is used in formulating, for the 

case dimension n = 2, a SFC which follows Lebesgue’s but averts practical complications arising from ternary 

representations. The result is the same SFC, i.e. tracing the same path through X, with a different relationship to 

its index or key rR. Despite that difference, we continue to refer to the focus of our study and our result as 

Lebesgue’s SFC, since the path is the same. The new mapping remains differentiable a.e., and naturally 

compatible with binary and integer representations of variables, easing the tasks of computations associated 

with it. However, Lebesgue’s SFC does not naturally “fill” a rectangular grid consisting of a finite number of 

uniformly binary-spaced points; that arrangement requires substantial supplementation. That is done here via 

the choice of a “working inverse” defined via a recursive computation. Code is provided in Appendix B for 

computing this SFC and the working inverse on a binary grid. The code presented here uses real rather than 

integer representations for the sake of clarity and transparency only; integer representations and computations, 

involving shifts replacing multiplications and divisions, could obscure matters, but code using integer 

representations of the crucial variables is available as of Jan. 2020 here.  

The compatibility with a binary-spaced rectangular grid raises the candidacy of our result in some applications 

where the Hilbert class has been used and even suggests that Hilbert-Lebesgue hybrid SFCs can be considered, 

having both compaction and differentiability properties. 

Materials and Methods 

There were no special materials required for this research; commonplace computational resources are all that is 

required to reproduce these results following the methods described here. 

The Cantor Set  

Number representations are presumed to be of the conventional decimal type unless noted otherwise, e.g. 02.01 

= 02.00111111111…….. = 03.02020202……. = 08.2 = 09.2222…. are binary, ternary, octal and nonal (base 9) 

representations, respectively, of r = 0.25 = ¼. 

The generic Cantor set , commonly defined via the usual ternary scheme, may also be defined in terms of 

nonal (base 9) representation allowing only the characters 0,2,6,8; such representations are of those values 

which, in ternary representation, use no 1s, as required for the generic Cantor set. Octal representations of rR 

that allow only the values 0,2,5,7 can be associated with nonal representations that use only 0,2,6,8 by defining 

the correspondences [0,2,6,8]  [0,2,5,7] respectively. 

In this way a Cantor set perfect, nowhere dense and of measure 0 is defined, and it is suggested that a 

new SFC, resembling Lebesgue’s, can be constructed. For example the critical points 1/9,2/9,1/3,2/3,7/9,8/9  

  (09.08888…., 09.2, 09.28888…., 09.6, 09.68888….., 09.8) correspond via the homeomorphism, respectively, to the 

points ⅛,¼, ⅜, ⅝, ¾, ⅞ (08.0777777…., 08.2, 08.277777…., 08.5, 08.57777…., 08.7). This alternative Cantor set is 

not equivalent to the Smith-Volterra-Cantor set, which it may resemble; the Smith-Volterra-Cantor set has 

measure ½ while , like the generic Cantor set , has measure 0. To show that, starting with (0,1) do an interval 

removal process but starting with removal of the three intervals (⅛,¼)(⅜,⅝)(¾,⅞), whose total measure is 

http://users.eecs.northwestern.edu/~butz/lebesgue/int_versions/
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½, as constituting one step. Remaining are four intervals of measure ⅛ each;. if the first removal process on 

each of these reduced intervals is done, the measure of those removed on this second step is ⅛ .½.4 = ¼. The 

total measure of all intervals removed is thus ½ + ¼ + ⅛ + . . . . = 1. 

The main motivation for the definition of  is to escape awkward ternary-related computations, thereby 

making feasible writing code in terms of integer types, and making possible needed multiplications and divisions 

with shifts and adds, and to arrange that vertical and horizontal sensitivities of the SFC to be defined are equal 

on any one “level” (a concept to be defined). The conclusions reached, and suggestions for further work 

formulated here, could cast a different light on such objectives. 

Formulation 

This is the procedure for defining the SFC. For a point r in , define x = (r) as Lebesgue did for the 

corresponding r  , which assured  is continuous on ; the details are given e.g. by Sagan [30]. For an 

interval bounded by points in , but with no interior points in , such as [⅜,⅝], perform the linear 

interpolations between endpoints equal to those used for the corresponding interval e.g. [1/3,2/3], for the 

Lebesgue SFC. 

The procedure creates a SFC differentiable a.e., here called :R→ontoX, which “fills” X in two senses. As the 

zero-measure generic Cantor set  has the same cardinality as the unit interval R and the unit square X, the 

image of  as defined is the entire square X, so that much fills X but is not a mapping from R, i.e. it is not a 

“curve”. 

Lebesgue’s (r), and our (r), for r  or   respectfully, provide a second filling, or more specifically a 

differentiable mapping whose closure fills X, as that second filling naturally does via the linear interpolations. 

