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Abstract 

The main purpose of this review-paper is to recall and partially prove earlier, as well as recent results on 

convex optimization, published by the author in the last decades. Examples are given along the article. Some 

of these results have been published recently. Most of theorems have a clear geometric meaning. Minimum 

norm elements are characterized in normed vector spaces framework. Distanced convex subsets and related 

parallel hyperplanes preserving the distance are also discussed. The convex involved objective-mappings are 

real valued or take values in an order-complete vector lattice. On the other side, an optimization problem 

related to Markov moment problem is solved in the end.  
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1 Introduction 

As it is well known, convex optimization is more convenient to realize than optimization of arbitrary mappings. 

Hahn-Banach type results and their consequences (such as Caratheodory’s theorem, Krein Milman theorem, 

and existence of subgradients of convex functions) make convex optimization much easier than other 

optimum problems.  The reader can study the monographs [1]-[11] for the background on convexity and 

functional analysis.  In the last years, various generalizations and new results have been proved and applied in 

the works [12]-[24]. Our references are far from being complete. It covers only a part of. convex optimization. 

There are basic recently published results on constrained optimization, where the objective function is a 

(nonconvex) polynomial and the constraints are defined by means of polynomials too (the variable runs over a 

basic semi-algebraic set). Significant results in this area have been proved by M. Putinar, J.B. Lasserre, J.W. 

Helton and many other authors. Most of their publications are available online. We restrict ourselves to convex 

optimization and inequalities. On the other side, most of the results in the present work remain valid for 

vector-valued convex mappings. Applications of Krein Milman theorem to the moment problem can be found 

in [17], [23]. Optimization problems related to the moment problem are contained in [16], [24] and the 

references there. The rest of the paper is organized as follows. Section 2 improves the main result of [19], 

passing from convex real valued functions to convex operators having their ranges contained in an arbitrary 

order-complete vector lattice. A characterization of finite dimensional bounded convex subsets is deduced. 

Section 3 is devoted to characterizations of elements of minimum norms of convex closed subsets not 

containing the origin, in normed vector spaces. Related results are also discussed [22]. In Section 4, aspects of 

optimization in finite dimensional spaces are pointed out (finding minimum length of a surrounding curve and 

minimum area of a surrounding surface). In Section 5, a constrained optimization problem related to Markov 

moment problem [24] is briefly discussed. Section 6 concludes the paper. 

2 On convex operators defined on bounded convex subsets of 
n

R  

In this section, we improve the basic result from [19]. 
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Theorem 2.1.  

Let X is an arbitrary real vector space, XB   a finite dimensional convex bounded subset, Y and order 

complete vector lattice and YB  :  a convex operator. Then there exists Yy 0  such that 0)( yx   for all 

     

Proof. Since B is finite dimensional and convex, its relative interior )(Bri  is nonempty. Recall that by )(Bri  

one denotes the interior of B with respect to the topology induced on   by that on the (finite dimensional) 

linear variety generated by B. Now by [20],   is subdifferentiable at any point from )(Bri . Let 0b )(Bri  and 

h a subgradient of   at  0b , that is an affine operator YXh :  such that )()( 00 bbh   and )()( xxh   

for all Bx . On the other hand, let 11 ,, pxx   1p  be affine independent points in the linear variety 

generated by B, such that },,co{ 11  pxxB   (here p is the linear dimension of the linear variety 

generated by B). Such a system of points does exist thanks to the fact that B is finite dimensional and 

bounded. Now the following relations hold 
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This concludes the proof.                                                            □ 

Remark 2.1. The preceding proof furnishes a constructive method of finding a lower bound 0y  for )(B

.Since the convex bounded subset  can be approximated by convex polytopes, it results that a lower bound 

for  ( ) can be approximated by the lower bounds of   on these convex polytopes. On the other side, 

.computing the latter lower bound might be a difficult task, since the approximating polytopes might have 

many extreme points. Hence the volume of computations increases, the aim being to obtain a better 

approximation for    ( ( ))   

Remark 2.2. A concrete example of an order-complete Banach lattice (which is also a commutative real 

Banach algebra) of self-adjoint operators can be found in [8] (see also [7]).  

In the next theorem, we show that the only convex subsets     such that any convex real function on B is 

bounded from below are the finite dimensional convex bounded subsets. 

Theorem 2.2.  

