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Abstract 

Weighted voting games are a class of cooperative games that model group decision making systems in 

various domains, such as parliaments. One of the main challenges in a weighted voting game is to measure of 

player influence in decision making. This problem is fundamental in game theory and political science. In this 

paper we consider the 2017 Bulgarian Election and the distribution of decision power among the parties and 

coalitions in the 44th Bulgarian Parliament. 
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1. Introduction 

We will model a parliamentary multi-winner election and the basic elements of this model are: 

Firstly, a parliamentary body is to be elected. 

Secondly, the parliamentary body contains a fixed number of seats. 

Thirdly, a number of parties and coalitions are competing for these seats. 

Fourthly, many voters are eligible to vote. 

We also assume that voters have preferences on the set of political parties and coalitions, and every voter has 

a favorite party or coalition. The result of the election will be a parliament such that the seats are divided 

among a number of parties and coalitions. 

In fact, eleven parties and nine coalitions were standing in the 2017 Bulgarian Election. The 240 members of 

the 44th Bulgarian Parliament (National Assembly, Narodno Sabranie) were elected for four-year terms by 

closed list proportional representation from 31 multi-member constituencies ranging in size from 4 to 16 

seats. The electoral threshold was 4%. 

According to the official results, 3682151 voters participated in the election, including 117668 voters who cast 

their ballots abroad. The number of invalid ballots was 169009 (or 4,6%). Five parties and coalitions won seats. 

Table 1 shows some details of the final result for 44th Bulgarian Parliament. 

Table 1. The final analysis of the results for 44th Bulgarian Parliament 

Parties Voters % of voters Seats % of seats 

GERB 1147245 39,80 95 39,59 

BSP 955214 33,14 80 33,33 

UP 318512 11,05 27 11,25 
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DPS 315786 10,96 26 10,83 

Volya 145636 5,05 12 5,00 

 2882393 100,00 240 100,00 

 

The aim of this paper is to investigate the distribution of decision power among the parties and coalitions in 

the 44th Bulgarian Parliament using the simple majority rule by quota 121 (more than 
2

1 ). 

2. The Background 

Game Theory is a useful tool for modeling strategic situations. This theory has been extensively used in many 

disciplines, including political science. Voting games date back at least to John von Neumann and Oskar 

Morgenstern in their monumental book “Theory of Games and Economic Behavior” published in 1944 [14]. 

Previous works on this problem were fragmentary and did not attract much attention. The book of Von 

Neumann and Morgenstern provided some new important developments such as the consideration of 

information sets and the introduction of formal definitions and decision rules.  

We start our study with a consideration of key terms, definitions, and notations. Let N  be a nonempty finite 

set of players which can be people, companies, institutions, political parties or countries, and every subset 

NS   is referred to as a coalition. The set N  is called the grand coalition and   is called the empty 

coalition. We denote the collection of all coalitions by 
N2  and the number of players of coalition 

NS 2  by 

S . Let us label the players by n,,...2,1 , 2 Nn . 

Definition 1. A simple game in characteristic-function form is a pair ),( vNG   where },...,2,1{ nN   is a 

set of players and }1,0{2: Nv  is the characteristic function which satisfies the following three conditions: 

(1) 0)( v . 

(2) 1)( Nv . 

(3)   is monotonic, i.e. if NTS  , then )()( TvSv  .  

Two simple games ),( 111 vNG   and ),( 222 vNG   are called equal when 21 NN   and 21 vv  . 

In this paper we will consider a special class of simple games called weighted voting games with dichotomous 

voting rule - acceptance ("yes") or rejection ("no"). These games have been found to be well-suited to model 

economic or political bodies that exercise some kind of control. A weighted voting game is one type of simple 

cooperative game and it is a formalization model of coalition decision making in which decisions are made by 

vote [9] [11]. A weighted voting game is described by ],...,,;[ 21 nwwwqG   where q  is positive and 

nwww ,...,, 21  are nonnegative integer numbers such that  

n

k kwq
1

. The set of weights 

},,...,{ 21 nwww  corresponds to the set of players },,...2,1{ n . By convention, we commonly take ji ww   

when ji  . This game has the following properties: 

(1)  q1 . 
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(2) 2 Nn  is the number of players. 

(3) 0iw  is the number of votes of player Ni  and 11 w . 

(4) nwww  ...21 . 

(5) q  is the needed quota so that a coalition can win. 

