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Abstract 

One recalls the relationship between the Markov moment problem and extension of linear functionals (or 

operators), with two constraints. One states necessary and sufficient conditions for the existence of solutions of 

some abstract vector-valued Markov moment problems, by means of a general Hahn-Banach principle. The 

classical moment problem is discussed as a particular important case. This is the first aim of this review article 

(see sections 1 and 2). Secondly short subsection (namely subsection 3.1) is devoted to applications of 

polynomial approximation in studying the existence and uniqueness of the solutions for two types of Markov 

moment problems. We use these general type results in studying related problems which involve concrete 

spaces of functions and self-adjoint operators (subsection 3.2). This is the third purpose of the paper. Sometimes, 

the uniqueness of the solution follows too. Most of our solutions are operator-valued or function-valued. The 

methods follow from the corresponding proofs or via references citations. All the results have been previously 

published (see the references mentioned in the beginning of each subsection or before the statements of the 

theorems).  
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1 Introduction 

We recall the classical formulation of the moment problem, under the terms of T. Stieltjes, given in 1894-1895 

(see the basic book of N.I. Akhiezer [1] for details): find the repartition of the positive mass on the nonnegative 

semi-axis, if the moments of arbitrary orders k ( ,2,1,0=k ) are given. Precisely, in the Stieltjes moment problem, 

a sequence of real numbers 0)( kks  is given and one looks for a nondecreasing real function )(t  ( 0t ), which 

verifies the moment conditions: 




==
0

),2,1,0( kksdkt   

This is a one dimensional moment problem, on an unbounded interval. Namely, is an interpolation problem with 

the constraint on the positivity of the measure dσ.  The numbers 𝑠𝑘 , 𝑘 ∈ ℕ  are called the moments of the 

measure 𝑑𝜎. Existence, uniqueness and construction of the solution 𝜎 are studied. The present work concerns 

firstly the existence problem. The connection with the positive polynomials and extensions of linear positive 

functional and operators is quite clear. Namely, if one denotes by 𝜑𝑗 , 𝜑𝑗(𝑡) ≔ 𝑡𝑗 , 𝑗 ∈ ℕ, 𝑡 ∈ [0, ∞), 𝑃 the vector 

space of polynomials with real coefficients and 𝐹0: 𝑃 → ℝ, 𝐹0(∑ 𝛼𝑗𝜑𝑗𝑗∈𝐽0
) ≔ ∑ 𝛼𝑗𝑠𝑗𝑗∈𝐽0

, where 𝐽0 ⊂ ℕ is a finite 

subset, then the moment conditions 𝐹0(𝜑𝑗) = 𝑠𝑗 , 𝑗 ∈ ℕ  are obviously verified. It remains to check whether the 

linear form 𝐹0 has nonnegative values at nonnegative polynomials. If the latter condition is also accomplished, 

one looks for the existence of a linear positive extension 𝐹 of 𝐹0 to a larger ordered function space 𝑋 which 

contains both 𝑃 and the space of continuous compactly supported functions, then representing  𝐹 by means of 

a positive regular Borel measure 𝜇  on [0, ∞), via Riesz representation theorem [2]. To see applications and 
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proofs of such an extension result for linear functionals or operators, we refer to [1], [3]-[6]. Alternatively one 

can apply directly Haviland theorem [7] (see the next section). For more general extension type results for linear 

operators, giving necessary and sufficient conditions, see [8], [9], [10]. To obtain the function 𝜎 by means of the 

measure 𝜇 mentioned above one can define 𝜎(𝑡) ≔ 𝜇([0, 𝑡]), 𝑡 ∈ [0, ∞).  If an interval (for example [𝑎, 𝑏], ℝ, or 

[0, ∞)) is replaced by a closed subset of ℝ𝑛, 𝑛 ≥ 2, we have a multidimensional moment problem. The case of 

multidimensional moment problem on compact semi-algebraic subsets in ℝ𝑛 was intensively studied.  Observe 

that any compact is contained in a semi-algebraic compact in ℝ𝑛. The analytic form of positive polynomials on 

special closed finite dimensional subsets is crucial in solving classical moment problems on such subsets (see 

subsection 3.1). In case of Markov moment problem, approximation of nonnegative compactly supported 

continuous functions (with their support contained in a closed subset) by special nonnegative polynomials on 

that subset, having known analytic form is very important. Details and other aspects of the moment problem 

can be found in [11]-[32].  Connections of the moment problem with operator theory appear in [4], [16], [18], 

[19], [20]. Uniqueness of the solution is discussed in [30], [31], [32]. The rest of this work is organized as follows. 

