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Abstract. The objective of the present paper is to study the η-Einstein soli-

tons on N(k)-Paracontact metric manifolds whose potential vector field is the

Reeb vector field ξ if and only if the manifold is a para-Sasaki-Einstein. Also,
admitting the Ricci Solitons under certain conditions.
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1. Introduction

In recent years the pioneering works of R. S. Hamilton [6] towards the solution
of the Poincare conjecture in dimension 3 have produced a flourishing activity in
the research of self similar solutions, or solitons, of the Ricci flow. The study
of the geometry of solitons, in particular their classification in dimension 3, has
been essential in providing a positive answer to the conjecture; however in higher
dimension and in the complete, possibly noncompact case, the understanding of the
geometry and the classification of solitons seems to remain a desired goal for a not
too proximate future. In the generic case a soliton structure on the Riemannian
manifold (M, g) is the choice of a smooth vector field X on M and a real constant
λ satisfying the structural requirement

(1.1) Ric+
1

2
LXg = λg,

where Ric is the Ricci tensor of the metric g and LXg is the Lie derivative of this
latter in the direction of X. In what follows we shall refer to λ as to the soliton
constant. The soliton is called expanding, steady or shrinking if, respectively, λ > 0,
λ = 0 or λ > 0. When X is the gradient of a potential ψ ∈ C∞(M), the soliton is
called a gradient Ricci soliton [12] and the previous equation (1.1) takes the form

∇∇ψ = S + λg.(1.2)

Both equations (1.1) and (1.2) can be considered as perturbations of the Einstein
equation

(1.3) Ric = λg.

and reduce to this latter in case X or ∇ψ are Killing vector fields. When X = 0 or
ψ is constant we call the underlying Einstein manifold a trivial Ricci soliton.
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Definition 1.1. A Ricci soliton (g, V, λ) on a Riemannian manifold is defined by
[6]

LV g + 2S + 2λ = 0,(1.4)

where S is the Ricci tensor, LV is the Lie derivative along the vector field V on
M and is a real scalar. Ricci soliton is said to be shrinking, steady or expanding
according as λ < 0, λ = 0 and λ > 0, respectively. Also, soliton is called shrink-
ing and it generates an ancient self-similar solution to the Ricci flow with finite
extinction time.

It is well known that the quantity a(g, ψ) := R+
∣∣∇ψ2

∣∣−ψ must be constant onM
and it is often called the auxiliary constant. When ψ is constant the gradient Ricci
soliton is simply an Einstein manifold. Thus Ricci solitons are natural extensions
of Einstein metrics, an Einstein manifold with constant potential function is called
a trivial gradient Ricci soliton. Gradient Ricci solitons play an important role in
Hamiltonian Ricci flow as they correspond to self-similar solutions, and often arise
as singularity models. They are also related to smooth metric measure spaces, since
equation (1.3) is equivalent to ∞-Bakry-Emery Ricci tensor Ricψ = 0. In physics,
a smooth metric space (M, g, eψ, dvol) with Ricψ = λg is called quasi-Einstein
manifold. Therefore it is important to study geometry and topology of gradient
Ricci solitons and their classifications.

In general one cannot expect potential function ψ to grow or decay linearly along
all directions at infinity, because of the product property: the product of any two
gradient steady Ricci solitons is also a gradient steady Ricci soliton. Consider for
example (R, g, ψ), where g is the standard Euclidean metric, ψ(x1, x2) = x1. ψ
is constant along x2 direction, so without additional conditions, ψ may not have
linear growth at infinity.

In recent years much effort has been devoted to the classification of self-similar
solutions of geometric flows. In 2016, G. Catino and L. Mazzieri introduced the
notion of Einstein solitons [5], which generate self-similar solutions to Einstein flow

(1.5)
∂g

∂t
= −2

(
S − scal

2
g

)
.

The interest in studying this equation from different points of view arises from con-
crete physical problems. On the other hand, gradient vector fields play a central
role in Morse-Smale theory. In what follows, after characterizing the manifold of
constant scalar curvature via the existence of η-Einstein solitons. In the case when
the potential vector field ξ is of gradient type i.e., ξ = grad(f), for f a nonconstant
smooth function on M and give the Laplacian equation satisfied by f . Under cer-
tain assumptions, the existence of an η-Einstein soliton implies that the manifold
is quasi-Einstein. Remark that quasi-Einstein manifolds arose during the study of
exact solutions of Einstein field equations.