Let X be an arbitrary real infinite dimensional vector space and XB   a convex subset, such that any convex 

real function defined on B is bounded from below. Then B is contained in a finite dimensional subspace of X and 

is bounded there. 

Proof. Let 
*x  be an arbitrary linear functional in the algebraic dual 

*X  of X. Then 
*x  and 

*x  are convex, 

and, by hypothesis, both of them are bounded from below on B. Thus )(* Bx  is bounded in R. Hence B is 
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weakly bounded in X, endowed with the weak topology corresponding to the dual pair (    ) . Let us endow 

X with the finest locally convex topology which is compatible with this dual pair (    ) . By [4, Corollary 2, 

section 3.2, Chapter IV], we derive that B is bounded in the latter topology. Application of [4, exercise 7, 

Chapter II], leads to the fact that B is contained in a finite dimensional subspace and bounded there. This 

concludes the proof.    □ 

3 Elements of minimum norm and related results 

In the sequel, we present the characterization of an element of minimum norm in terms of linear continuous 

forms of norm one, related to the distance function, in arbitrary normed linear spaces. Related geometric 

aspects are briefly discussed. 

Lemma 3.1.  

Let X be a real normed vector space, }{  fH  a closed hyperplane in X and Xx 0 . Then the distance 

),( 0 Hxd  is given by formula: 

||||

|)(|
),( 0

0
f

xf
Hxd


 .              (3.1) 

Theorem 3.1.  

Let X be a real normed vector space, XA  a closed convex subset not containing the origin and Aa 0 . The 

following statements are equivalent: 

(a)  }||;{||inf|||| 0 Aaaa  ; 

(b) there exists 
*Xf  , such that 

Aaafafaf  ),()(||||,1|||| 00 ; 

(c) there exists a closed homogeneous hyperplane H such that 

||||),( 0aAHd  . 

Proof.  Let B  be the open ball of radius |||| 0a , centered at the origin. From (a) we infer that the intersection of 

B with  A is empty. From the Hahn-Banach theorem, we infer that there exists a hyperplane }{  fH , 

}0{\*Xf  , which separates  B  from  A. Scaling by a suitable constant, we can assume that |||| 0a . 

Hence we have: 

||}||{||},||{ 00 afAafB  .              (3.2) 

If 1|||| x , then we can write 

||||)||(|||||||||||||| 0000 axafaxa  . 

This leads to 1|||| f . Since Aa 0 , from the second inclusion (2.2) we infer that 



The MathLAB Journal Vol 3 (2019)                                                                  http://www.purkh.com/index.php/mathlab                          

139 
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The conclusion is: 

Aaafaafaafafaf  ),(||||)(||||||||||||)(||||,1|||| 000000 , 

where we have used (3.2) once more. Now, the proof of (a)   (b) is complete. 

(b)   (c). Let f  be a functional verifying (b), })0({1 fH  . From this and also using Lemma 3.1, one 

obtains for any Aa : 

||||),(||,||)(
||||

|0)(|
),( 00 aHAdAaaaf

f

af
Had 


  . 

On the other hand,  

||||)(),(),( 000 aafHadHAd  . 

Comparing the preceding relations, we conclude that ||||),( 0aHAd  . 

(c)   (a). This implication is almost obvious: 

}||;{||inf||||),0(),(),(|||| 00 AaaaAdAHdHAda  . 

Now the proof of the theorem is complete.       □ 

Corollary 3.1.  

Let X be a real Hilbert space, XA  a closed convex subset not containing the origin and Aa 0 . 

 The following statements are equivalent: 

(a)  }||;{||inf|||| 0 Aaaa  ; 

(b) Aaaaa  ,,|||| 0
2

0 ; 

(c) ||||),}({ 00 aAad 
. 

Proof. (a)   (b). From the corresponding implication of Theorem 3.1, there exists
*Xf   such that 

.||||||||||||,,1||||,,,
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It follows that in Cauchy-Schwarz-Buniakovski inequality occurs equality, so that we must have: 

 aaauaaauaau ,,,,|||| 000000  
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The implication (b)   (c) follows from the corresponding implication of Theorem 3.1, taking 

  }{}{ 0 uaH . 

The implication (c)   (a) also follows from the corresponding implication of the preceding theorem, applied 

for the same hyperplane 
 }{ 0aH .                                                □ 

We recall the following related earlier results.  

Theorem 3.2.  

