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Abstract 

With the revolutionary development of Wireless Sensor Network (WSN) technologies, researchers started to 

take benefits of integration embedded low-cost, low-power WSN technology in a various IoTs applications. 

Real-time voice transmission over IoTs is one interesting application that began to be explored by many 

researchers for a wide range of emergency scenarios. Thus, this paper presents a performance study for 

transmission of voice over WSN (VoWSN) with and without presence of Internet. A framework using a Raspberry 

Pi3 (RPi3) and open source FFmpeg technology for processing, compressing and streaming voice to a r emote 

computer is proposed, implemented and evaluated. The performance of the proposed framework is evaluated 

by studying its behaviour utilizing three audio encoding algorithms: AC3, MP3 and OPUS with different sampling 

rates. Furthermore, a set of evaluation metrics procedures such as: One-way delay, jitter, Bandwidth (B.W), CPU 

usage and packet losses are proposed and implemented effectively. 

Keywords: IoTs, VoWSN, Raspberry Pi, Audio encoding, Real time voice streaming, Embedded systems. 
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1. Introduction  

Wireless voice transmission represents an expeditious communications mechanism and therefore unsurprising 

that this mechanism is always wanted to be exploited it in a wide range of emergency scenarios, where the time 

is a dominant factor. For many years the high cost and high-power technologies such as interphone, mobile 

telephone, microwave, and satellite have been utilized to accomplish wireless voice communication system. An 

alternative approach can be contributed by using new advent embedded low-cost, low-power WSN technology 

[1]. The vast upgrades in low-power computing, networking and microphone technologies have provided WSN 

devices more capabilities for real-time voice transmission.  Consequently, the researchers have started 

experiencing the advantages of real time transmission of voice over WSN (VoWSN) in various fields such as 

military applications, surveillance and emergency scenarios. 

Generally, IoT can be characterized as a type of a network that associate anything from anywhere and anytime 

with the Internet based on predefined protocols through sensing devices. Embedded systems are now assuming 

an essential part in the advancement of the IoTs. Recent expectations guarantee that there will be more than 50 

billion associated devices at 2020[2]- [3]. These devices are expected to be typical IoTs devices, such as small-

size, low-cost and low-power networked embedded devices. These networked embedded devices may be 

characterized as a WSN. Thus, it may be thinking about the WSN as a subset of IoTs that connecting things to 

the Internet through a gateway as shown in Fig. 1 [3]- [4].  

While most of the traffic generated by IoTs devices are management data or measurements data (temperature, 

humidity,), it is expected that by 2019 the multimedia traffic will account for 80% of all Internet Protocol (IP) 

traffic [2]. The integration of VoWSN with the IoTs enables the audio data can be accessed from anywhere in 

the world in any time.  In emergency scenarios, VoWSN with IoTs can play significant role in saving lives. 

Moreover, it might offer a flexible technique to give human interaction.  Additionally, voice can give a more 
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adaptable user experience involvement in a more conservative manner than customary techniques like touch  

screens or data input [5].  

 

 

 

 

 

 

 

Fig.1. WSN with IoT system Architecture. 

So, in this paper we explore the feasibility of streaming voice over IoTs in real-time constrains where jitter<5ms 

and one-way delay<150 ms utilizing three audio encoding algorithms. The main contribution of this project is 

proposing and implementing a procedure to calculate jitter and one-way delay factors utilizing Real-time 

Transport Protocol (RTP), Real Time Control Protocol (RTCP) headers.  These factors are important factors for 

evaluating the real-time performance of such systems. The procedure is based on the synchronization between 

the WSN node and remote PC which achieved by Network Time Protocol (NTP).  

This paper is organized as follows: section I presents an introduction of VoWSN and Voice over IoTs (VoIoTs) 

systems. Section II includes a brief literature review related to VoWSN and Voice VoIoTs subjects. Section III 

gives an overview of streaming protocols and MPEG-2 TS container. Our proposed framework with hardware 

and software implementation methodology is given in section IV and V respectively. Section VI presents testing 

methodology while section VII reviews testing results and discussion of VoWSN and VoIoTs system. Section VIII 

gives an outdoor VoWSN case study. Finally, Section IX summarizes conclusions and research findings. 