In 1925, H. Levy [8] in Theorem: 4, proved that a second order parallel symmet-
ric non-sigular tensor in real space forms is proportional the metric tensor. Later,
R. Sharma [13] initiated the study of Ricci solitons in contact Riemannian geom-
etry . In 2009, J. T. Cho and M. Kimura [4] introduced the notion of η-Ricci
solitons and gave a classification of real hypersurfaces in non-flat complex space
forms admitting η-Ricci solitons. Recently, in 2018, A. M. Blaga study the notion
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of η-Einstein solitons [1]. M. D. Siddiqi also studied some properties of η-Einstein
solitons in [11] which is closely related to this topic. It is natural and interesting
to study η-Einstein solitons in N(k)-paracontact metric manifolds.

2. Preliminaries

A (2n+ 1)-dimensional smooth manifold M is said to be an almost paracontact
manifold if it admits an almost paracontact structure (φ, ξ, η), where φ is a (1, 1)-
tensor field, ξ a vector field and its dual 1-form η and for any vector field X on M
satisfying [14]

φ2X = X − η(X)ξ,(2.1)

η(ξ) = 1, φ(ξ) = 0, η(φ) = 0,(2.2)

the tensor field φ induces an almost paracomplex structure on each fibre of D =
ker(η), that is, the eigen distributions D+

φ and D−φ of φ corresponding to the
eigenvalues 1 and −1, respectively, have same dimension n.

An almost paracontact structure is said to be normal [14] if and only if the (1, 2)-
type torsion tensor Nφ = [φ, φ]− 2dη ⊗ ξ vanishes identically, where [φ, φ] denotes
the Nijenhuis tensor of φ. If an almost paracontact manifold M equipped with a
pseudo-Riemannian metric g of signature (n+ 1, n) such that

g(φX, φY ) = −g(X,Y ) + η(X)η(Y ),(2.3)

for all X,Y ∈ χ(M), where χ(M) is the Lie algebra of all smooth vector fields on
the manifold M , then (M, g) is called an almost paracontact metric manifold. An
almost paracontact structure is said to be a paracontact structure if

(2.4) g(X,φY ) = dη(X,Y )

where g is the associated metric [14]. For any almost paracontact metric mani-
fold (M2n+1, φ, ξ, η, g) admits (at least, locally) a φ-basis [14], that is, a pseudo
orthonormal basis of vector fields of the form {ξ, E1, E2, ..., En, φE1, φE2, ..., φEn},
where ξ, E1, E2, ..., En are space-like vector fields and then, by (2.4) vector fields
φE1, φE2, ..., φEn are time-like. In a paracontact metric manifold there exists a
symmetric, trace-free (1, 1)-tensor h = 1

2Lξφ satisfying [14]

φh+ hφ = 0, hξ = 0,(2.5)

∇Xξ = −φX + φhX,(2.6)

where ∇ is Levi-Civita connection of the pseudo-Riemannian manifold and for all
X ∈ χ(M). It is clear that the tensor h satisfies h = 0 if and only if ξ is a
Killing vector field and then (φ, ξ, η, g) is said to be a K-paracontact manifold. An
almost paracontact manifold is said to be para-Sasakian if and only if the following
condition holds [14]

(∇Xφ)Y = −g(X,Y ) + η(Y )X(2.7)

for any X,Y ∈ χ(M). A normal paracontact metric manifold is para-Sasakian and
satisfies

R(X,Y )ξ = −[η(Y )X − η(X)Y ](2.8)
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for any X,Y ∈ χ(M), but unlike contact metric geometry the relation (2.8) does
not imply that the paracontact manifold is para-Sasakian manifold. Every para
Sasakian manifold is a K-paracontact manifold, but the converse is not always
true, as it is shown in three dimensional case. Paracontact metric manifolds have
been studied by Cappelletti-Montano et al. ([2], [3]), Martin-Molina ([9], [10]) and
many others.

According to Cappelletti-Montano et al [2] we have the following definition.

Definition 2.1. A paracontact metric manifold is said to be (k, µ)-paracontact
manifold if the curvature tensor R satisfies

R(X,Y )ξ = k[η(Y )X − η(X)Y ] + µ[η(Y )hX − η(X)hY ],(2.9)

for all vector fields X,Y ∈ χ(M) and k, µ are real constants.