(6) the symbol ],...,,;[ 21 nwwwq  represents the weighted voting game G  defined by 




















qw

qw
Sv

Sk k

Sk k

,0

,1
)( , where NS  . 

Two weighted voting games ],...,,;[ 11
2

1
111 mwwwqG   and ],...,,;[ 22

2
2
122 nwwwqG   are equal when nm  , 

21 qq   and 
21
ii ww   for all players Ni . 

For any weighted voting game, the form ],...,,;[ 21 nwwwq  is often called a weighted representation. 

Obviously, one weighted voting game has many representations. For example, the following two weighted 

voting games ]2,49,49;51[1 G  and ]1,1,1;2[2 G  represent the same voting rule, i.e. they have the 

same characteristic function and each coalition of two or three players is winning.  

For any coalition NS   in game G , S  is winning if 1)( Sv , S  is losing if 0)( Sv , and S  is blocking if 

S  and SN \  are both losing coalitions. The collections of all winning, all losing and all blocking coalitions in 

game G  are denoted by )(GW , )(GL  and )(GB , respectively. If game G  is known, we simply write W , L  

and B . 

Of course, any simple game has winning and losing coalitions and this game is determined by the set of all 

winning (or losing) coalitions. We also get that WN  and L ; therefore, W  and L  are nonempty, 

LW  , 
NLW 2 , LB  and BW   . Observe that a coalition having a winning sub-coalition 

is also winning, a sub-coalition of a losing coalition is also losing, and the complement of a blocking coalition 

is also blocking. It is easy to show that B  can be either empty or nonempty. From L , B  and 

LB  it follows that BL \  is nonempty. Sometimes, coalitions of BL \  are called strictly losing. 

First, for any player Ni , the collection of all winning coalitions including i  is denoted by 
iW  and the 

collection of all winning coalitions excluding i  is denoted by 
iW . Clearly, if 

iWS  , then 
iWiS }{ ; 

therefore, we obtain the inequality 
ii WW   . We also have that 

ii WW  , WWW ii    and 

ii WWW  
2

1
. 

Next, for any player Ni , the collection of all losing coalitions including i  is denoted by 
iL  and the 

collection of all losing coalitions excluding i  is denoted by 
iL , 

ii LL   and LLL ii   . From 

iLS   it follows that 
iLiS }{\ ; therefore, we get that 

ii LLL  
2

1
. 
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Finally, for any player Ni , the collection of all blocking coalitions including i  is denoted by 
iB

 and the 

collection of all blocking coalitions excluding i  is denoted by 
iB . In this case we obtain 

ii BB   and 

BBB ii   . 

For any coalition WS , S  is called a minimal winning coalition if }{\ iS  is not winning for all Si . The 

collection of all minimal winning coalitions is denoted by MW  for a known game or )(GMW  for any game 

G . For any player Ni , the collection of all minimal winning coalitions including i  is denoted by 
iMW  

and the collection of all minimal winning coalitions excluding i  is denoted by 
iMW . 

It is easy to prove that MW  and W  are finite sets, WMW   and MW  is nonempty. Clearly, we have that 


ii MWMW  , MWMWMW ii   , 

ii WMW    and 
ii WMW    for all Ni . 

For any coalition LS , S  is called a maximal losing coalition if }{iS   is not losing for all SNi \ . The 

collection of all maximal losing coalitions is denoted by ML . For any player Ni , the collection of all 

maximal losing coalitions including i  is denoted by 
iML  and the collection of all maximal losing coalitions 

excluding i  is denoted by 
iML

. 

By analogy, ML  and L  are finite sets, LML  and ML  is nonempty, and 
ii MLML  , 

MLMLML ii   , 
ii LML    and 

ii LML    for all Ni . 

The set of minimal winning coalitions determines a simple game uniquely. When )()( 21 GMWGMW   we 

call that games 
1G  and 2G  are equivalent. 

A player who does not belong to any minimal winning coalition is called a dummy, i.e. player Ni  is a 

dummy if Si  for all MWS . A player who belongs to all minimal winning coalitions is called a veto 

player or vetoer, i.e. player Ni  has the capacity to veto if Si  for all MWS . A player Ni  is a 

dictator if }{i  is a winning coalition. 

In voting power theory, a dummy player has no decision power, a veto player can block every decision and a 

dictator has all of the decision power. Formally, for any player Ni , i  being a dictator is equivalent to 

MWi }{ , i  being a veto player is equivalent to  MWS
Si


  (or  WS

Si


 ) and i  being a dummy is 

equivalent to  MWS
Si


 . 