The second filling is more compatible with computation on a binary-spaced grid, but not entirely so for , since 

computations of  remain naturally compatible with ternary rather than binary arithmetic. The Cantor set , 

with its associated (to be defined) eliminates any relevance of ternary-based computations. The 

definition of a “working inverse,” proposed here, is however crucial to our method of filling a rectangular binary-

spaced grid in a quasi-continuous way. 

Definitions 

A mapping  : R→ X, which is to be used to define the SFC, takes (0) = {0,0} and (1) = {1,1}. The set 0  

R is defined as [⅛, ¼]  [⅜, ⅝]  [¾, ⅞]. On 0 define: 

If ⅛ ≤ r ≤ ¼ then x0 = 1-4r and x1 = ½, i.e. (r) = {1-4r, ½}, 

If ⅜ ≤ r ≤ ⅝ then  (r) = {½, 2.5 – 4r},      (1) 

If ¾ ≤ r ≤ ⅞ then  (r) = {4-4r, ½}, 

The relations (1) are the linear interpolations, chosen by Lebesgue, between endpoints in  also chosen by 

him; our endpoints are those in  that equal his for corresponding intervals. 

The trajectories in Fig. 1 (Level 0 case) show the subset of X that the definition (1) encompasses. On 0 either 

d 0/dr = 0 and d 1/dr = -4 or vice versa, i.e. the vertical and horizontal sensitivities on the points of the unit 

square X, that are depicted in Fig. 1, are equal. The set B0 is analogous to Lebesgue’s set [1/9, 2/9]  [1/3, 2/3] 

 [7/9, 8/9], for which a function comparable to our  , namely , is defined but the vertical and horizontal 

sensitivities differ for  
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           Fig. 1. Level 0 (L0) case. 

Complete the definition of : 

If 0 < r < ⅛ then (r) = (8r)/2. 

If ¼< r < ⅜ then (r) = (8r-2)/2 + {0, ½}.     (2) 

If ⅝ < r < ¾ then (r) = (8r-5)/2 + {½,0}. 

If ⅞ < r < 1 then (r) = (8r-7)/2 + {½,½}. 

The extension (2) to (1) must be interpreted in a recursive sense. According to the given definition (1/128) = 

(1/16)/2 = (½)/4 = {⅛,⅛}. If r   is not a member of the countable subset of  serving as endpoints of 

intervals, or within one of those intervals, then the recursion does not terminate. r = 2/7 = 08.222222……. is a 

member of that uncountable subset and if we wish y = (r) then applying the preceding recursion y = y/2 + 

{0,0.5} = y/4 + {0,0.75} = y/8 + {0,0.875} = …… converging to {0,1}. Thus (1-2) define  only a.e.; that constitutes 

no difficulty here, because the objective is a quantized version of the Lebesgue SFC. 

The preceding is, mutatis mutandis, Sagan’s description [30] of the part of the Lebesgue SFC defined on intervals 

bounded by some members of . The trajectories in X defined by Lebesgue are the same as those defined 

here; the difference is in the relationship to the index r. The definition of  in (1) represents linear interpolations 

between endpoints on  that correspond to those used on corresponding endpoints in  used to define 

linear interpolations for Lebesgue’s SFC for index r values  . Therefore, that part of the SFC is the same as 

Lebesgue’s, though the relationship to the index r is changed. Consequences of the new formulation are that 

computations of (r) may dodge some computational problems raised by ternary representations and vertical 

and horizontal sensitivities, on any one level, are equal. 

It is possible to make the following observations from (1) and (2); where {x0,x1} = (r): 

Obs. 1: 0 ≤ r ≤ ⅛  x0 ≤ ½ and x1 ≤ ½.   [0, ⅛] maps into the lower left quadrant of X 

Obs. 2: ¼  ≤ r ≤ ⅜   x0 ≤ ½ and ½ ≤  x1 ≤ 1.  [⅛, ¼] maps into the upper left 

Obs. 3  ⅝ ≤ r ≤ ¾  ½ ≤  x0 ≤ 1 and x1 ≤ ½.  [⅝, ¾] maps into the lower right 

Obs. 4: ⅞ ≤ r ≤ 1  ½ ≤  x0 ≤ 1 and ½ ≤  x1 ≤ 1 .  [⅞, 1] maps into the upper right 

The following observations are not quite converses of Observations 1-4: 

Obs. 5: x0 < ½ and x1 < ½   0 ≤ r < ⅛ . 

Obs. 6. x0 < ½ and x1 > ½   ¼ < r < ⅜, 

Obs. 7. x0 > ½ and x1 < ½  ⅝ < r < ¾ , 



Computer Reviews Journal Vol 3 (2019) ISSN: 2581-6640                                               http://purkh.com/index.php/tocomp 

5 

Obs. 8. x0 > ½ and x1 > ½  ⅞ < r ≤ 1. 

The validity of Obs. 5 is seen by excluding the 7 other intervals, and Obs. 6,7&8 follow similarly. 

Description of the Curve. 