Section 2 is devoted to general extension Hahn Banach type results for linear operators acting between abstract 

spaces. Necessary and sufficient or only sufficient conditions for the existence of a solution of some moment 

problems are recalled. Section 3 contains various applications to spaces of functions or/and operators. In some 

cases, the uniqueness of the solution follows from the proof of its existence. In subsection 3.1 polynomial 

approximations on unbounded subsets are applied, completing the review paper [6]. Some of the results in this 

subsection are new (such as Theorem 3.1.7). Section 4 concludes the paper. 

2 Extension of linear operators, the abstract Markov moment problem and Mazur-Orlicz theorem 

(general-type results) 

The main problem was to find necessary and sufficient conditions for the existence of a solution of the 

interpolation problem, preserving sandwich conditions. In this general case, the operators involved in the 

(convex and respectively concave) constraints are defined on arbitrary convex subsets. Throughout this first part 

of this section, 𝑋  will be a real vector space, 𝑌  an order-complete vector lattice, XBA ,  convex subsets, 

𝑊: 𝐴 → 𝑌 a concave operator, 𝑇: 𝐵 → 𝑌 a convex operator, 𝑆 ⊂ 𝑋 a vector subspace, 𝑓: 𝑆 → 𝑌a linear operator. 

All vector spaces and linear operators are considered over the real field. 

Theorem 2.1 (see [8], [9]). Assume that 

BSTBSfASWASf  ||,||  . 

The following statements are equivalent: 

(a) there exists a linear extension YXF →:  of the operator f such that 𝐹|𝐴 ≥ 𝑊, 𝐹|𝐵 ≤ 𝑇; 

(b) there exists YAT →:1  convex and YBW →:1  concave operator such that for all 

SBAvbbaat  22),0(2]1,0[),',1,',1,',,(  , 

one has 

( ) .)]'()'()1[(')()1(111)1(

]'')1[('11)1(

bTaWfbtWaTt

batbat





−−+−−

−−+=−−
 

Thus in the last relation, we have a convex operator in the left hand side, and a concave operator in the right 

hand side. The following result related to the theorem of H. Bauer follows. 
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Theorem 2.2 (see [8], [9]). Let X be a preordered vector space with its positive cone +X , Y an order complete 

vector lattice, YXT →:  a convex operator, XS   a vector subspace, YSf →:  a linear positive operator. The 

following assertions are equivalent 

(a) there exists a linear positive extension YXF →: of f such that )()( xTxF  , Xx ; 

(b) )()( xTsf  for all XSxs ),(  such that xs  . 

Now we can deduce the main results on the abstract moment problem. 

Theorem 2.3 (see [10]). Let YXTYX →:,,  be as in Theorem 3.1.2, ,}{ Xx Jjj    {𝑦𝑗}
𝑗∈𝐽

⊂ 𝑌 given families. 

The following assertions are equivalent 

(a) there exists a linear positive operator YXF →:  such that 

XxxTxFJjyxF jj = )()(,)( ; 

(b) for any finite subset JJ 0  and any RJjj  0
}{ , we have 

)(

00

xTyxx jj

Jj

jj

Jj

 


  

In the classical real moment problem, 𝑋 is a space of functions containing the polynomials and the compactly 

supported continuous functions, defined on a closed subset 𝐴 in ℝ𝑛, while 𝑥𝑗(𝑡) = 𝑡1
𝑗1 ⋯ 𝑡𝑛

𝑗𝑛 , 𝑡 = (𝑡1, … , 𝑡𝑛) ∈

𝐴, 𝑗 = (𝑗1, … , 𝑗𝑛) ∈ ℕ𝑛 , 𝑛 ∈ ℕ, 𝑛 ≥ 1, 𝑌 = ℝ.  A clearer sandwich-moment problem variant is the following one. 