Now we will consider two examples. 

Example 1. In the Scottish Parliament in 2009 there were 5 political parties: 47 representatives of the Scottish 

National Party, 46 of the Labor Party, 17 of the Conservative Party, 16 of the Liberal Democrats, and 2 of the 

Scottish Green Party. Typically, all representatives from a party vote as a block. The quota is 65. In this case we 

obtain weighted voting game ]2,16,17,46,47;65[SP .  

Example 2. The Finish Parliament with 200 seats uses three different rules: a simple majority by quota 101 

(more than 
2

1 ), a qualified majority by quota 134 (more than 
3

2 ), and in some special cases by quota 167 

(more than 
6

5 ) [8].  
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Now, let us analyze the sum )\()( SNvSv   for NS  . Clearly, 1)(0  Sv  imply inequalities 

2)\()(0  SNvSv . 

Definition 2. A weighted voting game is called proper if 1)\()(  SNvSv  for all NS  .  

Note that a weighted voting game being proper is equivalent to the complement of a winning coalition is not 

winning. This means that in a proper game both coalitions S  and SN \  cannot be winning. In this context, if 

S  is winning, then SN \  is losing, but the converse statement is not always true. 

In what follows, we will study proper games only. 

Definition 3. A proper game is called decisive if 1)\()(  SNvSv  for all NS  .  

It is easy to prove that a proper game being decisive is equivalent to it having no blocking coalition. For any 

coalition NS   in a decisive game, S  being winning is equivalent to SN \  being losing. 

Theorem 1. (a) For any proper game G  the following equations and inequalities are true: 

(a) BWL 1 , 
nBW 22  , LWMW n  121  and LB  . 

(b) Game G  being decisive is equivalent to 
12  nLW . 

Proof. (a) Game G  is proper and LS  imply that either WSN \  or LSN \ , i.e. either WSN \  or 

BS . Let NSNP  \  and define a one-to-one correspondence between BLS \  and 

WSNP  \ . We know that WB  ; therefore, as a result we get BWL  . We also know that 

L  is nonempty, i.e. L1 . 

Observe that from the above results 
nLW 2  and BWL   we obtain 

nBW 22  . 

From BWL   and 0B  it follows LW  . We also know that 
nLW 2 ; therefore, 

LW n  12 . But WMW   and MW  is nonempty, i.e. LWMW n  121 . 

It is clear that from BWL   and W1  it follows LB  . 

(b) First, let game G  be decisive. For each NS   we have known that WS  is equivalent to LSN \ , 

i.e. LW  . From 
nLW 2  it follows that 

12  nLW . 

Second, let us assume that 
12  nLW . According to (a) we obtain that B  is empty. Thus, we find that 

game G  is decisive. 

The theorem is proven. 

Note that the set of all winning coalitions and the set of all minimal winning coalitions in weighted voting 

game ],...,,;[ 21 nwwwq  are the same as the set of all winning coalitions and the set of all minimal winning 

coalitions in weighted voting game ],...,,;[ 21 nwwwq   for every positive integer number  . As a result, 

we obtain that weighted voting game ],...,,;[ 21 nwwwqG   is equivalent to game 
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],...,,;[ 21 nwwwqG   . For integer number 1 , the two distinct representations ],...,,;[ 21 nwwwq  

and ],...,,;[ 21 nwwwq   are equivalent. It follows that the number of representations of a weighted 

voting game is infinitive. This means that G  and G  are equal as two simple games. 

For any proper game G , a pair of players Nji ,  is called symmetric or i  and j  are symmetric (shortly 

ji  ) if and only if }){(}){( jSviSv    for all coalitions },{\ jiNS . Proper game G  is symmetric if 

every pair of players is symmetric. 

In this interpretation, if ji ww  , then players i  and j  are symmetric, but the converse statement is not true. 

For example, see game ]10,11,13,14;30[G . The players of G  have different weights but every pair of 

players is symmetric. Hence, symmetric does not imply that all players have equal weights, but symmetric 

implies that all players are granted equal impact on collective decisions.  