In a (k, µ)-paracontact manifold (M2n+1, φ, ξ, η, g), n > 1, the following relations
hold [7]:

h2 = (k + 1)φ2(2.10)

(∇Xφ)Y = −g[X − hX, Y ]ξ + η(Y )[X − hX], for k 6= −1,(2.11)

(∇Xh)Y = −[(1 + k)g(X,φY ) + g(X,φhY )]ξ(2.12)

+η(Y )φh(hX −X)− µη(X)φhY, for k 6= −1,

QX = [2(n− 1) + µ]X + [2(n− 1) + µ]hY(2.13)

+[2(n− 1) + n(2k − µ)]η(X)ξ, for k 6= 1, ,

S(X, ξ) = 2nkη(X)(2.14)

Qξ = 2nkξ(2.15)

Qφ− φQ = 2[2(n− 1) + µ]hφ(2.16)

for any vector fields X,Y ∈ χ(M), where Q is the Ricci operator defined by
S(X,Y ) = g(QX,Y ). Making use of (2.6) we have

(∇Xη)Y = g(X,φY ) + g(φhX, Y )(2.17)

for all vector fields X,Y ∈ χ(M).
In particular, if µ = 0, then the paracontact metric (k, µ)-manifold is called an

N(k)-paracontact metric manifold. Thus for an N(k)-paracontact metric manifold
we have

R(X,Y )ξ = k(η(Y )X − η(X)Y ),(2.18)

for all X,Y ∈ χ(M).
In an N(k)-paracontact metric manifold (φ, ξ, η, g) the following relation hold

(see [2], [3])

R(X,Y )Z =
(r

2
− 2k

)
{g(Y, Z)X − g(X,Z)Y }(2.19)

+
(

3k − r

2

)
{g(Y,Z)η(X)ξ − g(X,Z)η(Y )ξ + η(Y )η(Z)X − η(X)η(Z)Y } ,
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S(X,Y ) =
(r

2
− 2k

)
g(X,Y ) +

(
3k − r

2

)
η(X)η(Y ),(2.20)

QX =
(r

2
− 2k

)
X +

(
3k − r

2

)
η(X)ξ,(2.21)

S(X, ξ) = 2kη(X)(2.22)

where R, S, Q and r are the curvature tensor, Ricci operator, Ricci tensor, and the
scalar curvature respectively. From (2.19) it follows that

R(ξ,X)Y = k {g(X,Y )ξ − η(Y )X} .(2.23)

Also using (2.6) we have

(∇Xη)Y = g(X,φY )− g(hX, φY )(2.24)

for all X,Y ∈ χ(M). Immediately from (2.19) we have the following:

Proposition 2.2. A 3-dimensional N(k)-paracontact metric manifold is a mani-
fold of constant curvature k if and only if the scalar curvature r = 6k.

We recall a result due to Cappelletti-Montano et al (see [2], [3]).

Lemma 2.3. Any paracontact metric (k;µ)-manifold of dimension three is Einstein
if and only if k = µ = 0.

Though any paracontact metric (k;µ)-manifold of dimension three is Ein- stein
if and only if k = µ = 0, it always admits some compatible Einstein metrics [2].

3. η-Einstein solitons on N(k)-paracontact manifold

Let (M,φ, ξ, η, g) be a N(k)-paracontact manifold. Consider the equation [1]

(3.1) Lξg + 2S + (2λ− scal) + 2µη ⊗ η = 0,

where Lξ is the Lie derivative operator along the vector field ξ, S is the Ricci
curvature tensor field of the metric g, scal is the scalar curvature of the Riemannian
metric g and λ and µ are real constants. Writing Lξ in terms of the Riemannian
connection ∇, we obtain [1]:

(3.2) 2S(X,Y ) = −g(∇Xξ, Y )− g(X,∇Y ξ)− (2λ− scal)g(X,Y )− 2µη(X)η(Y ),

for any X,Y ∈ χ(M).
The data (g, ξ, λ − scal

2 , µ) which satisfy the equation (4.1) is said to be an η-

Einstein soliton on M [1]. In particular if µ = 0 then (g, ξ, λ − scal
2 ) is called

Ricci soliton [13] and it is called shrinking, steady or expanding, according as λ is
negative, zero or positive respectively [4].

Suppose that a 3-dimensional N(k)-paracontact metric manifold admits a η-
Einstein soliton whose potential vector field is the Reeb vector field ξ. Then from
(3.1) we get

(3.3) g(∇Xξ, Y )+g(X,∇Y ξ)+2S(X,Y )+(2λ−scal)g(X,Y )+2µη(X)η(Y ) = 0.