Let X be a normed vector space, XC   a closed convex cone, 

),(,\ 000 CxddCXx  . 

Then there exists a linear continuous functional
*Xf  , such that 

00)(,0)(,1|||| dxfCuuff  . 

Proof. Let RXp :  be the functional defined by }||;inf{||),()( CyyxCxdxp  . Obviously we 

have 00)( dxp  , We prove that p  is sublinear: 
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On the other hand, for all Xxx 21, , Cyy 21,  one has: 
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Let };{ 00 RxX  , RXf 00 : , 000 )( dxf   , R . Then 0f  is linear and for 0  we have 

)()()( 00000 xpxpdxf  , 

while for all 0 , the following remark holds 

)(0)( 0000 xpdxf  . 

The conclusion is that 0f  is bounded from above by p on the one-dimensional subspace 0X . From the Hahn-

Banach theorem, we infer that there exists a linear extension RXf :  of 0f , such that pf   on X. This 

yields 
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Thus f is continuous, of norm at most 1, and satisfies all the other assertion from the statement. The proof is 

complete.                                      □ 

Remark. If  X  is a reflexive Banach space, then the distance ),( 0 Cxd  is attained at least at one point 0y  of C. 

In this case, we have 
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In particular, in any Hilbert space, the linear functional from Theorem 2.2 is of norm 1. 

Theorem 3.3. [22] 

Let X be a normed linear space, A,B convex subsets of  X  such that 0),(0  BAdd . Then there exists two 

closed parallel hyperplanes 21, HH  which keep the two convex subsets distanced, such that 

),(),( 21 BAdHHd  . 

Proof. From the hypothesis we derive 
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The preceding relations further yield: 

00 )(sup)(inf,1|||| dBfdAff  . 

Now the closed hyperplanes we are looking for are 

}{},{ 21  fHfH . 

Since the two hyperplanes separate the convex sets A and B, we have 

),(),( 21 BAdHHd   . 

In order to prove the converse inequality, observe that the distance beween two parallel hyperplanes equals 

the distance from a point situated on a hyperplane, to the other one. This last remark, relation 1|||| f  and 

Lemma 3.1 formula (3.1), lead to: 
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This concludes the proof.           □ 
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In Hilbert spaces, if the algebraic difference of the two convex is topologically closed, then the distance from 

the preceding theorem is attained at a pair of points (   )     . If the two sets have smooth boundaries, 

the line joining these points is orthogonal to the tangent hyperplanes at these points, and these hyperplanes 

are parallel. These remarks lead to the following result, which is useful in applications. It avoids using Lagrange 

multipliers in determining the distance between two suitable convex sets, and the attaining points. 

Corollary 3.2.  

Let X be a real Hilbert space,        convex and smooth,        concave and smooth such that 

 ( )   ( )  for all      If there are          such that 

0)graph,(graph)))(,()),(,(( 1111  qpdbqbapad , 

then there exists     s. t 

  (  )     (  )       (  (  )   )   (       (  )   (  )). 

Examples 
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Then it is not difficult to see that the orthogonal projection of the origin on H is the vector 
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In particular, we have 
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It follows that we can determine the orthogonal projection of the origin on the base B of the cone of all 

elements with nonnegative Fourier coefficients. Note that it is a reflexive cone, because the closed unit ball is 

weakly compact. One can prove that the base B is unbounded, because its “intersection with the coordinate 

axis” are the point nnn ey 1 , Nn , |||| ny . 

2) Let 
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1 dttLB . 

In both cases we have 

ByyBd  ,1||||),0( 1 , 

and obviously B is bounded, convex and closed. Hence there are an infinity of points (all the points of B) at 

which the distance to origin is attained. This happens because of the form of ball in 
1l  - norm (respectively in 

    norm). 

4 Optimization in finite dimensional spaces 

In this section, minimum – length surrounding curve and minimum – area surrounding surface for a finite 

dimensional compact set are constructed. Let 
2RK   be a simply connected compact subset defined by  

SKxxFRCFFKFK \0)(),(},1{},1{ 22  ,            (4.1) 

where S is the set of minimum points of F situated in K. Consider the problem of surrounding 

}),(;{  KxfxK  by a closed path   of minimal length. A variation of the problem is determining only 

“a half” of such a path. The problem has an obvious practical significance. 

Theorem 4.1.  