It is interesting to note that game ]10,11,13,14;30[  is equivalent to game ]1,1,1,1;3[  and game 

]1,1,1,1;3[  is symmetric. It is easy to prove that if 1G  and 2G  are equivalent games and 1G  is symmetric, 

then 2G  is also symmetric because the set of all minimal winning coalitions of game 1G  is equal to the set of 

all minimal winning coalitions of game 2G . 

For any proper game G  and Nji , , player Ni  is said to be more desirable than Nj  (shortly ji ) if 

and only if }){(}){( jSviSv    for all coalitions },{\ jiNS . The relation   is known as the 

desirability relation. It is known that all weighted voting games have desirability relation   on N , and 

n ...21  because we assume that nwww  ...21 . 

By analogy, for any proper game G  and Nji , , player Ni  is said to be strictly more desirable than 

Nj  (shortly ji  ) if and only if }){(}){( jSviSv    for all coalitions },{\ jiNS  and there exists a 

coalition },{\ jiNT  such that }){(}){( jTviTv   . 

It is easy to show that for a proper game and Nji , : 

(1) ji  is equivalent to ji   or ji  . 

(2) ji   is equivalent to ji  and not ji  . 

(3) ji   is equivalent to ji  and ij . 

Consider a pair of symmetric players Nji , . It follows that if NSi   and Sj , then 

}){\}{()( ijSvSv  . Now, it is easy to see that 
ji WW   , 

ji LL    and 
ji BB   . 

Definition 4. For Ni  and 
iWS  , player i  is called a negative swing member of S  (critical or pivotal) if 

}{\ iS  is not winning. For any player Ni , the collection of all winning coalitions including i  as a negative 

swing number is denoted by 
i
sW . For Ni  and 

iLS  , player i  is called a positive swing member of S  

(critical or pivotal) if }{iS   is not losing. For any player Ni , the collection of all losing coalitions including 

i  as a positive swing number is denoted by 
i
sL .  
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It is often said that 
i
sW  and 

i
sL  are the number of swings of player Ni . 

Note that each member of a minimal winning coalition is a negative swing player, each member of a maximal 

losing coalition is a positive swing player, a winning coalition may have a negative swing member and a losing 

coalition may have a positive swing member. 

It is easy to show that each positive swing for player Ni  corresponds to a pair of coalitions 

  ii WLiSS  }{,   such that S  is losing and }{iS   is winning, and each negative swing for player 

Ni  corresponds to a pair of coalitions   ii WLSiS  },{\  such that }{\ iS  is losing and S  is winning. 

In the first case we say that i  is a swing player for the pair  }{, iSS  , but in the second case we say that 

that i  is a swing player for the pair  SiS },{\ . 

It follows that 
ii

s

i WWMW    and 
ii

s

i LLML    for all Ni . 

Theorem 2 [4]. For any proper game 
i
s

i
s LW   for all Ni . 

3. Power Indices of Players 

The concept of decision power of the players in games is well-known. Weighted voting games use 

mathematical models to analyze the distribution of decision power of the players. Power indices measure the 

power of players and can be used to determine their payoffs.  

The most popular indices in political science are the Banzhaf power indices (1965) and the Coleman power 

indices (1971). These power indices are based on the concept of swing. More precisely, they are based on the 

number of coalitions in which the player is swing. It has been demonstrated that different indices reflect 

specific conditions in the voting body. If all players of this body are voting independently, then the political 

power of the players is estimated by the Banzhaf power indices and the Coleman power indices. 

3.1. The Banzhaf power indices 

The absolute Banzhaf power index was introduced by the American jurist and law professor John Banzhaf III in 

1965 [1]. It concerns the number of times each player Ni  could change a coalition from losing to winning 

and it requires that we know the number of negative swings for each player i . For each player Ni , the 

absolute Banzhaf index is denoted by i  and it equals the number of negative swings for this player, i.e. 

i

si W  for all Ni . 

The normalized Banzhaf power index is the vector ),...,,( 21 n 


, given by 

 


n

k k

i
i

1



  for ni ,...,2,1 . 

The Penrose-Banzhaf index is defined by 
12 


n

i
ib


 for Ni . The Banzhaf index was originally created in 

1946 by Leonel Penrose, but was reintroduced by John Banzhaf in 1965. 

In [6] and [7], it is proven that for any player Ni , 
iii

s
i
si WWLW   . 
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It is important to note that the Banzhaf power index is monotonic with respect to the weights when we are 

evaluating the power, i.e. for Nji , , ji    when ji ww  , and ji    when ji ww  . We also get that 

for any proper game, player Ni  being a dummy is equivalent to 0i , see also [12] and [13]. 