I. Literature Review  

In fact, VoWSN issue has taken a great deal of researcher’s interest for many years.  Generally, in the beginning 

the researcher’s efforts were mainly focused on feasibility of implementing and identify the problems to be 

solved related to VoWSN subject. However, in research [1] the authors I. Fathi et. al. aimed to give a brief study 

of the previous works concerned with the subject of VoWSN. The research showed that the early attempt to 

stream VoWSN was implemented using Fire-Fly nodes by R. Mangharam et. al. [6]. The system operated in a 

global Time division Multiple Access (TDMA) schedule and used Adaptive Differential Pulse Code Modulation 

(ADPCM) as a software compression technique. While in [7], D. Brunelli et. al. investigated Zigbee networks for 

voice streaming and analysed performance using metrics such as throughput, packet loss and jitter and 

compressed audio data using an external ADPCM processor. Also, in [8] the authors, H. Rong-lin et. al. presented 

an architecture of the VoWSN node and performed ADPCM encoding by DSP processor. In [9], the authors 

designed a smart helmet as a mobile sensor node and used a ZigBee WSN for voice transmission with a G.726 

voice codec algorithm. While in [10], the authors developed a voice compression algorithm comparable to 

ADPCM, to fit in low memory profile 8-bit microcontroller. However, all the above listed previous researches 

have been studied the transmission of VoWSN without Internet.   

The area of audio streaming in the IoTs using resource constrained hardware is however less explored. S. Haritha 

et. al. presented efficient audio streaming using Raspberry pi as a broadcaster which encoded audio into mp3 

file format with bit rate at 96kbps and 64kbps. The audio could be obtained to the listener at a particular URL 
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with a unique mount point [11].  Additionally, an audio streaming application that could stream data to a set of 

smart speaker nodes over wireless links based on IEEE 802.11n was implemented on a proposed platform using 

the Raspberry Pi2 in [12].  

II. Streaming Protocols and Containers 

The most popular multimedia streaming protocols are Real-time Transport Protocol (RTP), Real Time Control 

Protocol (RTCP) [13]. RTCP is a companion protocol to RTP carries a feedback from the receiver to the sender 

concerning quality of service (QoS) statistics. In particular, RTP provides a set of services concerning of real time 

transportation of audio and video data. These services are identified in the RTP header and include: 

● Payload type identification: To indicate the encoded format of the payload.  

● Sequence numbering: For packet de-sequencing. 

● Time stamping: For jitter calculation.  

RTP payload format is identified by a 7-bit numeric identifier. Codes below 96 are assigned statically, while codes 

in the range 96-127 are assigned dynamically by means outside of RTP profile or protocol specification (SDP).  

FFmpeg technology can encode to a wide variety of lossy audio formats such as AC3, MP3, OPUS and so on. 

These techniques are interpreted as dynamic payload in the RTP header and assigned to code 96. As a 

consequence, FFplay (media player tool at the receiver side) cannot play the stream without an SDP file 

associated with it. Also, for correctly calculation of jitter and one-way delay, the sampling rate must be known. 

But with dynamic payload types this is hard as the codec type and its sampling rate need to be known and this  

requires that the session information must be in the trace and the program need to know the utilized codec. To 

overcome this situation, the encoded audio data can be wrapped into a standard container.  

MPEG-2 Transport Stream (MPEG-2 TS) is a popular container formats specified in MPEG-2 Part 1 Systems and 

used for less reliable transmission as well as storage of audio, video and metadata [14]. Generally, Transport 

Stream characterized by several important features: 

● Support error checking/correction mechanism. 

● Stream synchronization capability.  

● Multiplexing: It can transfer several ‘compressed media formats’ in a single container. 

● Independency of the media format (encoded data). 

●  Simple and easy to implement, process and handle MPEG2-TS in the wireless network. 

These features give the transport stream robustness in streaming applications. This robustness of MPEG-TS is 

one reason why it is widely used in environments where errors are likely occurring i.e., broadcast systems [15]. 

However, only certain audio CODECS (a software that used to compress and decompress) can be fit into MPEG2-

TS. 