Theorem 2.4 (see [10]). Let X  be an ordered vector space, Y  an order complete vector lattice, 

    YyXx
JjjJjj 


,  given families and ( )YXLFF ,, 21   two linear operators. The following statements are 

equivalent 

(a)there is a linear operator ( )YXLF ,  such that 

( ) ( ) ( ) ( ) ;,21 JjyxFXxxFxFxF jj = +  

(b)for any finite subset JJ 0  and any   ,
0

R
Jjj 


  we have 

( ) ( ).,, 1122

00

2112  FFyXx

Jj

jj

Jj

jj −
















−= 


+  

The next result of this subsection is an earlier extension result, sometimes called Lemma of the majorizing 

subspace, for positive linear operators on subspaces in ordered vector spaces (𝑋, 𝑋+), for which the positive 

cone 𝑋+ is generating (𝑋 = 𝑋+ − 𝑋+). Recall that in such an ordered vector space 𝑋, a vector subspace 𝑆 is called 

a majorizing subspace if for any 𝑥 ∈ 𝑋, there exists 𝑠 ∈ 𝑆 such that 𝑥 ≤ 𝑠. 

Theorem 2.5. Let 𝑋 be an ordered vector space whose positive cone is generating, 𝑆 ⊂ 𝑋 a majorizing vector 

subspace, 𝑌 an order complete vector lattice, 𝐹0: 𝑆 → 𝑌 a linear positive operator. Then 𝐹0 has a linear positive 

extension 𝐹: 𝑋 → 𝑌 at least. 
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Theorem 2.5 was proved or/and applied in [1], [3], [4], [5], [6], [25]. 

Theorem 2.6. (E.K. Haviland; see [7]). Let 𝐴 ⊂ ℝ𝑛 and 𝐿: 𝑃 ≔ ℝ[𝑡 = (𝑡1, … , 𝑡𝑛)] → ℝ  be a linear form. Then 𝐿 is 

given by a positive Borel measure 𝜇  on 𝐴  (i.e. 𝐿(𝑝) = ∫ 𝑝𝑑𝜇
𝐴

 for all 𝑝 ∈ 𝑃 ) if and only if 𝐿(𝑝) ≥ 0  for all 

nonnegative  𝑝 on 𝐴 : (𝑝(𝑡) ≥ 0, ∀𝑡 ∈ 𝐴 ⇒ 𝐿(𝑝) ≥ 0 ). 

The next result is a variant of Mazur-Orlicz theorem. 

Theorem 2.7. (see [10]). Let 𝑿   be an ordered vector space, 𝒀 an order complete vector lattice, {𝒙𝒋}
𝒋∈𝑱

, {𝒚𝒋}𝒋∈𝑱
 

arbitrary families in 𝑿, respectively in 𝒀 and 𝑻: 𝑿 → 𝒀  a sublinear operator. The following statements are 

equivalent 

(a) ∃𝐹 ∈ 𝐿(𝑋, 𝑌) such that 𝐹(𝑥𝑗) ≥ 𝑦𝑗 , ∀𝑗 ∈ 𝐽, 𝐹(𝑥) ≥ 0, ∀𝑥 ∈ 𝑋+,  𝐹(𝑥) ≤ 𝑇(𝑥), ∀𝑥 ∈ 𝑋; 

(b) for any finite subset 𝐽0 ⊂ 𝐽 and any {𝜆𝑗}
𝑗∈𝐽0

⊂ ℝ, 𝜆𝑗 ≥ 0, ∀𝑗 ∈ 𝐽0, we have 

∑ 𝜆𝑗

𝑗∈𝐽0

𝑥𝑗 ≤ 𝑥 ∈ 𝑋 ⇒ ∑ 𝜆𝑗

𝑗∈𝐽0

𝑦𝑗 ≤ 𝑇(𝑥) 

The last result of this section states a sufficient condition for the existence of some constrained extensions. It 

has an interesting geometric meaning. 

