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Abstract 

The purpose of this paper is to study the elastodynamical interactions in magneto-micropolar thermoelastic 

half-space considering the effect of hall current, laser heat source and rotation subjected to input ultra-laser 

heat source. The micropolar theory of thermoelasticity by Eringen (1966) has been used to investigate the 

problem. Normal mode analysis technique has been used to solve the resulting non–dimensional coupled field 

equations to obtain displacement, stress components and temperature distribution. Numerical computed results 

of all the considered variables have been shown graphically to depict the combined effect of hall current, laser 

heat source and rotation on the phenomena. Some particular cases of interest are also deduced from the present 

study.  
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Introduction: 

 

The problems involving the investigation of effect of magnetic field (that may be earth’s magnetic field or other 

human generated high intensity magnetic field) and thermal loading by lasers on various type of materials are 

of great importance in seismological research and in engineering applications. The linear theory of micropolar 

elasticity was developed by Eringen [1]. A micropolar continuum is a collection of interconnected particles in the 

form of small rigid bodies undergoing both translational and rotational motions. Rigid chopped fibers, elastic 

solids with rigid granular inclusions and other industrial materials such as liquid crystals are examples of such 

materials.  

The theory of magneto thermoelasticity has a wide range of applications and possibilities of research in the field 

of geology, earth sciences, plasma physics and engineering. When a particle is stationary under the effect of 

magnetic field, the field has no effect on this particle. Also, consider a particle is moving in parallel direction of 

the magnetic field, the particle will move undeflected. Now in case a particle is moving in path having a 

component normal to magnetic field, the particle will be deflected due to a force acting on it. In addition to this 

deflected motion this particle will experiences the electric field. The combined force is Lorentz force. There is a 

consideration that mechanical and electromagnetic fields interactions take place due to Lorentz forces. 

Conductivity perpendicular to the direction of magnetic field is decreased due to the free spiraling of negatively 

charged electrons and other ions about the magnetic field lines before colliding and a current is induced 

perpendicular to electric field and magnetic fields both. This phenomenon is called the Hall Effect. When the 

magnetic field intensity is very high Hall Effect cannot be neglected. Zakaria [2] investigated the effects of Hall 

current and rotation on magneto micropolar generalized thermoelasticity including the boundary condition with 

a source of ramp type heating.  

A thermal shock induces very rapid movement in the structural elements, giving the rise to very significant 

inertial forces, and give rise to oscillations. The ultra-short lasers have pulse durations ranging from nanoseconds 

to femto seconds. Also, in ultra-short laser pulse, the high energy flux and short duration result in a very large 

thermal gradient. So, Fourier law of heating is no longer valid. Scruby et al. [3] investigated a mathematical 

model of point source to study the ultrasonic evolution by lasers. He studied the physics of heated plate by laser 

heat loading in the thermoelastic system as a surface center of expansion (SCOE). Also, for one-point laser heat 
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input Rose [4] provided more accurate mathematical basis. Later McDonald [5] and Spicer [6] gave a 

mathematical model known as laser-generated ultrasound model by introducing thermo-diffusion concept. 

Dubois [7] verified by experimental results that penetration depth plays an important role in the generation of 

laser-ultrasound. Abo-Dahab and Abbas [8] investigated LS model on thermal shock problem of generalized 

magneto-thermoelasticity for an infinitely long annular cylinder with variable thermal conductivity. Chen et al. 

[9] and Kim et al. [10] investigated some other such type of research. Thermoelastic behavior of laser heat in 

context of different theories of thermoelasticity was presented by Youssef and Al-Bary [11]. A 2- dimensional 

problem in generalized thermoelastic medium with thermo-diffusion was investigated by Elhagary [12]. Kumar 

et al. [13] studied the elastodynamical interactions of input heat source with microstretch thermoelastic medium. 

The aim of the present study is to investigate the interaction in magneto micropolar thermoelastic medium, 

taking into consideration the effect of hall current, laser heat source and rotation. The components of 

displacement, stress, current density and temperature distribution are obtained by using normal mode analysis. 

The problem has become more interesting with the inclusion of thermal laser heat source, normal and tangential 

forces. The resulting quantities are computed numerically and depicted graphically. 