3.2. The Coleman power indices 

In [5] Coleman considers two different power indices of the players in a game, see also [2]. For any player 

Ni , they are defined as follows. 

(a) The preventive power index 
W

W
P

i
s

i  . This index can be interpreted as the probability of player Ni  to 

block the decision making. 

(b) The initiative power index 
L

L
I

i
s

i  . This index can be interpreted as the probability of player Ni  to 

initiative action. 

It is easy to show that 10  iP , 10  iI , LIWP iii   and ii PI   for all Ni . It is important to 

note that a game being decisive is equivalent to iP iI  for all Ni  (or  


n

i i

n

i i PI
11

). For more 

information see Theorems 1 and 2. 

For any player Ni , both indices iP  and iI  achieve their lower bound of 0 if and only if player i  is a 

dummy; index iP  achieves its upper bound of 1 if and only if i  is a veto player; and index iI  achieves its 

upper bound of 1 if and only if player i  is a dictator [2] [3]. 

In [6], the authors prove that for any non-dummy player Ni  the Penrose-Banzhaf index ib  is the harmonic 

mean of the two Coleman indices iP  and iI , i.e. 

iii IPb

112
  when 0,, iii IPb . It is important to point out 

that the Coleman power indexes are monotonic with respect to the weights when we are evaluating the 

power, i.e. for two different players Nji , , ji PP   and ji II   when ji ww  , and ji PP   and ji II   

when ji ww  . 

4. Distribution of Decision Power 

As discussed above, the 44th Bulgarian Parliament with 240 seats uses a simple majority rule by quota 121. We 

will calculate the power indices of the players. Let us assume that all representatives from a party or a coalition 

vote as a block. Thus, we obtain a weighted voting game ]12,26,27,80,95;121[BP  when 5n  and 

240 . 

We will focus our attention on the game ]12,26,27,80,95;121[BP  and we find that: 

}}5,4,3,2,1{}},5,4,3,2{},5,4,3,1{},5,4,2,1{},5,3,2,1{},4,3,2,1{},4,3,2{

},5,4,1{},5,3,1{},4,3,1{},5,2,1{},4,2,1{},3,2,1{},4,1{},3,1{},2,1{{W
, 16W . 

It is necessary to note that underlining the critical players to make it easier to count. As a result, we obtain. 
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141 W , 102 W , 103 W , 104 W , 85 W . 

}}4,3,2{},4,1{},3,1{},2,1{{MW , 4MW . 

31 MW , 22 MW , 23 MW , 24 MW , 05 MW . 

121 sW , 22 sW , 23 sW , 24 sW , 05 sW . 

16L . 0B . 

We obtain that this game is decisive (see also Theorem 1), player 5 is a dummy and this game is equivalent to 

the game ]0,1,1,1,2;3[1BP  because )1()( BPWBPW  . Table 2 shows the power indices of players in 

the game ]12,26,27,80,95;121[BP . Thus, we also get that 54321   . 

Table 2. Voting power analysis of game ]12,26,27,80,95;121[BP  

Parties % of voters % of seats 
i  i  ib  iP  iI  

GERB 39,80 39,59 12 0,67 0,750 0,750 0,750 

BSP 33,14 33,33 2 0,11 0,125 0,125 0,125 

UP 11,05 11,25 2 0,11 0,125 0,125 0,125 

DPS 10,96 10,83 2 0,11 0,125 0,125 0,125 

Volya 5,05 5,00 0 0,00 0,000 0,000 0,000 

 100,00 100,00 18 1,00 1,125 1,125 1,125 

 

5. The Power of the Parliament as a Whole 

In section 3 we considered the decision power of the players in a weighted voting game. Now we will consider 

the power of the collectivity to act. Here we use the Coleman collective index and it is defined by 
n

W
A

2
 . It 

is computed as the share of the set of winning coalitions in the set of all coalitions. For more information see 

[5] and [10]. According to Theorem 1 we get that 
2

1

2

1
 A

n
 and a weighted voting game being decisive is 

equivalent to 
2

1
A . 

In contrast to player’s indices the Coleman collective index is not defined for individuals but for the voting 

body as a whole. Hence, the power of the collectivity to act is very important for game theory and political 

science. 

For our study the power index of the collectivity to act are 
2

1

32

16
)( BPA  when 

240

121




q
. 
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