III. VoIoTs System Hardware Implementation Methodology 

The main VoIoTs system hardware components are shown in Fig. 2. In this system RPi3 model B is chosen as a 

WSN node. Unfortunately, the RPi3 doesn’t come with a built-in audio input and setting one up is not straight 

forward. So, RPi3 is equipped with an external USB soundcard. This audio data is transferred through Wi-Fi 

network to a remote PC (laptop) which connected to the AP to receive the audio stream and reconstruct the 
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original audio information. Although different systems for voice transmission using technologies like radio 

waves and Bluetooth, but compared to IEEE 802.11 WLAN, these technologies have several limitations in range 

and security issues [16]. So, the main motivation for utilizing Wi-Fi networks for VoWSN is the potential 

infrastructure deployment cost saving, ease of installation, extendibility to the internet, portability, and data 

rates which is in the order of 11 Mbps [17]- [18]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. VoWSN System Hardware Implementation. 

IV. VoIoTs System Software Implementation Methodology 

Software implementation methodology of VoIoTs system composes of two phases: System Software 

Initialization Phase and System Software Operation Phase. Generally, system software initialization includes the 

installation and configuration of the required software at the sender and receiver devices. The sequence of 

operations related to system initialization is shown in Fig. 3. 
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Fig.3. System Initialization Phase:     a. RPi3        b. PC. 

After completing system initialization, the system can be operated to accomplish what we designed it for; i.e. 

ready to go into System Software Operation Phase. At the sender side (i.e. RPi3 where the source of audio is 

placing close to it), the operations are carried out in accordance with the sequence shown in Fig. 4. For voice 

streaming, this paper presents unreliable transport mechanisms involving combinations of MPEG-2 TS container,  

RTP and User Datagram Protocol (UDP). To keep the cost low, the operating system used within this research is 

the Raspbian and the device driver is Advance Linux Sound Architecture (ALSA). Consequently, on the receiving 

side (i.e. remote PC) the opposite sequence is followed by FFplay software media player to get the original audio 

to be playing back by the speakers. 

  

Fig. 4. System Initialization Phase at RPi3. 

V. VoIoTs System Testing Methodology 

The work methodology employed by studying and evaluating the effect of sampling frequency, in mono and 

stereo states, on the behaviour of each encoding technique. The most important metrics utilizing for evaluation 

are: 

CPU usage:  describes how much the processor is working. Typically, CPU usage is not constant and varies 

depending on the type of operations that are being performed. CPU usage of RPi3 is measured using one of 

the following methods: 

1. Using proc/stat file.  

2. Using top tools. 

RPi3 

 

 

 

 

 

 

 

 
FFmpeg installation & configuration 

ALSA configuration 

Sound card   configuration 

RPi3 initialization& preparation 

FFmpeg encodes audio data into desired compression format and specifies working parameters 

using specific libraries. 

ALSA acquires audio data utilizing  alsa-utils and specifies  sampling rate, input hardware index, 

and  no. of channels 

FFmpeg encapsulates the compressed data into mpeg-ts then into RTP and specifies receiving IP 

address and receiving port. 

PC 

a. 

b. 

Wi-Fi configuration 

FFmpeg installation & configuration 

 

FFplay installation& configuration 
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3. Using htop tools. 

The first method is a file created and modified during the operation of the CPU. This file can be verified d uring 

the streaming operation to acquire the CPU utilization. While the second and the third methods are command -

line tools. These tools show the CPU utilization of the four cores as a percentage as well as show the memory 

usage. 

One-way delay: One-way-delay is the delay introduced by the transmission of packets from source to 

destination. As illustrated in Fig. 5. 

 

Fig. 5. Packet transmission delay. 

So, the delay for a packet pi represents the difference between the time this packet arrived to the PC and  the 

time this packet was sent from RPi3 as expressed in (1):  

Delay(pi) = arrival-time(pi) – sending-time(pi)                                                   (1) 

Using Wireshark program, arrival-time(pi) in time units can be extracted from a packet stream. While sending-

time(pi) need to be calculated as it is not determined. To calculate sending-time(pi), RTP timestamps of RTP 

packets is utilized. RTP timestamps are randomly-initiated incremental units [19]. However, we cannot directly 

use the RTP timestamps and we need to convert sending-time(pi) to time units (wall-clock time). To do so, a 

reference wall-clock time is needed. Given a stream of RTP/RTCP packets from a source synchronization (SSRC), 

the sequence of conversion is shown in Fig. 6.  

 

Fig. 6. Sequence of Sending-Time(pi) Conversion. 