The definition (2) of  defines paths in the four quadrants of X depicted in Fig. 2, referred to as Level 1 cases. 

 

Fig. 2. Four Level 1 (L1) cases  

As for the concept “level,” henceforth the notation Lk is used to refer to the Level k case. There are 4k Lk cases; 

each represents crossed trajectories of length 2-k (Fig. 2 shows the four L1 cases). Borders of squares are not 

part of any level, except for endpoints of crossed axes. Actually, it is more convenient to view the horizontal 

trajectories, in each case, as two trajectories joined at the middle of the vertical trajectory. 

The curve x = (r) on examination, and noting Obs. 1-8, therefore is described as follows. As r, starting from 0, 

progresses monotonically toward 1, x = (r) starts at {0,0} and progresses somewhat circuitously toward x = 

{½,½}, remaining within the bounds 0 ≤ x[0] ≤ ½, 0 ≤ x[1] ≤ ½, but attaining x = {½,½} only when r = ⅛. Then 

r, starting from ⅛ and with x starting at {½,½}, progresses to ¼ where x = {0, ½} and then to r = ⅜ where x = 

{½,1}, remaining within the bounds 0 ≤ x[0] ≤ ½, ½ ≤ x[1] ≤ 1, attaining x = {½,1} only when r = ⅜. Then as r 

increases monotonically toward, and attaining, r = ⅝, only x1 varies as x progresses toward and attains {½,0}. x 

= (r) proceeds from {½,0} to progresses circuitously toward x = {1,0}, remaining within the bounds ½ ≤ x[0] 

≤ 1, 0 ≤ x[1] ≤ ½, but attaining x = {1,½} only when r = ¾. Then r, starting from ¾ and with x starting at {1,½}, 

progresses to ⅞ where x = {½, ½} and then to r = 1 where x = {1,1}, remaining within the bounds ½ ≤ x[0] ≤ 1, 

½ ≤ x[1] ≤ 1, attaining x = {1,1} only when r = 1. 

The process of recursive definition can be carried on indefinitely, but in order to produce a finite binary-spaced 

grid it must terminate at some point. That raises problems that render the curve, as defined to this point, not a 

quantized SFC; it must be somehow supplemented. The problem is in dealing with a “Devil’s Staircase” problem 

in the quantized case. 

According to (1) and (2) and the fact of recursion in computing (r), neither x0 nor x1 can increase as r increases, 

within one level, in the computation of {x0 , x1} = (r); indeed exactly one of the two coordinates decreases. The 

problem, then, is how does the image of r, i.e. (r), pass continuously from {0,0} toward {1,1}? This is the Devil’s 

Staircase (discussed by Sagan [30]) feature of Lebesgue’s SFC. The answer provided by Lebesgue’s formulation 
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to the question posed is that continuous vertical and horizontal paths toward {1,1} are provided by the applicable 

Cantor set, which is uncountable but our formulation has this far employed only a countable subset. Since there 

is no such thing as a quantized Cantor set then provision of a path toward {1,1} is a problem. 

The need can be satisfied because the points x in the rectangular grid  must map onto are predetermined. 

What is needed is some sort of inverse of . 

 

Working Inverse 

Let N be a power of 2 and X(N) a binary grid consisting of 22N values {k02-N, k12-N }, ki = 0, 1, 2, … , 2N-1 in X. The 

“working inverse” is designated  : X(N)→R; with ({0,0}) = 0. For the points in Fig. 1 (L0 case) the unique 

working inverse  is defined by reversing the relations in (1) as follows: 

if x0 = ½ then r = (x) = (2.5-x1)/4; return this value 

else if x1 = ½         (3) 

 if x0 < ½ then r = (x) = (1- x0)/4; return this value 

  else if x0 > ½ then r = (x) = 1 - x0/4; return this value 

This choice and the recursive computational algorithm is the basis for the “working inverse”; the alternative 

candidate inverses of x = {½,½} are excluded by the design of the code; x0 = ½ is tested before x1 = ½ is tested. 

If an inverse is not found by the test (3) at L0, the next higher level is tried, as clarified in Appendix B. Computation 

of the working inverse on a binary grid is achieved by regarding coordinates as translated and reduced versions 

of the L0 case, for which a unique working inverse has been defined for each point. The computation then 

proceeds recursively by finding the lowest level (minimum k as in Lk) for which the index r can be computed, so 

the working inverse (x) can be computed only when x is on a reduced (by a power of 2 in both directions) 

and translated version of the lines in Fig.1. With that understanding, (3) together with the recursive algorithm 

define the working inverse , but only on a finite binary-spaced grid. 

The present development presumes for definition of (x) that at least one coordinate of x is on a finite binary-

space grid corresponding to the crossed axes of the various levels. For example, the point x = {0.5, /4} is not 

on a binary-spaced grid of any interest, but it is encompassed by the L0 case, so according to (3) (x) = (2.5 – 

/4)/4. Higher levels are computed by recursion. The L1 cases, for example, are computed by applying to the 

intervals (0, ⅛), (¼,⅜), (⅝,¾) and (⅞, 1) respectively, by recursion of the algorithm, the measures  applied to 

L0. 