Let )(co))((co  KKclC   be the (closed) convex hull of subset K . Then the path C  is the 

shortest curve surrounding K . The concave (respectively convex) “branches” defined by this path are uniformly 

approximated by graphs of polynomials which preserve  concavity (respectively convexity). 

Proof. Due to Carathéodory’s theorem [  ], we have: 
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RKxxC   , 

so that )(co: KC   is not only convex, but also compact (one denotes by   ( ) the set of all extreme 

points of      ( ) is the topological closure of   and   ( ) is the convex hull of   ). The geometric meaning of 

the above equality is that constructing C is equivalent to joining some “convex components” to K , whenever 

the latter subset is not convex. Recall that for a finite dimensional compact subset K one has 

))((Exco)(co KK  . This is a consequence of Carathéodory’s theorem too. To form the boundary of the 

convex hull, we replace the arches of “non-convexity” by line segments. Any point 

 KCx \  

lies in a triangle having such a line segment as one of the edges, with extreme points of K  as  the 

segments’s ends. The third vertex of this triangle is also an extreme point in K . Clearly, C  does not 

intersect the interior of CK  . From the above arguments, the path   is formed by joining the arches of 

K  with the new added line segments as described above. Because these line segments represent the 
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shortest path between the segment’s ends, and because obviously   surrounds  KC , the first assertion in 

the statement follows. The points at which the Hessian of F is positive semi-definite remain unchanged when 

constructing the convex hull of K . Consider the concave function having as graph the “upper branch” and 

the convex function define by the “lower branch” of  . In order to avoid non-smooth paths, the function for 

the “upper branch” is approximated by the corresponding Bernstein polynomials, which preserve the concavity 

of any concave continuous function. Also approximating the convex function defined by the “lower branch” of 

  with Bernstein polynomials, the conclusion follows. □ 

Remark 4.1.   

The following variant of Theorem 4.1 is natural and useful in applications, due to its iterative character: the 

boundary of K  is usually a continuous piecewise smooth curve, which is uniformly approximated by 

polygonal lines. Given a non-convex polygon, it is easy to describe an algorithm of constructing its convex 

hull, simply dropping out some edges and vertices of “non-convexity”. The convex hull of K  is approximated 

by such convex polygons. 

The method from theorem 4.2 below works for compact subsets 
nRK   defined by means of a 

2C -function 

on 
nR , in a similar way to that from (4.1). 

Theorem 4.2.  

Let consider a compact subset }),(;{,3,   KxdxKnRK n
. Then ))((co K  has a minimum 

surface area among hypersurfaces surrounding K . 

Proof.  

One uses Carathéodory’s theorem. The n – 1 dimensional simplexes which compose part of ))((co K  have 

smaller surface – area than any other hypersurfaces containing their vertices. The other part of ))((co K , 

where the Hessian of F is positive semidefinite, is part of K  as well. If the boundary of )( Kco  is not 

smooth, it can be approximated by smooth hypersurfaces. This concludes the proof.                                □                                                                                                    

5 A constrained optimization problem related to Markov moment problem 

This Section starts by recalling briefly one of the earlier extension type results [21] and, on the other hand, by 

formulating one main problem due to Douglas Todd Norris’ PhD Thesis, entitled “Optimal Solutions to the    

Moment Problem with Lattice Bounds” [16], directed by Professor Emeritus Robert Kent Goodrich. The latter 

work suggested us the results of this section. One proves a result in a general setting, motivated by a similar 

problem to that considered in [16] (theorem 6.2 from below). A constrained related optimization problem in 

infinite dimensional spaces is solved too. The next result refers to the abstract moment problem [21], and is 

based on constrained extension theorems for linear operators. It was recalled in Chapter 1 from above and will 

be applied in the sequel. The results of this section were published in [24]. 

 

Theorem 5.1. (see [21]) 
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Let X
~

 be a preordered vector space with its positive cone X
~

, Y an order complete vector lattice, 

Xx Jjj
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(, 21 YXLUU   two linear operators. The following 

statements are equivalent 

(a) there exists a linear operator ),
~

( YXLU   such that 

JjyxUXxxUxUxU jj   ,)(,
~

),()()( 21 ; 

(b) for any finite subset JJ 0  and any RJjj   0
}{ , we have: 

)()(
~

,, 1122

0

2112

0

 UUyXx jj

Jj

jj

Jj
















 






. 