Then the sending time(pi) denotes as Si+n can be computed using (2):  

Si +n = Ňi +
Ši+n−Ši

τ
   [S]    n = (1,2,3 …                                                              (2) 

Sending- 
t ime(pi) Delay (pi) 

Arrival-time(pi) 

Rx(PC) 

Packet pi 

Tx(RPi) 

Finding the first RTCP Sender Report(SR) packet 

Extracting NTP timestamp “wall-clock time” denote as Ñi 

Finding the corresponding RTP timestamp for packet pi  in the same SR packet, denote as Ši 

 

Extracting  RTP timestamp for the first RTP packet ( pi+1) arrived after pi.  denote as Ši+n 

 

Getting the sampling rate value for the given source SSRC. Denotes as τ 

 

Recording arrival time of packet i+n.,  denotes  as Ri+n 
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And the one-way delay of the packet i+n is computed using (3): 

one − way delay (Pi+n
) = R i+n − Si+n   [S]         (3) 

As an example:  

from first RTCP packet, we extract: 

 Ši =3989055281, Ñi= 46.43499 

and timestamps for the first packet after RTCP packet:  

Ši+1=3989054077, Ri+1 =46.439904.  

So, sending-times(pi) (in time units) equal to:  

Si+1=46.43499+(3989054077-3989055281)/90000 =46.421622  

one-way delay(pi) = 46.439904-46.421622= 18.28 ms 

As shown that we use τ=90kHz, this is because MPEG audio uses 90KHz media clock for compa tibility with 

another MPEG content [20].  

The mean one-way delay is defined in (4): 

mean =
one −way delay1+one−way delay2+⋯+one−way delayN

N
 [S]   (4) 

For accurate measuring of one-way-delay parameter it is important to assure the synchronization between the 

RPi3 and the remote PC. This Synchronization can be accomplished using Network Time Protocol (NTP). We 

need to set up a RPi3 to act as an NTP server to which the remote PC will synchronize it’s time to as shown in 

Fig. 7. 

 

Fig. 7. Setting up RPi3 as NTP Server. 

Install NTP Package 

Stop and Disable timesyncd Service 

Enable internal 
clock as the clock of 

last resort.  

 

Prevent other 
hosts from 

changing the time 

on RPi.  

Identify clients from 
same subnet to have 

unlimited access  

 

Running NTP server 

Configuring etc/ntp.conf file 

End configuration 
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Consequently, on the other side the remote PC must be configured as Client NTP. By default, it only updates 

intermittently on the time.windows.com server. So, its clock must be point to the IP of PRi3, which represents 

NTP server. 

Jitter:  Jitter is the variation delay of packets and it is a very important QoS parameter for real time streaming. 

The jitter can be calculated as follows: 

If Ti is the RTP timestamp from packet i, R i is arrival time of packet i in time units, then for two consecutive 

packets i and j the difference D (i, j) may be expressed using (5): 

    D(i, j) = (R j − R i) − (Tj − Ti)       (5) 

Using this difference D for that packet i and the previous packet i-1 in order of arrival, the inter coming jitter can 

be calculated according to (6):   

  J(i) = J(i − 1) +
(|D(i−1,i)|−J(i−1))

16
  [S]      (6)   

Continuo with the above trace: 

Ti= 3989009077, Rj = 45.938498  

Tj = 3989017920, Rj =46.040784 

J(i-1) =0 

D (i, j) = (46.040784-45.938498) -(3989017920-3989009077) 

Jitter J(i)= 0+ (|0.00403|-0)/16=0.2519 ms 

The mean jitter is defined using (7): 

 mean jitter =
|jitter1|+|jitter2|+⋯+|jitterN|

N
                                                                 (7) 

Bandwidth: Bandwidth representing the amount of data that can be transmitted between two points in a set 

period of time. The calculation of bandwidth is expressed as follows [21]: 

● total packet size (bits) = [(Ethernet header(bytes)) +(IP/UDP/RTP header (bytes)) + (Mpeg -its 

header(bytes)) + (voice payload size(bytes))] * 8 

● Bandwidth = total packet size (bits) * [(codec bit rate) / Total payload size (bits)] = B.W bps (8) 

Where Total payload size (bits) represents the actual audio data without stuffing.  

Number of lost packets: the packets when transmitting from their source to destination can suffer from losing 

or eliminating by a router. The elimination of packets depends just on the present conditions of the network, 

and it cannot be anticipated.  