Basic equations 

Let us consider a micropolar thermoelastic medium permeated by an initial strong magnetic field 𝑯 = (0, 𝐻0, 0) 

and the considered medium is rotating. The angular velocity is assumed to be equal to Ω. For magneto-

micropolar thermoelastic medium the basic equations and constitutive relation in absence of body forces, body 

couples and stretch forces, following Eringen [1], Al Qahtani and Dutta [14] and Zakaria [2] are given by: 

(𝜆 + 𝜇)∇(∇. 𝒖) + (𝜇 + 𝐾)∇2𝒖 + 𝐾∇ × 𝝓 − 𝛽1 (1 + 𝜏1
𝜕

𝜕𝑡
) ∇𝑇 + 𝜇0𝜖𝑟𝑗𝑖𝐽𝑟𝐻𝑗 = 𝜌 (�̈� + 𝛀 × (𝛀 × 𝒖) + 2𝛀 ×

𝜕𝒖

𝜕𝑡
),   (1) 

(𝛾∇2 − 2𝐾)𝝓 + (𝛼 + 𝛽)∇(∇. 𝝓) + 𝐾∇ × 𝒖 = 𝜌𝑗 (�̈� + 𝛀 ×
𝜕𝝓

𝜕𝑡
),                                                                 (2) 

𝐾∗∇2𝑇 = 𝜌𝑐∗ (
𝜕

𝜕𝑡
+ 𝜏0

𝜕2

𝜕𝑡2) 𝑇 + (1 + 𝜀𝜏0
𝜕

𝜕𝑡
) 𝛽1𝑇0(∇. �̇� − 𝑄) + 𝜈1𝑇0 (

𝜕

𝜕𝑡
+ 𝜀𝜏0

𝜕2

𝜕𝑡2) 𝜙∗,                             (3) 

𝑡𝑖𝑗 = 𝜆𝑢𝑟,𝑟𝛿𝑖𝑗 + 𝜇(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖) + 𝐾(𝑢𝑗,𝑖 − 𝜖𝑖𝑗𝑘𝜙𝑘) − 𝛽1 (1 + 𝜏1
𝜕

𝜕𝑡
) 𝛿𝑖𝑗𝑇,                                                          (4) 

 

𝑚𝑖𝑗 = 𝛼𝜙𝑟,𝑟𝛿𝑖𝑗 + 𝛽𝜙𝑖,𝑗 + 𝛾𝜙𝑗,𝑖                                                                                        (5) 

where 𝜆, µ, 𝛼, 𝛽, 𝛾, 𝑎𝑛𝑑 𝐾 𝑎𝑟𝑒 constants depending on the nature of material, 𝜌 is density of the medium, 𝒖 =

(𝑢1, 𝑢2, 𝑢3) and  𝝓 = (𝜙1, 𝜙2, 𝜙3) are displacement and microrotation vectors respectively, 𝑇 is temperature, 𝑇0 is 

the reference temperature, 𝐾∗ is the coefficient of the thermal conductivity, 𝑐∗ is the specific heat at constant 

strain, 𝑗 is the microinertia, 𝛽1 = (3𝜆 + 2𝜇 + 𝐾)𝛼𝑡1 ,𝜈1 = (3𝜆 + 2𝜇 + 𝐾)𝛼𝑡2 , 𝛼𝑡1 𝑎𝑛𝑑 𝛼𝑡2 are coefficients of linear 

thermal expansion, 𝑡𝑖𝑗 are components of stress,  𝑚𝑖𝑗 are components of couple stress, 𝛿𝑖𝑗 is Kroneker delta 

function, 𝜏0 𝑎𝑛𝑑 𝜏1 are thermal relaxation times with 𝜏0 ≥ 𝜏1 ≥ 0.  

Let the microstretch thermoelastic medium is rotating with angular velocity 𝛀. The equations of motion have 

two extra terms, 

(i) The centripetal acceleration 𝛀 × (𝛀 × 𝐮) due to time varying motion. 

(ii) The Coriolis acceleration 2(𝛀 × �̇�). 

The current density vector 𝑱 can be expressed as: 

𝑱 =
𝜎0

1+𝑚2 [𝑬 + 𝜇0(�̇� × 𝑯) −
𝜇0

𝑒𝑛𝑒
(𝑱 × 𝑯)].                                                                                                  (6) 
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Here 𝑭 = 𝜇0(𝑱 × 𝑯) is the Lorentz force, 𝑯 is the magnetic field vector, 𝑬 is the intensity of electric field, 𝑚 is the 

Hall parameter, 𝜎0 is the electrical conductivity, 𝑒 is the charge of an electron, 𝑛𝑒  is the number density of 

electrons. Further the plate surface is illuminated by laser pulse given by the heat input 

𝑄 = 𝐼0𝑓(𝑡)𝑔(𝑥1)ℎ(𝑥3),                                                                                                                                                   (7) 

𝑓(𝑡) =
𝑡

𝑡0
2 𝑒

−(
𝑡

𝑡0
)
,                                                                                                                                             (8) 

𝑔(𝑥1) =
1

2𝜋𝑟2 𝑒
−(

𝑥1
2

𝑟2)
,                                                                                                                                       (9) 

 

ℎ(𝑥3) = 𝛾∗𝑒−𝛾∗𝑥3                                                                                                                                        (10) 

𝑤ℎ𝑒𝑟𝑒, 𝐼0 energy absorbed, 𝑡0 is the pulse rising time,𝑟 is the beam radius. 