As another example, {1/4,1/2}) = 3/16 by the given definition, but the recursive algorithm yields (3/64) = 

(21/64) = {1/4,1/2} as well. The resolution of the ambiguity is in two observations: 

1. It is only required, for present purposes, that (x)) is an identity operation, not  (r)). 

2. The algorithm provided here for a “working inverse” is recursive and of a nature that resolves any such 

ambiguities; every point in the L0 case has a unique working inverse as defined and all computations, of 

and , are recursive and reference the L0 case as foundation or base case. In order to encounter an 

ambiguity, a higher level would have to be encountered, but that higher level is not encountered because 

the recursive algorithm has returned a result and been exited. 
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In this construction the working inverse is defined only if one of the two components of X is binary rational and 

both are in [0,1]. The definition provides (2/7) = {0,1} and (5/7) = {1,0}, as indicated above, but those points 

are not on the binary grid defined, i.e., they are not included in any level. An attempt to compute (2/7) or 

(5/7) via the recursive algorithms results in infinite recursion. 

Definition. Four sub-squares of X are defined by 

X01 : 0 ≤ x0 < ½, ½  < x1 ≤ 1   X11 : ½  < x0  ≤ 1, ½ < x1 ≤ 1 

X00 : 0 ≤ x0 < ½, 0 ≤ x1 < ½    X10 : ½  < x0  ≤ 1, 0 ≤ x1 < ½  

Theorem 1. Assuming each xij is in some X(N), (X00) < ⅛ < ¼ < (X01) < ⅜ < ⅝ < (X10) < ¾ < ⅞ < 

(X11) <  

The proof follows directly from Obs. 5-8. 

From this point on we may use, without danger of confusion and when a value of N is understood, notation 

such as ({k0,k1})  as short for ({k02-N, k12-N}). 

Computation of  and . 

The strategy defines the “working inverse” to reveal what points in X(N) would be reached by (r), on a binary 

grid, after passing through segments of a Cantor set. A recursive construction of the SFC and the working inverse 

on a finite grid of uniformly-spaced binary rational points can proceed according to the code in Appendix B. 

The procedure is to compute working inverses (values of r) on the binary grid X(N) using the function omega, 

then use function beta to compute values of (r) in X to be checked against the starting grid values. All results 

can be written to a file, in which the values of r are probably not in natural ascending order. If natural order is 

needed a sorting program (also provided in Appendix B) can be applied to the results in order to generate a file 

in which the values of the index r are given in ascending order, with corresponding values of x. The computations 

reveal an SFC applicable only to a binary-spaced grid. A strategy to eliminate the need to sort is indicated below. 

Figs 3,4,5 show the development of the computed curve, for X quantized so that xi = ki2-N, ki = 0,1,2, ….,2N-1, for 

the cases N = 3,4,5 respectively. The axes indicate values of k0 and k1. 

 

      Fig. 3. N = 3.                    Fig.4. N = 4. 
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Fig. 5. N = 5. 

Interpretation 

Interpretation of Figs. 3,4,5 requires special scrutiny of several issues. To simplify the examination, the behavior 

near the bottom and left edges in the figures should be temporarily ignored. Some ambiguity in the notation 

should be tolerated, namely when xi = ki2-N, ki = 0,1,2, ….,2N-1. When N is understood ki may in proper context 

be interpreted as a reference to xi = ki2-N, so that references such as x = {k0 , k1} and ({k0 , k1}) have clear 

meanings. 

Though the graphs do not prove it, and with some exceptions and anomalies near the xi = 0  borders, to be 

considered below and in Appendix A, all increments in Figs. 3-5 in the quantized x values involve an increment 

of one space in only one of the two coordinates. That was confirmed via a program written to examine that 

specific feature for N = 3,4,5,6,7,8. 

The ensuing discussion makes frequent reference to Theorem 1, which relates to L0, but usually in reference to 

sub-squares of the main square relating to the L0 case. It is believed the reader can interpret the principles 

corresponding to Theorem 1 in relation to levels > 0; introduction of more notation and definitions to make the 

discussion literally precise would only impede its comprehension. 

With those understandings, one sees points, representing quanta, joined by straight line segments that have 

been added by the graphing software to show how points are traversed as r increases monotonically from 0 to 

1. It is necessary to distinguish between points and paths in this examination. All points here or in such depictions 

of any SFC represent points on the relevant SFC; it is, after all, a SFC! A notable difference between our figures 

and comparable figures depicting the Peano class curves is that, for pictures depicting the Peano class, the line 

segments do not represent segments of the SFC; the lines depicted only converge to the SFC. For the Lebesgue 

class (i.e.  and ), by contrast, all segments along even-valued coordinates represent paths on the SFC, 

because they are segments of the crossed axes of some Lk case. For example, and continuing to ignore border 
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effects in Figs. 3-5, the horizontal or vertical line segments shown for which ki is even represent points on the 

SFC  or , in accord with (1,2) and the recursive rule. 