Taking into account of (2.6) the above equation implies

g(φhX, Y ) + S(X,Y ) +

(
λ− scal

2

)
g(X,Y ) + µη(X)η(Y ) = 0.(3.4)
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Replacing Y by ξ in the above equation gives[
λ− scal

2
+ 2k + µ

]
η(X) = 0.(3.5)

Putting X = ξ in (3.5) to get

λ = −2k +
scal

2
− µ.(3.6)

Thus from (3.4) and (3.6) together gives

S(X,Y ) =

[
2k − λ− scal

2
+ µ

]
g(X,Y )− g(φhX, Y ).(3.7)

Replacing X by φX in (3.7) to get

S(φX, Y ) =

[
2k − λ− scal

2
+ µ

]
g(φX, Y ) + g(φX, Y ).(3.8)

Also from (2.20) we obtain

S(φX, Y ) =
(r

2
− k

)
g(φX, Y ).(3.9)

Equating the right hand side of (3.8) and (3.9) we get

g(hX, Y ) =
(r

2
− 3k +

scal

2
− µ)g(φX, Y ).(3.10)

Replacing X by Y in (3.10) yields

g(hY,X) =
(r

2
− 3k +

scal

2
− µ)g(φY,X).(3.11)

Adding (3.10) and (3.11) we have

g(hX, Y ) = 0,(3.12)

which gives

h = 0.(3.13)

Now h = 0 holds if and only if ξ is a Killing vector field and thus M is a K-
paracontact metric manifold. Then equation (3.1) yields that M is η-Einstein.
Also in dimension 3, a K-paracontact metric manifold is a para-Sasakian man-
ifold. Thus M is a para-Sasaki η-Einstein manifold. The converse is trivial. Thus
we can state the following:

Theorem 3.1. A 3-dimensional N(k)-paracontact metric manifold admits a η-
Einstein soliton whose potential vector field is the Reeb vector field ξ if and only if
the manifold is a para-Sasaki-Einstein.

Remark 7.2. [[3], Theorem 3.3] is a particular case of Theorem 7.1.

Corollary 3.2. If a conformally at N(k)-paracontact metric manifold admits a
η-Einstein soliton, then the manifold is a paraSasaki-Einstein.
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4. Parallel symmetric second order tensors and η-Einstein solitons in

N(k)-paracontact manifolds

An important geometrical object in studying η-Einstein solitons is well known
to be a symmetric (0, 2)-tensor field which is parallel.

Now, let fix h a symmetric tensor field of (0, 2)-type which we suppose to be
parallel ∇ that is ∇h = 0. Applying Ricci identity [?]

(4.1) ∇2h(X,Y ;Z,W )−∇2h(X,Y ;Z,W ) = 0,

we obtain the relation

(4.2) h(R(X,Y )Z,W ) + h(Z,R(X,Y )W ) = 0.

Replacing Z = W = ξ in (4.2) and by using (2.18) and by the symmetry of h
follows h(R(X,Y )ξ, ξ) = 0 for any X,Y ∈ χ(M) and

(4.3) kη(Y )h(X, ξ)− kη(X)h(Y, ξ)

+kη(Y )h(ξ,X)− kη(X)h(ξ, Y ) = 0.

Putting X = ξ in (4.3) we obtain

(4.4) 2k[η(Y )h(ξ, ξ)− h(Y, ξ)] = 0.

or

(4.5) 2k[η(Y )h(ξ, ξ)− h(Y, ξ)] = 0.

Since 2k 6= 0, it results

(4.6) η(Y )h(ξ, ξ)− h(Y, ξ) = 0,

for any Y ∈ χ(M), equivalent to

(4.7) g(Y, ξ)h(ξ, ξ)− h(Y, ξ) = 0,

for any Y ∈ χ(M). Differentiating the equation (4.7) covariantly with respect to
the vector field X ∈ χ(M), we obtain

(4.8) h(∇XY, ξ) + h(Y,∇Xξ) = 2kh(ξ, ξ)[g(∇XY, ξ) + g(Y,∇Xξ)].

Using (2.6) in (4.8), we obtain

(4.9) η(Y )h(ξ, ξ) = h(Y, ξ)

for any X,Y ∈ χ(M). The above equation gives the conclusion:

Theorem 4.1. Let (M,φ, ξ, η, g, ) be a N(k)-paracontact manifold with non-vanishing
ξ-sectional curvature and endowed with a tensor field of type (0, 2) which is symmet-
ric and φ-skew-symmetric. If h is parallel with respect to ∇, then it is a constant
multiple of the metric tensor g.