Equation (7) with substitution of (8- 10) takes the form 

𝑄 =
𝐼0𝛾∗

2𝜋𝑟2𝑡0
2 𝑡𝑒

−(
𝑡

𝑡0
)
𝑒

−(
𝑥1

2

𝑟2)
𝑒−𝛾∗𝑥3                                    (11)   

 

t

f(
t)

x1

g(
x 1 

)

x3

h
(x

3
 )

 

   Fig. 1. Temporal profile of 𝑓(𝑡)         Fig. 2. Profile of 𝑔(𝑥1)                      Fig. 3. Profile of ℎ(𝑥3) 

 

In the above equations symbol (“,”) followed by a suffix denotes differentiation with respect to spatial 

coordinates and a superposed dot (“ ̇  ”) denotes the derivative with respect to time respectively. 

 

Formulation of the problem: 

We consider a magneto-micropolar thermoelastic medium with rectangular Cartesian coordinate system 

𝑂𝑋1𝑋2𝑋3 having 𝑥3-axis pointing vertically downward the medium. A normal force/tangential force and ultra-

short laser pulse are assumed to acting at the origin of the rectangular Cartesian co-ordinate system. A 

component of Hall current 𝐻0 is in 𝑥2-direction.  

We consider plane strain problem with all the field variables depending on (𝑥1, 𝑥3, 𝑡). For two dimensional 

problems, we take  

 

𝒖 = (𝑢1, 0, 𝑢3),𝝓 = (0, 𝜙2, 0),                                                                                                (12) 

For further consideration, it is convenient to introduce in equations (1)-(3) the dimensionless quantities defined 

as: 

𝑥𝑖
′ =

𝜔∗

𝑐1

𝑥𝑖  ,  𝑢𝑖
′ =

𝜌𝜔∗𝑐1

𝛽1𝑇0

𝑢𝑖, 𝜙𝑖
′ =

𝜌𝑐1
2

𝛽1𝑇0

𝜙𝑖  , 𝑇′ =
𝑇

𝑇0

 , 𝑡′ = 𝜔∗𝑡 , 𝜏1
′ = 𝜔∗𝜏1 , 𝜏0

′ = 𝜔∗𝜏0 , 𝑡𝑖𝑗
′ =

1

𝛽1𝑇0

𝑡𝑖𝑗  , 

 𝜔∗ =
𝜌𝑐∗𝑐1

2

𝐾∗  ,   𝑐1
2 =

𝜆+2𝜇+𝑘

𝜌
,          𝑚𝑖𝑗

∗ =
𝜔∗

𝑐𝛽1𝑇0
𝑚𝑖𝑗   ,      Ω1 =

Ω

𝜔∗,       𝑀 =
𝜎0𝜇0

2𝐻0
2

𝜌𝜔∗  ,       𝑄′ =
𝛽1

2

𝜌𝑐1
2 𝑄            (13) 
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                           Fig. 4. Geometry of the problem. 

 

Making use of equation (12)-(13) the system of equations (1)-(3) reduces to: 

𝜁1
𝜕𝑒

𝜕𝑥1
+ 𝜁2∇2𝑢1 − 𝜁3

𝜕𝜙2

𝜕𝑥3
+ Ω0

2𝑢1 − 2Ω0
𝜕𝑢3

𝜕𝑡
+

𝑀

1+𝑚2 (
𝜕𝑢1

𝜕𝑡
+ 𝑚

𝜕𝑢3

𝜕𝑡
) − (1 + 𝜏1

𝜕

𝜕𝑡
)

𝜕𝑇

𝜕𝑥1
= �̈�1,                 (14)  

𝜁1
𝜕𝑒

𝜕𝑥3
+ 𝜁2∇2𝑢3 + 𝜁3

𝜕𝜙2

𝜕𝑥1
+ 2Ω0

𝜕𝑢1

𝜕𝑡
+Ω0

2𝑢3 −
𝑀

1+𝑚2 (𝑚
𝜕𝑢1

𝜕𝑡
−

𝜕𝑢3

𝜕𝑡
) − (1 + 𝜏1

𝜕

𝜕𝑡
)

𝜕𝑇

𝜕𝑥3
= �̈�3,                  (15) 

∇2𝜙2 − 2𝜁4𝜙2 + 𝜁4 (
𝜕𝑢1

𝜕𝑥3
−

𝜕𝑢3

𝜕𝑥1
) = 𝜁5�̈�2,                              (16) 

−∇2𝑇 + (
𝜕

𝜕𝑡
+ 𝜏0

𝜕2

𝜕𝑡2) 𝑇 + 𝜁6 (1 + 𝜀𝜏0
𝜕

𝜕𝑡
) (�̇� − 𝑄) = 𝑄0𝑓∗(𝑥1, 𝑡)𝑒−𝛾∗𝑥3 ,                                                (17) 