That is not the case for lines along odd-valued coordinates; they depict only the order in which points are visited 

as r passes monotonically from 0 toward 1. That is true for general N a power of 2. The lines along odd valued 

coordinates are termed “Devil’s Paths” here. They do not represent segments of Lebesgue’s SFC, and they all 

run in directions opposite to those taken by Lebesgue’s SFC. The points represent values of the SFC or , 

but the lines joining those points do not represent segments of the SFC, since for or paths > 0 in length 

run in opposite directions. The present discretization of  and  provides visible quantized paths > 0 in length 

compatible with passing from {0,0} to {1,1} for a finite binary-spaced grid, motivating the term “Devil’s Paths.” 

While neither  nor  is novel in providing new trajectories through the unit square X, the pairs ( , ) and 

( , ’) are apparently novel in providing trajectories in our class of quantized spaces ( ’ is the version of  

adjusted for use in association with ).  The concept of the “working inverse” , perhaps paradoxically, is 

essential to defining our version of calculation of a SFC on a finite binary-space grid, derived from Lebesgue’s 

SFC It could be objected that the horizontal Devil’s Paths are only one quantum in length (apart from border 

effects), and therefore scarcely “paths” at all, but they join the longer vertical Devil’s Paths segments, making 

them part of structures credible as “paths”. Appendix A offers a detailed examination of the trajectories shown 

in Figs. 3-5, including border effects. 

If “border effects” are considered intolerable, they can be eliminated by eliminating the borders from the 

domains of interest; eliminate the coordinate 0 and let the curve run from {1,1} to {2N-1,2N-1}. The result of doing 

that, for N = 4, is shown in Fig. 6. The maximum length of vertical Devil’s Paths is 3 quanta and 1 quantum for 

horizontal. Joined horizontal and vertical Devil’s Path segments, excluding the Devil’s Paths starting at {1,1} and 

those ending at {15,15}, are uniformly of length 4, a property maintained for general N.  

 

Fig. 6 Border effects eliminated on reduced grid, N = 4 

Another feature of Fig. 6 is that the transitions from one point to another are what they appear to be in the 

picture. Unlike the cases treated by Figs. 3-5, every increment in the quantized x values involves an increment 

of one space in only one of the two coordinates; the graphing software did not hide greater increments. The 

double transitions at the left and bottom borders, partly hidden in Figs.3-5 (v. Appendix A), disappeared when 

the border points were eliminated from the computation. 

The results in Figs. 3-5 (excluding borders) and Fig. 6 indicate Devil’s Paths are limited in integer length to four 

quanta or five points regardless of the value of N. Thus, as N increases, real lengths of Devil’s Paths, viewed in 

the continuum X, approach 0, as they must, since that is their length in the continuum. No exposition of the 

Lebesgue SFC is directly applicable to a quantized version of the Lebesgue SFC without offering a specific 

solution to the problem the Devil’s Paths solve. The Lebesgue SFC as defined on R-  runs only one way, indeed 

the wrong way. 
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The algorithms for computing (r) and the working inverse (x) could be converted so that r is represented 

by an integer or binary string, with multiplication and division by 8 achieved with shifts. That was the main 

motivation for defining  as an alternative to Lebesgue’s . Fig. 6 suggests a radically different approach to 

such computations, eliminating any need to sort.  

Fig. 6 makes the basic nature of the curve transparent and could be of help in finding a less complicated 

description of the SFC and its inverse than one gets using the methods treated above. Consider the sequence 

(Fig. 6) {1,1}→{1,2}→{1,3}→{2,3}→{2,2}→{2,1}→{3,1}→{3,2}→ {3,3}. That constellation is seen in translated form, 

throughout the square X(N), also in Figs. 3-5. We designate such a segment of 9 points an “N segment,” for 

obvious reasons. It is seen that every N segment is joined, at every end (except {1,1} and {2N-1, 2N-1}) to an arm 

of some Lk case. Peano defined his SFC algebraically, but pictorial representations of the various Peano SFCs 

show N segments as basic elements, though they are connected differently Sagan [30, pp. 35,44f]. 