In particular, using the latter theorem, one obtains a necessary and sufficient condition for the existence of a 

feasible solution (see theorem 5.2 from below). Under such condition, the existence of an optimal feasible 

solution follows too. On the other hand, the uniqueness and the construction of the optimal solution seems to 

be not obtained easily by such general methods. Therefore, we focus mainly on the existence problem. For 

other aspects of such problems on an optimal solution (uniqueness or non – uniqueness, construction of a 

unique solution, etc.), see [16]. In the latter work, one considers the following primal problem (P) 









 


   0,,,2,1,),(:||||inf njbdXLv jj
X

  

where ,  are in )(XL , 
n
jj 1}{   is a subset of )(1 XL  and 

nT
nbbbb R ),,,( 21  . The function   is 

unknown, and in general it is not determined by a finite number of moments. The next theorem generalizes 

some of the above existence – type results for a feasible solution. Here (   ) is a measure space endowed 

with a    finite positive measure    and   is the    algebra of all measurable subsets of    

Theorem 5.2.  

Let ),1[ p  and q be the conjugate of p. Let Jjj  }{   be an arbitrary family of functions in )(XLp
 , where 

the measure   is   – finite, and Jjjb }{  a family of real numbers. Assume that )(, XLq
   are such that 

0 . The following statements are equivalent: 

(a) there exists )(XLq
   such that jj

X
bd  ,     0 ; 

(b) for any finite subset JJ 0  and any {  }    
  ,  the following implication holds 

  ddbXL
XX

jj

Jj

p
jj

Jj

12

0

2112

0

))((,,  






 

Moreover, the set of all feasible solutions   (satisfying the conditions (a)) is weakly compact with respect to the 

dual pair ),( qp LL  and the inferior 
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qjj
X

q
q JjbdXLv ||||0,,),(:||||inf:   









   

is attained at least  at an optimal feasible solution 0 . 

Proof. Since the implication (a)   (b) is obvious, the next step consists in proving that (b)   (a). Define the 

real valued linear positive (continuous) forms 21,UU  on )(:
~

XLX p
 , by 

XdUdU
XX

~
,:)(,:)( 21    . 

Then condition (b) of the present theorem coincides with condition (b) of theorem 6.1. A straightforward 

application of the latter theorem, leads to the existence of a linear form U on X
~

, such that the interpolation 

conditions jj bU )( , Jj  are verified and 

  XdUd
XX

~
,)(   . 

In particular, the linear form   is positive on )(
~

XLX p
 , and this space is a Banach lattice (in particular, X

~
 

is a complete metric topological vector space and an ordered vector space, whose positive cone X
~

 is closed 

and generating). It is known that on such spaces, any linear positive functional is continuous (cf. [4], ch. V, sect. 

5). The conclusion is that   can be represented by means of a nonnegative function )(XLq
  . From the 

previous relations, we derive 

  Xddd
XXX

~
,   . 

Writing these relations for B  , where B is an arbitrary measurable set of positive measure )(B , one 

deduces 

0)(,,0)(,0)(   BSBdd
BB

 . 

Then a standard measure theory argument shows that   a. e. This finishes the proof of (b)   (a). To 

prove the last assertion of the theorem, observe that the set of all feasible solutions is weakly compact by 

Alaoglu’s theorem (it is a weakly closed subset of the closed ball centered at the origin, of radius q||||  ). On 

the other hand, the norm of any normed linear space is lower weakly semi - continuous. The conclusion is that 

the norm q||||   is weakly lower semi-continuous on the weakly (convex) and compact set described at point 

(a), so that it attains its minimum at a function 0  of this set. Hence, there exists at least one optimal feasible 

solution. This concludes the proof.                                                                  □                                                                                                                       

Remark 5.1. If the set {  }   
 is total in the space )(XLp

 , then the set of all feasible solutions is a singleton, 

so that there exists a unique solution. 

6 Conclusions 
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Existence and finding lower bounds for convex mappings are discussed in the first part of this review-paper. 

Some of these results generalize previously published theorems. In particular, a characterization of bounded 

finite dimensional convex subsets is deduced. Minimum norm elements in normed vector spaces setting and 

related results are also pointed out. Related examples are given. Other minimization problems having 

geometric meaning are briefly presented. In the end, an optimization problem related to a Markov moment 

problem in concrete spaces of integrable functions is solved. Each result is followed by its proof, so that the 

results and their associated methods are presented together. 
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