𝑀1 = 2Ω0 +
𝑀

1 + 𝑚2
 , 𝜁1 =

𝜆 + 𝜇

𝜌𝑐1
2  , 𝜁2 =

𝜇 + 𝐾

𝜌𝑐1
2  , 𝜁3 =

𝐾

𝜌𝑐1
2  , 𝜁4 =

𝐾𝑐1
2

𝛾𝜔∗2  , 𝜁5 =
𝜌𝑗𝑐1

2

𝛾
 , 𝜁6 =

𝛽1𝑇0
2

𝜌𝜔∗𝐾∗
 

Using Helmholtz’s theorem the displacement components 𝑢1 and 𝑢3 are related to the non- dimensional 

potential functions 𝜙 and 𝜓 by the relation mentioned below: 

𝑢1 =
𝜕𝜙

𝜕𝑥1
+

𝜕𝜓

𝜕𝑥3
  ,    𝑢3 =

𝜕𝜙

𝜕𝑥3
−

𝜕𝜓

𝜕𝑥1
                      (18)                   

Substituting the values of 𝑢1 and 𝑢3 from (18) in (14)-(17), we obtain:  

(∇2 + Ω2 +
𝑀

1+𝑚2

𝜕

𝜕𝑡
−

𝜕2

𝜕𝑡2) 𝜙 + (2Ω −
𝑚𝑀

1+𝑚2)
𝜕𝜓

𝜕𝑡
− (1 + 𝜏1

𝜕

𝜕𝑡
) 𝑇 = 0,                                     (19) 

(𝑎3∇2 +
𝑀

1+𝑚2

𝜕

𝜕𝑡
−

𝜕2

𝜕𝑡2) 𝜓 − (2Ω −
𝑚𝑀

1+𝑚2)
𝜕𝜙

𝜕𝑡
− 𝑎4𝜙2 = 0,                                      (20) 

(1 + 𝜏0
𝜕

𝜕𝑡
) �̇� + 𝑎5 (

𝜕

𝜕𝑡
+ 𝜀𝜏0

𝜕2

𝜕𝑡2) ∇2𝜙 − ∇2𝑇 = 𝑄0𝑓∗(𝑥1, 𝑡)𝑒−𝛾∗𝑥3 ,                               (21) 

(∇2 − 2𝑎1 + 𝑎2
𝜕2

𝜕𝑡2) 𝜙2 + 𝑎1∇2ψ = 0                                             (22)  

𝑥2 

 
𝐻0 

𝑥3 

𝑥3 = 0

= 0 

0 ≤ 𝑥3 < ∞ 

 

𝑥1 

Laser Pulse 
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where     

𝑎1 =
𝐾𝑐1

2

𝛾𝜔∗2  , 𝑎2 = −
𝜌𝑗𝑐1

2

𝛾
 , 𝑎3 =

𝜇+𝐾

𝜌𝑐1
2  , 𝑎4 =

𝐾

𝜌𝑐1
2 ,   𝑎5 =

𝛽1
2𝑇0

𝜌𝐾∗𝜔∗  , 𝑎6 =
𝜆+𝜇

𝜌𝑐1
2  , 𝑄0 =

𝑎13𝐼0𝛾∗

2𝜋𝑟2𝑡0
2 , 

𝑓(𝑥1, 𝑡) = [𝑡 + 𝜀𝜏0 (1 −
𝑡

𝑡0
)] 𝑒

−(
𝑥1

2

𝑟2+
𝑡

𝑡0
)
. 

Solution of the problem 

The solution of the considered physical variables can be decomposed in terms of the normal modes as in the 

following form: 

{𝜙, 𝜓, 𝑇, 𝜙∗}(𝑥1, 𝑥3, 𝑡) = {�̅�, �̅�, �̅�, 𝜙∗̅̅̅̅ }(𝑥3)𝑒𝑖(𝑘𝑥1−𝜔𝑡).      (23) 

Here 𝜔 is the angular frequency and 𝑘 is wave number.      

Making use of (23) in equations (19)-(22) and after some simplifications, yield: 

[𝐴𝑫8 + 𝐵𝑫6 + 𝐶𝑫4 + 𝐸𝑫2 + 𝐹]�̅� = 𝑓1(𝛾∗, 𝑥1, 𝑡)𝑒−𝛾∗𝑥3  ,                                                                                  (24) 

[𝐴𝑫8 + 𝐵𝑫6 + 𝐶𝑫4 + 𝐸𝑫2 + 𝐹]�̅� = 𝑓2(𝛾∗, 𝑥1, 𝑡)𝑒−𝛾∗𝑥3  ,                                                                                  (25) 

[𝐴𝑫8 + 𝐵𝑫6 + 𝐶𝑫4 + 𝐸𝑫2 + 𝐹]�̅�2 = 𝑓3(𝛾∗, 𝑥1, 𝑡)𝑒−𝛾∗𝑥3 ,                                                                                 (26) 

[𝐴𝑫8 + 𝐵𝑫6 + 𝐶𝑫4 + 𝐸𝑫2 + 𝐹]�̅� = 𝑓4(𝛾∗, 𝑥1, 𝑡)𝑒−𝛾∗𝑥3 .                                                                                   (27) 