An N segment can be interpreted in terms of Theorem 1, as is done for Fig. 4 in Appendix A, but a consequence 

of this work is to make it possible to leave the formal description of Lebesgue’s SFC behind insofar as application 

to a binary-spaced quantized grid is concerned. It is conjectured algorithms (forward and inverse) describing 

the course of the version of the curve exemplified by Fig. 6, with the index r and the spatial coordinates x0 and 

x1 being represented by integers, binary strings, could be formulated directly from algebraic or algorithmic 

interpretations of the pictures of the Fig. 6 type, virtually ignoring Lebesgue’s formulation. That is a quite 

satisfactory way to proceed. Hilbert defined his SFC with pictures, and thus everything said about it, since Hilbert, 

has proceeded from his pictures. An implicit aim of such studies would naturally be the elimination of any need 

to sort stored r values; such a requirement never existed for quantized versions of Peano class SFCs for which 

inverses have been determined. The code included here, which achieved the foregoing results, could quickly 

become obsolete, having served to expose a relatively simple version of Lebesgue’s SFC, for a uniformly spaced 

binary grid, and with an inverse. The relevance of horizontal and vertical sensitivities would no longer exist, since 

every unit increment of the index would be reflected in a unit increment of one of the components of its image. 

Hybrid arrangements with the Hilbert SFC would be easily achieved. 

Conclusion 

The original Lebesgue space filling curve (SFC) has limited compatibility with realization with binary arithmetic 

on a uniformly spaced binary grid, one impediment being its formulation in terms of ternary representations; 

that impediment can be overcome via use of an alternative Cantor set.  A second impediment, namely the Devil’s 

Staircase feature, also created by the role of the Cantor set, can be overcome via definition of a “working  

inverse,” thereby providing means of achieving compatibility with such a grid. The results indicate an alternative 

way to proceed, in realizing an approximation to Lebesgue’s SFC, which circumvents any complication raised by 

Cantor sets, and is compatible with binary and integer arithmetic. 
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Appendix A 

Discussion of the trajectories of the discretized SFC 
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For the case N = 16 (Fig. 4) a few points are traced through to interpret the binary-spaced grid shown. Border 

effects are initially not considered, and consecutive points on the axes of some Lk case need no explanation. 

Consider the point {7,2}, which is on the right arm of a L2 case; it passes to the point {7,3} in accord with Theorem 

1. The point {7,4} is on the right arm of a L1 case, so {7,3} passes to {7,4} in accord with Theorem 1. A Devil’s Path 

starts at {5,4} (L1) and passes to {5,5} according to Theorem 1. Then {5,6}, on the left are of a L2 case, is visited 

in accord with Theorem 1, and then {5,7} is visited in accord with Theorem 1. 

Consider a few horizontal increments. The point {6,7} is on the vertical arm of a L2 case, so it is visited after {5,7} 

in accord with Theorem 1. The point {2,5} is on the vertical arm of a L2 case, so it passes to {3,5} in accord with 

Theorem 1. 

A few border effects are examined. The point {4,0} is the bottom point of a L1 case so both ({5.0}) and ({5,1} 

> ({4,0} but  {5.0} and {5,1} are on the vertical arm of a L3 case with ({5.0}) > ({5,1}so {4,0} passes to {5,1} 

(an increment of two quanta), which passes to {5,0}.  {5,2} is on the left arm of a L2 case so {5.0} passes to {5,2} 

in accord with Theorem 1. These sorts of increment of 2 quanta, along the bottom and left edges, are the only 

increments of 2 quanta observed. {5,2} passes to {5,3} in accord with Theorem 1  {5,3} and {6,3} are < the points 

on the right arm of the L1 case centered at {4,4} but {6,3} is on the vertical arm of the L2 case centered at {6,2} 

so by Theorem 1 {5,3} passes to {6,3}. 

The behavior near {0,0} is the same for all values of N. The image starts at {0,0} and passes to {0,1}, viewed as 

being on the left arm of a L3 case. {1,2} and {0,2} are on the left arm of a L2 case, so ({1,1}) < ({1,2}) by 

Theorem 1 and {0,1} passes to {1,1}, then {1,0,} then {1,2} (increment of 2, as with the other bottom odd border 

points) then {0,2} along the left arm of L2 case. There are additional horizontal increments of 2 quanta on 

Devil’s Paths on the left edges of Figs. 3-5. 

Appendix B 

C Code 

/* 

  program tests beta and omega computations on 

a binary-spaced grid 

                                    */ 

    #define QUANT 8    /* power of 2, number of 

                          vertical or horizontal lines 

     

  QUANT by QUANT matrix will be for spacing 

1/QUANT in both dimensions                    

 

  and prints the values of the index r. It is likely 

these r values 

  will have to be subsequently sorted if they are to 

be used       */ 

 

#include "stdio.h" 

#include "math.h" 

 

#define MAX(x,y) ((x) < (y) ? (y) : (x)) 

#define MIN(x,y) ((x) < (y) ? (x) : (y)) 

#define RECSMAX 50 //max number of recursions 

allowed 

#define HALF 0.5 

#define DELTA 1.0e-12 

 

int maxrecs = 0; 

double rstart = 0; //static doesn't work for this, so 

it is global 

int divfac = 1; 

int omega_count = 0; 

int recsmax_count = 0; 

int error = 0; 

FILE *fp; 

FILE *fr; 

 

int beta(double, double [], int); 

void omega(double *, double[]); 

 

void main() 