VI. Framework Testing Results and Discussion 

This section describes the effect of Sampling Rate (SR) on different compression techniques behaviour during 

30-second of voice streaming over the suggested platform. The audio encoding algorithms are chosen based 

on two considerations: first they supported by FFmpeg technology and second, they fit into MPEG2-TS 

container.  
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Generally, AC3 and MP3 CODECs are tested with 8k, 16k, 32k and 48k Hz, while OPUS codec is tested with 8k, 

16k, 24k and 48k Hz. First of all, the behaviour of the network is recorded for 24 hours. The behaviour of the 

network without connecting to the Internet is characterized by ping time which is found to be equal to 20 ms. 

While the behaviour of the network when connecting to the Internet is characterized by download, upload and 

ping times as shown in the Fig. 8 and Fig. 9 respectively. 

 

 

 

 

 

 

 

Fig. 8. Internet Download and Upload Behaviour. 

 

 

 

 

 

 

 

Fig. 9. Internet Ping Time Behaviour. 

For all tests, it is found that the packet losses are zero and other metrics measurements results are listed in 

tables below: 

Table 1. Mono-CPU/Mem.Usage for AC3, MP3 &OPUS. 

 

SR 

AC3 MP3 OPUS 

CPU(%) Mem.(%) CPU(%) Mem.(%) CPU(%) Mem.(%) 

8k 3.6 3 6.6 3 8.6 3.1 

16k 6.3 3 11.9 3 12.6 3 

24k NA NA NA NA 19.8 3 

32k 11.6 3 20.6 3 NA NA 

48k 15.6 2.9 31.7 2.9 22.6 2.9 
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Table 2. Stereo-CPU/Mem.Usage for AC3, MP3&OPUS (local & IoTs). 

 

SR 

AC3 MP3 OPUS 

CPU(%) Mem.(%) CPU(%) Mem.(%) CPU(%) Mem.(%) 

8k 4.9 3 7.6 3 13.6 3 

16k 8 3 13.2 3 19.9 3 

     

The measurements in Tables (1) and (2) represent the CPU/memory usage in mono and stereo states respectively 

for VoWSN (local connecting without internet) and VoIoTs (connecting to the internet). It can be noticed that 

increasing SR increases CPU usage for the three techniques in mono and stereo states but the Memory usage 

for all tests almost constant and ranging between 2.9 to 3.1 (%). 

Table 3. Mono-BW(kbps) for AC3, MP3 & OPUS. 

 SR AC3 MP3 OPUS   

8k 107 11 99 

16k 107 26 99.6 

24k NA NA 99.4 

32k 105 54 NA 

48k 107 71 79.3 

 

Table 4. Stereo-BW(kbps) for AC3, MP3 & OPUS. 

SR AC3 MP3 OPUS 

8k 175 26 141 

16k 215 54 123 

 

Moreover, Table (3) shows that in mono state the SR almost has no effect on AC3 bandwidth but increases MP3 

bandwidth, while OPUS bandwidth is nearly constant with the increment of SR but reduced when SR= 48k. In 

stereo state, the SR increases the bandwidth of the three techniques as shown in Table (4). Also, these 

measurements represent bandwidth measurements for local and IoTs. 

Table 5. Mono-Jitter times (ms)for AC3, MP3 & OPUS 

  

 SR 

AC3 MP3 OPUS 

Local  IoTs Local  IoTs Local  IoTs 

8k 4.2 3.4 9.4 9.9 4.6 4.8 

16k 2.7 2.3 6.6 4.6 4.6 4.7 

24k NA NA 3.7 3.8 

32k 2.6 2.6 3.3 3.1 NA 
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48k 1.7 2.4 2.1 2.1 1.5 2.9 

 

Table 6. Stereo-Jitter times(ms)for AC3, MP3 & OPUS. 

SR AC3 MP3 OPUS 

Local  IoTs Local  IoTs Local  IoTs 

8k 1.9 1.9 2.9 4.7 4.9 4 

16k 1.7 1.9 2.1 2.2 1.7 1.6 

 

Tables (5) & (6) show that increasing SR reduces the jitter time in mono and stereo states for the three 

techniques. It can be noticed that the jitter times for AC3 and OPUs are remaining in the range of real-time 

constrains (<5 ms). 