Here,  𝑫 =
𝑑

𝑑𝑥3
 

𝑘1 = −𝑘2 + Ω2 −
𝑖𝜔𝑀

1 + 𝑚2
+ 𝜔2, 𝑘2 = −𝑖𝜔 [2Ω −

𝑚𝑀

1 + 𝑚2
] , 𝑘3 = 𝜔2 + Ω2 − 𝑖𝜔

𝑀

1 + 𝑚2
− 𝑎3𝑘2,  

𝑘4 = 𝑘2 + 𝜔2𝑎2 + 2𝑎1 , 𝑘5 = 𝑖𝜔(1 − 𝑖𝜔𝜏0) − 𝑘2 , 𝑘6 = 𝑎5(𝑖𝜔 + 𝜔2𝜀𝜏0), 𝑘7 = 𝑎3(𝑘4 + 𝑘5) + 𝑘3 + 𝑎3𝑘4 

𝑘8 = 𝑎1𝑎4𝑘2 − 𝑘3𝑘4 − 𝑘5(𝑘3 − 𝑎1𝑎4 + 𝑎3𝑘4), 𝑘9 = 𝑘5(𝑎1𝑎4𝑘2 − 𝑘3𝑘4), 𝑘12 = 𝑘6𝑘2(𝑘3𝑘4 − 𝑎1𝑎4𝑘2), 

𝑘10 = 𝑘6(𝑎3𝑘2 + 𝑘3 + 𝑎3𝑘4 − 𝑎1𝑎4), 𝑘11 = 𝑘6(2𝑎1𝑎4𝑘2 − 𝑘3𝑘4 − 𝑎3𝑘4𝑘2 − 𝑘3𝑘2) , 𝐴 = −𝑎3, 

𝐵 = 𝑘7 − 𝑎3𝑘1 − 𝜏11𝑎3𝑘6 , 𝐶 = 𝑘8 + 𝑘1𝑘7 + 𝜏11𝑘10 − 𝑘2
2 , 𝐸 = 𝑘1𝑘8 − 𝑘9 + 𝜏11𝑘11 + 𝑘2

2(𝑘4 + 𝑘5), 

𝐹 = 𝜏11𝑘12 − 𝑘1𝑘9 − 𝑘2
2𝑘4𝑘5. 

The solution of the above system of equations (24)-(27) satisfying the radiation conditions that (�̅�, �̅�, �̅�, 𝜙2
̅̅̅̅ ) → 0 

as 𝑥3 → ∞are given as following: 

�̅� = ∑ 𝑐𝑖𝑒
−𝑚𝑖𝑥34

𝑖=1 +
𝑓1

𝑓5
𝑒−𝛾∗𝑥3  ,                                                                                                                                                                                                                   (28) 

�̅� = ∑ 𝛼𝑖𝑐𝑖𝑒−𝑚𝑖𝑥34
𝑖=1 +

𝑓2

𝑓5
𝑒−𝛾∗𝑥3 ,                                                                                                                           (29) 
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𝜙2
̅̅̅̅ = ∑ 𝛽𝑖𝑐𝑖𝑒−𝑚𝑖𝑥3 +

𝑓3

𝑓5
𝑒−𝛾∗𝑥34

𝑖=1 ,                                                                                  (30) 

�̅� = ∑ 𝛿𝑖𝑐𝑖𝑒
−𝑚𝑖𝑥34

𝑖=1 +
𝑓4

𝑓5
𝑒−𝛾∗𝑥3  .                                                                      (31) 

Here𝑚𝑖
2(𝑖 = 1,2,3,4) are the roots of characteristic equation of equation (24). 