{ 

  double deltax = 1.0/(QUANT); 

  int k0,k1; 

  int off_border = 0; 

  double x[2]; 

  double xcall[2]; 

  double xret[2]; 
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  double r; 

  double err; 

  double total_error = 0.0; 

  double max_error = -1; 

  double xmax[2] = {0.0}; 

   

  fp = fopen("grid.txt","wb"); 

  fr = fopen("rvalues_new.txt","w"); 

  printf("deltax = %f\n\n",deltax); 

  fprintf(fp,"deltax = %f\n\n",deltax); 

  fprintf(fr,"r values for QUANT = %d\n\n",QUANT); 

  for (k0=0; k0 < QUANT; k0++) //normal use 

  { 

   x[0] = k0*deltax; 

 for (k1=0; k1 < QUANT; k1++)// normal 

use 

   { 

    xcall[0] = x[0]; 

    x[1]=k1*deltax; 

    xcall[1] = x[1]; 

    omega(&r,xcall); 

    fprintf(fr,"%26.16lg,\n",r); 

    beta(r,xret,0); 

    err = fabs(x[0]-xret[0])+ fabs(x[1]-

xret[1]); 

    printf("%26.16lg,\n",r); //test only 

    if (err > max_error) 

    { 

     max_error = err; 

     xmax[0] = x[0]; 

     xmax[1] = x[1]; 

  } 

    if (error != 0) 

     

    { 

     if (x[0]*x[1] != 0) 

       off_border++;  

      printf("\nx[0] = %lf",x[0]); 

     fprintf(fp,"\n\nx[0] = 

%20.13e",x[0]); 

     printf("   x[1] = %lf",x[1]); 

     fprintf(fp,"   x[1] = 

%20.13e",x[1]); 

     printf("\n    r = 

%23.18lg",r); 

     fprintf(fp,"\n    r = 

%23.18lg",r); 

   printf(" confirmation x = 

%20.13e,  %20.13e, \nerror = %lf\n",x[0],x[1],err); 

   fprintf(fp," confirmation x 

= %210.13e,  %20.13e, \nerror = 

%lf\n",x[0],x[1],err); 

   error = 0; 

     } 

    total_error += err; 

    omega_count = 0; 

 } 

  } 

  printf("\ntotal error= %20.12e\n",total_error); 

  fprintf(fp,"\ntotal error = %20.12e\n",total_error); 

  total_error=total_error/QUANT/QUANT; 

  printf("\naverage error= %20.12e\n",total_error); 

  fprintf(fp,"\naverage error = 

%20.12e\n",total_error); 

  printf("max error = %le attained for x = %lf, 

%lf\n",max_error,xmax[0],xmax[1]); 

  fprintf(fp,"max error = %le attained for x = %lf, 

%lf\n",max_error,xmax[0],xmax[1]); 

  printf("spacing of points is %le\n",deltax); 

  fprintf(fp,"spacing of points is %le\n",deltax); 

  printf("QUANT = %d, RECSMAX attained %d 

times\n",QUANT,recsmax_count); 

  printf("%d times off border\n",off_border); 

  fprintf(fp,"QUANT = %d, RECSMAX attained %d 

times\n",QUANT,recsmax_count); 

  fprintf(fp,"%d times off border\n",off_border); 

  return; 

} 

int beta(double r, double x[], int recs) 

/* 

  Computes the modified Lebesgue SFC 

                                             */ 

{ 

// 

  short unsigned int err; 

   

  if (recs == RECSMAX) 

  { 

   printf("recursions reached the limit\n"); 

   fprintf(fp,"recursions reached the limit\n"); 

   recsmax_count++; 

   return 1; 

  } 

  recs++; 

   

  if (r <= 0.0) 

  { 

    x[0] = 0.0; 
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 x[1] = 0.0; 

 return 0; 

  } 

  if (r >= 1.0) 

  { 

    x[0] = 1.0; 

 x[1] = 1.0; 

 return 0; 

  } 

   

  double rx8 = 8*r; 

  if (rx8 < 1) 

  { 

    err = beta(rx8,x, recs+1); 

    x[0] = x[0]/2; 

    x[1] = x[1]/2; 

  } 

  else if (rx8 <= 2) 

   

  { 

    x[0] = MAX(0 , 1 - 4*r); 

    x[1] = 0.5; 

  } 

  else if (rx8 < 3) 

  { 

    err = beta(rx8-2,x, recs+1); 

    x[0] = x[0]/2; 

    x[1] = (x[1]+1)/2; 

  } 

  else if (rx8 <= 5) 

  { 

    x[0] = 0.5; 

    x[1] = MAX(2.5 - 4*r, 0); 

  } 

  else if (rx8 < 6) 

  { 

    err = beta(rx8-5, x, recs+1); 

    x[0] = (x[0]+1)/2; 

    x[1] = x[1]/2; 

  } 

  else if (rx8 <= 7) 

  { 

    x[0] = MIN(4*(1-r),1.0); 

    x[1] = 0.5; 