For calculation of one-way delay, we calculate the delay for the RTP data packets between each two consecutive 

RTCP packets which are varied from test to test. Then the mean delay is computed according to (4). Tables (7) 

& (8), show that increasing the SR reduces the one-way delay for AC3 & MP3 for local and IoTs in mono and 

stereo states.  

Table 7. Mono-Delay(ms) for AC3, MP3 & OPUS. 

SR AC3 MP3 OPUS 

Local  IoTs Local  IoTs Local  IoTs 

8k 182 669 392.8 616 15 441 

16k 83 569 144.25 465 17 436 

24k NA NA 14 408 

32k 39 501 121.07 462 NA NA 

48k 21 484 66.7 359 16 400 

 

Table 8. Stereo-Delay(ms)for AC3, MP3 & OPUS 

SR AC3 MP3 OPUS 

Local  IoTs Local  IoTs Local  IoTs 

8k 177 436 360 445 17 220 

16k 78 333 199.6 297 16 213 

      

While in OPUS situation the delay almost constant with SR increment in mono and stereo states. This is beca use 

the RTP timestamp clock frequency for OPUS represents the highest supported sampling rate, i.e. 48 kHz, for all 

modes and sampling rates [22]. So, to determine the RTP timestamp for SR < 48 kHz the number of samples 

has to be multiplied by a multiplier according to Table (9). 
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Table 9. OPUS sampling Rate Multiplier. 

SR  Multiplier 

8k  6 

12k  4 

16k  3 

24k 2 

48k       1 

 

The measurements show that the best one-way delay time is obtained using OPUS technique in mono and 

stereo states. 

VII. Outdoor Case Study 

One application in which VoWSN system can play an important role is disasters. Disasters pose challenges in 

ensuring reliable communications with a reasonable cost. As a case study, we applied the proposed VoWSNs 

system in a disaster area, which is a two-story building, where the rescuer moves through the building to the 

roof. The total distance between the rescuer and the rescue centre is about 20m as shown in Fig. 10. OPUS 

encoding is used in this scenario (for its best behaviour) and the results of jitter and one-way delay times are 

shown in Tables (10) & (11). 

 

 

 

 

 

 

 

 

 

Fig. 10. Outdoor Case Study Scenario. 

As shown from Tables (10) & (11) the jitter times remain in real-time constrains in mono and stereo states for 

local and IoTs, while one-way delay times are in real-time range for local only. 
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Table 10. Mono-OPUS measurements 

SR Jitter(ms) Delay(ms) 

Local  IoTs Local  IoTs 

8k 5.6 4.8 38 441 

16k 4.8 4.7 27 436 

24k 3.6 3.8 28 408 

48k 2.7 2.9 48 400 

 

Table11. Stereo-OPUS measurements 

SR Jitter(ms) Delay(ms) 

Local  IoTs Local  IoTs 

8k 5.1 220 38 220 

16k 3.3 213 39 213 

 VIII Conclusion 

The area of voice streaming in the IoTs using resource constrained hardware is began to be explored by many 

researchers for its advantages in opening new scenarios in WSN applications. In this paper, IoTs based low-cost 

low-power WSN for real-time voice streaming system has been designed and implemented effectively. The 

performance of the proposed platform firstly was examined in local network without connecting to the internet 

(i.e. VoWSN) and secondly by connecting to the internet (i.e. VoIoTs). Moreover, for performance evaluation, a 

set of procedures for CPU/Memory usage, one-way delay, jitter bandwidth calculation is proposed and 

implemented. The main features of the proposed VoIoTs system can be characterized from two different 

perspectives: architecture overview and performance analysis overview. 

From architecture overview, open source Linux architecture of the proposed system make it easily accessed by 

users and supposed to be safe from many attacks. Furthermore, the system is proved to be cost effective since 

it is exploiting a low-cost RPi3 with a built in Wi-Fi connection as voice transmission system so there is no need 

for internet and SIM card. Also, there is no need for external CODECs because RPi3 can implements different 

compression algorithms in software.  

From performance analysis overview, the proposed system could ensure real-time voice transmission for VoWSN 

system without internet in several tests since jitter < 5 ms and delay < 150 ms even in outdoor case (with the 

presence of obstacles). Also, the system could ensure jitter for voice transmission in real-time constrains (< 5 

ms) for VoIoTs system and a reasonable one-way delay times for VoIoTs system compared to the max ping time 

of our internet network which is 350 ms as shown in Fig. (8).  
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