𝛼𝑖 = −
−𝑘6𝑎3𝑚𝑖

6+𝑘10𝑚𝑖
4+𝑘11𝑚𝑖

2+𝑘12

−𝑎3𝑚𝑖
6+𝑘7𝑚𝑖

4+𝑘8𝑚𝑖
2−𝑘9

 , 𝛽𝑖 =
𝑎1𝑘2𝑚𝑖

4−𝑎1𝑘2(𝑘5+𝑘2)𝑚𝑖
2+𝑎1𝑘2𝑘5𝑘2

−𝑎3𝑚𝑖
6+𝑘7𝑚𝑖

4+𝑘8𝑚𝑖
2−𝑘9

 ,  

𝛿𝑖 =
𝑘2𝑚𝑖

4−𝑘2(𝑘5+𝑘4)𝑚𝑖
2+𝑘2𝑘4𝑘5

−𝑎3𝑚𝑖
6+𝑘7𝑚𝑖

4+𝑘8𝑚𝑖
2−𝑘9

 ,    𝑖 = 1,2,3,4, 

𝑓1 = 𝑄0𝑓(𝑥1, 𝑡)(−𝑎3𝛾∗6 + 𝑘7𝛾∗4 + 𝑘8𝛾∗2 − 𝑘9),   

𝑓2 = 𝑄0𝑓(𝑥1, 𝑡)(−𝑘6𝑎3𝛾∗6 + 𝑘10𝛾∗4 + 𝑘11𝛾∗2 + 𝑘12), 

𝑓3 = 𝑄0𝑓(𝑥1, 𝑡)(𝑎1𝑘2𝛾∗4 − 𝑎1𝑘2(𝑘5 + 𝑘2)𝛾∗2 + 𝑎1𝑘2𝑘5𝑘2), 

𝑓4 = 𝑄0𝑓(𝑥1, 𝑡)(𝑘2𝛾∗4 − 𝑘2(𝑘5 + 𝑘4)𝛾∗2 + 𝑘2𝑘4𝑘5), 

𝑓5 = (𝐴𝛾∗8 + 𝐵𝛾∗6 + 𝐶𝛾∗4 + 𝐸𝛾∗2 + 𝐹).  

Substituting the values of �̅�, �̅�, �̅�2, �̅� from the equations (28)-(31) in the (4)-(5), and using (12)-(13), (18) and 

solving the resulting equations, we obtain: 

𝑡3̅3 = ∑ 𝐺1𝑖𝑒
−𝑚𝑖𝑥34

𝑖=1 − 𝑀1𝑒−𝛾∗𝑥3 ,                                                                 (32) 

𝑡3̅1 = ∑ 𝐺2𝑖𝑒
−𝑚𝑖𝑥34

𝑖=1 − 𝑀2𝑒−𝛾∗𝑥3 ,                                                     (33)  

�̅�32 = ∑ 𝐺3𝑖𝑒
−𝑚𝑖𝑥34

𝑖=1 − 𝑀3𝑒−𝛾∗𝑥3 ,                                                             (34)  

�̅� = ∑ 𝐺4𝑖𝑒
−𝑚𝑖𝑥3 − 𝑀4𝑒−𝛾∗𝑥34

𝑖=1                                               (35)  

 

𝐺𝑚𝑖 = 𝑔𝑚𝑖𝐶𝑖 , 𝑖 = 1,2, … ,4. 𝑔𝑚𝑖 and 𝑀𝑖 are mentioned in appendix A. 

Boundary Conditions: 

We consider normal and tangential forces acting at the surface 𝑥3 = 0 along with vanishing of couple stress 

at 𝑥3 = 0 and 𝐼0 = 0 . Mathematically this can be written as: 

𝑡33 = −𝐹1𝑒−(𝑘𝑥1−𝜔𝑡), 𝑡31 = −𝐹2𝑒−(𝑘𝑥1−𝜔𝑡),𝑚32 = 0,
𝜕𝑇

𝜕𝑥3
= 0                                                         (36) 

where 𝐹1 and 𝐹2 are the magnitude of the applied forces. 

Substituting the expression of the variables considered into these boundary conditions, we can obtain the 

following equations: 

∑ (𝑔1𝑖 , 𝑔2𝑖  , 𝑔3𝑖 , 𝑔4𝑖)𝑐𝑖 = (−𝐹1, −𝐹2, 0,0 )4
𝑖=1  .                                                                         (37) 

The system of equations (37) are solved by using the matrix method as follows: 
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[

𝑐1

𝑐2

𝑐3

𝑐4

] = [

𝑔11 𝑔12 𝑔13 𝑔14

𝑔21 𝑔22 𝑔23 𝑔24

𝑔31 𝑔32 𝑔33 𝑔34

𝑔41 𝑔42 𝑔43 𝑔44

]

−1

[

−𝐹1

−𝐹2

0
0

].                                                                                               (38)                                          

Special cases: 

Micropolar Thermoelastic Solid 

If we neglect the Hall current in Equations (37) and put 𝐼0 = 0 , we obtain the corresponding expressions of 

stresses, displacements and temperature for micropolar thermoelastic half space. 

Numerical Results and Discussions: 

The analysis is conducted for a magneto-micropolar material. For numerical computations, following Eringen 

[15], the values of physical constants are: 

𝜆 = 9.4 × 1010Nm−2, 𝜇 = 4.0 × 1010Nm−2, 𝐾 = 1.0 × 1016Nm−2, 𝜌 = 1.74 × 103Kgm−3, 𝑗 = 0.2 × 10−19m2,    𝛾 =

0.779 × 10−9N , 

Following Dhaliwal [16] thermal parameters are given by: 

𝑐∗ = 1.04 × 103JKg−1K−1, 𝐾∗ = 1.7 × 106Jm−1s−1K−1, 𝛼𝑡1 = 2.33 × 10−5K−1, 𝛼𝑐1 = 2.48 × 1010K−1,    𝑇0 =
298K,    𝜏0 = 0.02,   𝜏1 = 0.01, 𝛼𝑐1 = 2.65 × 10−4m3Kg−1, 𝑎 = 2.9 × 104m2s−2K−1, 𝑏 = 32 × 105Kg−1m5s−2, 𝜏1 =
0.04,   𝜏0 = 0.03, 𝐷 = 0.85 × 10−8Kgm−3s  

 

A comparison of the dimensionless form of the field variables for the cases of micropolar thermoelastic with 

Hall current, rotation and input laser heat source (MPHCLSR) and micropolar thermoelastic (MPTH)   is presented 

in Figures 4-9. The values of all physical quantities for all cases are shown in the range 0 ≤ 𝑥3 ≤ 5. 