  } 

  else 

  { 

    err = beta(rx8-7,x, recs+1); 

    x[0] = (x[0] + 1)/2; 

    x[1] = (x[1] + 1)/2; 

  } 

  return 0; 

} 

void omega(double *r,double x[]) 

/* 

     Computes the working inverse 

                                       */ 

{ 

    omega_count++; 

    if (x[0] <= 0.0 && x[1] <= 0.0) 

    { 

     *r = 0; 

     return; 

 } 

    if (x[0] >= 1.0 && x[1] >= 1.0) 

    { 

     *r = 1.0; 

     return; 

 } 

 if (fabs(x[0]-HALF) < DELTA) 

      x[0] = HALF; 

    if (fabs(x[1]-HALF) < DELTA) 

      x[1] = HALF; 

 if ((x[0] == HALF) || (x[1] == HALF))   

 { 

   if (x[0] == HALF) 

   { 

     *r = (2.5-x[1])/4; 

   } 

   else 

   { 

    if (x[0] < HALF) 

      *r = (1-x[0])/4; 

    else 

     

      *r = 1 - x[0]/4; 

     } 

      *r = *r/divfac + rstart; 

      rstart = 0; 

      divfac = 1; 

      return; 

 } 

 else 

 { 

  divfac = 8*divfac; 

  x[0] = 2*x[0]; 

  if (x[0] > 1) 

  { 
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    x[0] -= 1; 

    rstart += 5.0/divfac; 

     } 

     x[1] = 2*x[1]; 

     if (x[1] > 1) 

      

     { 

    x[1] -= 1; 

    rstart += 2.0/divfac; 

     } 

     omega(r,x); 

 } 

} 

 

 

/* based on sorting program from 

https://stackoverflow.com/questions/20584499/wh

y-qsort-from-stdlib-doesnt-work-with-double-

values-c 

*/ 

#include <stdio.h> 

#include <stdlib.h> 

#include <math.h> 

#include "rvalues.h" 

 

/* if you are told that the compare statement must 

    be preceded with ',' or ';' then you probably 

forgot 

    to terminate the header rvalues.h with a 

semicolon  */ 

int compare (const void * a, const void * b) 

{ 

    if (*(double*)a > *(double*)b) return 1; 

    else if (*(double*)a < *(double*)b) return -1; 

    else return 0; 

} 

 

int main() 

{ 

 FILE *dfp; 

    int n; 

 

/*    printf("Before sorting the list is: \n"); 

    for( n = 0 ; n < 5; n++ ) 

    { 

        printf("%.2f ", values[n]); 

    } 

 

    printf("\n\n");    */ 

    if ((dfp = fopen("rsorted.txt","wb")) == NULL) 

      printf("Can't open output for writing\n");  

 else 

      qsort(r, LENGTH, sizeof(double), compare); 

 

    printf("\nAfter sorting the list is: \n"); 

    for( n = 0 ; n < LENGTH; n++ ) 

    { 

        printf("%    20.12e,\n", r[n]); 

        fprintf(dfp,"%20.12e,\n",r[n]); 

    } 

 

    printf("\n\n"); 

    fclose(dfp); 

    return(0); 

} 

 

 

example header file for sorting program. 

 

// rvalues.h 

//unordered r values for QUANT = 8 for sorting 

program 

#define LENGTH 64 // = QUANTxQUANT 

double r[LENGTH] = { 

                         0, 

                0.00390625, 

                   0.03125, 

                0.03515625, 

                      0.25, 

                0.25390625, 

                   0.28125, 

                0.28515625, 

               0.009765625, 

                 0.0078125, 

                 0.0234375, 

                 0.0390625, 

                   0.21875, 

                 0.2578125, 

                 0.2734375, 

                 0.2890625, 

                  0.078125, 

                 0.0703125, 

                    0.0625, 

                 0.0546875, 

                    0.1875, 

                 0.3203125, 

                    0.3125, 

                 0.3046875, 
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               0.087890625, 

                 0.0859375, 

                 0.1015625, 

                 0.1171875, 

                   0.15625, 

                 0.3359375, 

                 0.3515625, 

                 0.3671875, 

                     0.625, 

                   0.59375, 

                    0.5625, 

                   0.53125, 

                       0.5, 

                   0.46875, 

                    0.4375, 

                   0.40625, 

               0.634765625, 

                 0.6328125, 

                 0.6484375, 

                 0.6640625, 

                   0.84375, 

                 0.8828125, 

                 0.8984375, 

                 0.9140625, 

                  0.703125, 

                 0.6953125, 

                    0.6875, 

                 0.6796875, 

                    0.8125, 

                 0.9453125, 

                    0.9375, 

                 0.9296875, 

               0.712890625, 

                 0.7109375, 

                 0.7265625, 

                 0.7421875, 

                   0.78125, 

                 0.9609375, 

                 0.9765625, 

                 0.9921875, 

}; 
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