On a N(k)-paracontact manifoldusing equation (2.6) and Lξg = 2g(φhX, Y ),
the equation (4.2) becomes:

(4.10) S̄(X,Y ) = −(2k − scal

2
+ µ)g(X,Y )− g(φhX, Y ).

In particular, X = ξ, we obtain

(4.11) S̄(X, ξ) = −(2k + λ− scal

2
+ µ)η(X).
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In this case, the Ricci operator Q defined by g(QX,Y ) = S(X,Y ) has the
expression

(4.12) Q̄X = −(2k + λ− scal

2
+ µ)X.

Remark that on a N(k)-paracontact manifold , the existence of an η-Einstein
soliton implies that the characteristic vector field ξ is an eigenvector of Ricci oper-
ator corresponding to the eigenvalue −(2k + λ+ µ− scal

2 ).

Now we shall apply the previous results on η-Einstein solitons.

Theorem 4.2. Let (M,φ, ξ, η, g) be a N(k)-paracontact manifold . Assume that
the symmetric (0, 2)-tensor filed h = Lξg+ 2S + 2µη⊗ η is parallel associated to g.
Then (g, ξ,− 1

2kh(ξ, ξ), µ) yields an η-Einstein soliton.

Proof. Now, we can calculate

(4.13) h(ξ, ξ) = Lξg(ξ, ξ) + 2S̄(ξ, ξ) + 2µη(ξ)η(ξ) = −2k + λ+ scal

so λ = − 1
2k [h(ξ, ξ)− sacl]. From (5.9) we conclude that

h(X,Y ) = −(2k + λ− scal)g(X,Y )

for any X,Y ∈ χ(M). Therefore

Lξg + 2S + 2µη ⊗ η = −(2k + λ− scal)g
. �

For µ = 0 follows Lξg + 2S − S(ξ, ξ)g = 0 and this gives

Corollary 4.3. On a N(k)-paracontact manifold (M,φ, ξ, η, g) with property that
the symmetric (0, 2)-tensor field h = Lξg+2S is parallel associated to g, the relation
(4.1), for µ = 0, defines a Ricci soliton.

Conversely, we shall study the consequences of the existence of η-Einstein solitons
on a N(k)-paracontact manifold . From (5.10) we give the conclusion:

Theorem 4.4. If equation (4.1) define an η-Eintein soliton on a N(k)-paracontact
manifold (M,φ, ξ, η, g) , then (M, g) is quasi-Einstein [4].

Recall that the manifold is called quasi-Einstein if the Ricci curvature tensor
field S is a linear combination (with real scalars λ and µ respectively, with µ 6= 0)
of g and the tensor product of a non-zero 1-from η satisfying η = g(X, ξ), for ξ a
unit vector field and respectively, Einstein if S is collinear with g.

Theorem 4.5. If (φ, ξ, η, g) is a N(k)-paracontact manifold on M and (4.1) defines
an η-Einstein soliton on M , then

(1) Q ◦ φ = φ ◦Q
(2) Q and S are parallel along ξ.

Proof. The first statement follows from a direct computation and for the second
one, note that

(4.14) (∇ξQ)X = ∇ξQX −Q(∇ξX)

and

(4.15) (∇̄ξS)(X,Y ) = ξ(S(X,Y ))− S(∇̄ξX,Y )− S(X, ∇̄ξY ).

Replacing Q and S from (5.12) and (5.11) we get the conclusion. �
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A particular case arise when the manifold is φ-Ricci symmetric, which means
that φ2 ◦ ∇Q = 0, that fact stated in the next theorem.

Theorem 4.6. Let (M,φ, ξ, η, g) be a N(k)-paracontact manifold . If M is φ-Ricci
symmetric and (4.1) defines an η-Einstein soliton on M , then µ = 1 and (M, g) is
Einstein manifold.

Proof. Replacing Q from (5.12) in (5.14) and applying φ2 we obtain

(4.16) (µ− 2k − scal

2
)η(Y )[X − η(X)ξ] = 0,

for any X,Y ∈ χ(M). Follows µ = 2k+ scal
2 and S = −(2k+λ+µ+1− scal

2 )g. �

Remark 4.7. In particular, the existence of an η-Einstein soliton on a N(k)-
paracontact manifold which is Ricci symmetric (i.e. ∇S = 0) implies that M is
Einstein manifold [?]. The class of Ricci symmetric manifold represents an ex-
tension of class of Einstein manifold to which belong also the locally symmetric
manifold (i.e. satisfying ∇R = 0). The condition ∇S = 0 implies R̄.S̄ = 0 and
the manifolds satisfying this condition are called Ricci semi-symmetric.
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