Solid lines, dash lines corresponds to micropolar thermoelastic with Hall current and input laser heat source 

(MPHCLSR) and micropolar thermoelastic (MPTH),  respectively for 𝑡 = 0.1 

The computations were carried out in the absence and presence of laser pulse (𝐼0 = 105&𝐼0 = 0) and on the 

surface of plane 𝑥1 = 1, 𝑡 = 0.1. 

 

 
               Fig. 5. Variation of 𝑡33 w.r.t. 𝑥3                                     Fig. 6. Variation of 𝑡31 w.r.t. 𝑥3 

 

0 1 2 3 4 5

x3

-4

-2

0

2

t 31

MPHCLSR

MPTH

0 1 2 3 4 5

x3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

t 33

MPTH

MPHCLSR



To Physics Journal Vol 1 No 3 (2018) ISSN- 2581-7396                                                      http://purkh.com/index.php/tophy 

35 

 
               Fig. 7. Variation of 𝑚32 w.r.t. 𝑥3                                       Fig. 8. Variation of temperature w.r.t. 𝑥3 

 

Fig. 5 shows the variation of normal stress 𝑡33 with the distance 𝑥3. It is noticed that for MPHCLSR and MPTH, 

the normal stress 𝑡33 show opposite behavior initially. The normal stress in MPHCLSR initially increases and then 

show oscillatory trend. The value of  𝑡33 approaches to boundary surface away from the source. 

Fig. 6 displays the variation of tangential stress 𝑡31 with the distance𝑥3. It is noticed that initially the behavior of 

𝑡31 for MPHCLSR and MPTH is opposite. Initially 𝑡31 increases monotonically for MPHCLSR and decreases 

monotonically for MPTH but approaches to the boundary surface away from the point of application of normal 

force.  

Fig. 7 clears the variation of couple stress 𝑚32 with distance 𝑥3 for MPHCLSR and MPTH. The variation of 𝑚32 

for (MPHCLSR and MPTH) is monotonically increasing in the region 0 ≤ 𝑥3 ≤ 1 and monotonically decreasing 

thereafter. The 𝑚32 approaches to zero away from the point of application of source. It is clear from figure 3 

that Hall current has a significant effect on the value of𝑚32 and causes significant oscillatory behavior in 

MPHCLSR. 

 

 
                   Fig. 9. Variation of 𝑢1 w.r.t. 𝑥3                                Fig. 10. Variation of 𝑢3 w.r.t. 𝑥3 

 

Fig. 8 displays the variation of temperature 𝑇 with distance 𝑥3. The values of temperature change for MPTH show 

monotonically decreasing behavior in the range 0 ≤ 𝑥3 ≤ 5. In case of MPHCLSR the temperature decreases by 

exhibiting oscillatory trend due to the Hall Effect and input laser heat source. 

Fig. 9 and Fig. 10 exhibit the behavior of displacement components 𝑢1 and 𝑢3 w.r.t. 𝑥3. Both the displacement 

components approach to boundary surface away from the application of normal force which is in agreement to 

the generalized theory of thermoelasticity.  
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Conclusions: 

 

The problem consists of investigating displacement components, temperature distribution, Hall current and 

stress components in a homogeneous isotropic micropolar thermoelastic half space due to various sources 

subjected to laser pulse. Normal mode analysis technique is employed to express the results mathematically. 

The analysis of results permits some concluding remarks: 

(1) It is clear from the figures that all the field variables have nonzero values only in the bounded region of space 

indicating that all the results are in agreement with the generalized theory of thermoelasticity. 

(2) The effect of the Hall current, rotation and ultra-laser is much pronounced in all the resulting quantities. 

The new model is employed in magneto-micropolar thermoelastic medium as a new improvement in the field 

of thermoelasticity. The subject becomes more interesting due to Hall current involving rotation and irradiation 

of an ultra-laser pulse with an extensive short duration or a very high heat flux. This type of problems has found 

numerous applications. The method used in this article is applicable to a wide range of problems in 

thermodynamics. By the obtained results, it is expected that the present model of equations will serve as more 

realistic and will provide motivation to investigate micropolar thermoelasticity problems. 

 

Conflict of Interest: 

 

The authors declare that there is no conflict of interest regarding the publication of this paper. 

 

References: 

 

1. A.C. Eringen, “Linear theory of micropolar elasticity,” Indiana University Mathematics Journal, 15, 909-923, 

1966. 

2. M. Zakaria, “Effects of Hall Current and Rotation on Magneto-Micropolar Generalized Thermoelasticity Due 

to Ramp-Type Heating,” International Journal of Electromagnetics and Applications, 2, 24-32, 2012. 

3. C. B. Scruby and L. E. Drain, Laser Ultrasonics Techniques and Applications, Adam Hilger, Bristol, UK, 1990. 

4. L.R.F. Rose, “Point-source representation for laser-generated ultrasound,” Journal of the Acoustical Society 

of America, 75, 3, 723, 1984. 

5. F. A. McDonald, “On the Precursor in Laser-Generated Ultrasound Waveforms in Metals,” Applied Physics 

Letters, 56, 3, 230-232, 1990.  

6. J. B. Spicer et al., “Quantitative Theory for Laser Ultrasonic Waves in a Thin Plate,” Applied Physics Letters, 

57, 1882–1884, 1990. 

7. M. Dubois et al., “Modelling of laser thermoelastic generation of ultrasound in an orthotropic medium,” 

Applied Physics Letters, 64, 554, 1994. 

8. S.M. Abo-Dahab et al., “LS model on thermal shock problem of generalized magneto-thermoelasticity for 

an infinitely long annular cylinder with variable thermal conductivity,” Applied Mathematical Modelling.  35, 

3759-3768, 2011. 

9. J.K. Chen et al., “Comparison of one-dimensional and two-dimensional axisymmetric approaches to the 

thermomechanical response caused by ultrashort laser heating,” Journal of Optics, 4, 650-661, 2002. 

10. W.S. Kim et al., “Thermoelastic stresses in a bonded layer due to repetitively pulsed laser heating,” Acta 

Mechanica, 125, 107-128, 1997. 



To Physics Journal Vol 1 No 3 (2018) ISSN- 2581-7396                                                      http://purkh.com/index.php/tophy 

37 

11. H.M. Youssef et al., “Thermoelastic material response due to laser pulse heating in context of four theorems 

of thermoelasticity,” Journal of thermal stresses, 37, 1379-89, 2014. 

12. M.A. Elhagary, “A two-dimensional generalized thermoelastic diffusion problem for a thick plate subjected 

to thermal loading due to laser pulse,” Journal of thermal stresses, 37, 1416-1432, 2014. 

13. R. Kumar et al., “Thermomechanical interactions of Laser Pulse with Microstretch Thermoelastic Medium,” 

Archives of Mechanics, 67(6), 439-456, 2015. 

14. M.H. Al-Qahtani et al., “Laser-generated thermoelastic waves in an anisotropic infinite plate: Exact analysis,” 

Journal of Thermal Stresses, 31, 2008, 569-583. 

15. A.C. Eringen, Microcontinuum Field Theories I: Foundations and Solids. New York: Springer-Verleg, 1999. 

16. R.S. Dhaliwal, A. Singh, Dynamic Coupled Thermoelasticity. New Delhi: Hindustan Publication Corporation, 

1980. 

 

Appendix A: 

𝑏2 =
𝜆

𝜌𝑐1
2  , 𝑏3 =

2𝜇+𝐾

𝜌𝑐1
2  , 𝑏5 =

𝜇+𝐾

𝜌𝑐1
2  , 𝑏6 =

𝜇

𝜌𝑐1
2  , 𝑏7 =

𝐾

𝜌𝑐1
2  , 𝑏8 =

𝜔∗2
𝛾

𝜌𝑐1
4  , 𝑏9 =

𝜔∗2
𝑏0

𝜌𝑐1
4  , 𝑏10 =

𝜔∗2

𝜌𝑐1
4 , 𝑔1𝑖 = (𝑚𝑖

2 − 𝑏2𝑘2) +

𝜄𝑏3𝑘𝑚𝑖𝛼3𝑖 − 𝜏11𝛼1𝑖 ,𝑔2𝑖 = −𝜄𝑏3𝑘𝑚𝑖 + (𝑏6𝑚𝑙
2 + 𝑏5𝑘2)𝛼3𝑖 − 𝑏7𝛼2𝑖 , 𝑔3𝑖 = −𝑏8𝛼2𝑖𝑚𝑖 

𝑔4𝑖 = −𝑚𝑖𝛼1𝑖 , 𝑀1 = (
𝑏1𝑓2+(𝛾∗2

−𝑏2𝑘2)𝑓1−𝜏11𝑓3+𝜄𝑏3𝑘𝛾∗𝑓4

𝑓5
) , 𝑀2 =

(−𝜄𝑏3𝑘𝛾∗𝑓1+(𝑏6𝛾∗2
+𝑏5𝑘2))

𝑓5
 , 𝑀3 = −

𝑏8𝛾∗𝑓3

𝑓5
, 𝑀4 =

−𝛾∗𝑓2

𝑓5
. 