Theorem 2.8 (see [9]). Let X  be a locally convex space, Y  an order complete vector lattice with strong order unit 

0u  and XS   a vector subspace. Let XA  be a convex subset with the following properties 

(a) there exists a neighborhood V  of the origin such that ( ) =+ AVS   

( A  and S  are distanced); 

(b) A  is bounded. 

Then for any equicontinuous family of linear operators   ( )YSLf
Jjj ,


 and for any  ,0\~

+Yy  there exists an 

equicontinuous family   ( )YXLF
Jjj ,


 such that 

( ) ( ) ,, SssfsF jj =  and ( ) .,,~ JjAyF j    

Moreover, if V  is a neighborhood of the origin such that 

( )   ( ) =+− AVSuuSVf j  ,, 00  

and if 0  is such that ( ) ,AaapV   while 01    is large enough such that ,~
01uy   then the following 

relations hold 

( ) ( ) ( ) .,,1 01 JjXxuxpxF Vj ++   

3 Markov moment problem and Mazur-Orlicz theorem on concrete spaces 

3.1 Approximation and Markov moment problem (results and methods of proving them) 
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Next we complete some results from [6] (see also the references therein). The present section is mainly based 

on the articles [6], [22], [23], [25], [26], [27].  

Lemma 3.1.1. Let nRA  be a closed unbounded subset and   a positive regular −M  determinate Borel 

measure on ,A  with finite moments of all orders. Then for any ( )( ) ,0 + AC  there is a sequence ( )
mmp  of 

polynomials on ,A  → mm pp ,  in ( ).1 AL  We have 

 =
A A

m ddp ,lim   

the cone +P  of positive polynomials is dense in ( )( )
+AL1

  and P  is dense in ( ).1 AL  

Recall that a determinate (M−determinate) measure is uniquely determinate by its moments, or, equivalently, 

by its values on polynomials. The following statement holds for any closed unbounded subset 𝐴 ⊂ ℝ𝑛 , hence 

does not depend on the form of positive polynomials on 𝐴.  One denotes 𝜑𝑗(𝑡) ≔ 𝑡1
𝑗1 ⋯ 𝑡𝑛

𝑗𝑛 , 𝑗 = (𝑗1, … , 𝑗𝑛) ∈

ℕ𝑛, 𝑡 = (𝑡1, … , 𝑡𝑛) ∈ 𝐴. 

Theorem 3.1.1. Let 𝐴 be a closed unbounded subset of  ℝ𝑛,  𝑌 an order complete Banach lattice,  (𝑦𝑗)
𝑗∈ℕ𝑛  a given 

sequence in 𝑌, 𝜈 a positive regular 𝑀 −determinate Borel measure on 𝐴, with finite moments of all orders. Let 𝐹2 ∈

𝐵(𝐿𝜈
1 (𝐴), 𝑌) be a linear positive bounded operator from 𝐿𝜈

1 (𝐴) to 𝑌. The following statements are equivalent: 

(a)there exists a unique linear operator 𝐹 ∈ 𝐵(𝐿𝜈
1 (𝐴), 𝑌) such that 𝐹(𝜑𝑗) = 𝑦𝑗 , 𝑗 ∈ ℕ𝑛, 𝐹 isbetween 0 and 𝐹2 on the 

positive cone of 𝐿𝜈
1 (𝐴), and ‖𝐹‖ ≤ ‖𝐹2‖; 

(b) for any finite subset 𝐽0 ⊂ ℕ𝑛, and any {𝑎𝑗}
𝑗∈𝐽0

⊂ ℝ, we have 

∑ 𝑎𝑗𝑗∈𝐽0
𝜑𝑗 ≥ 0 on 𝐴 ⇨  0 ≤ ∑ 𝑎𝑗𝑦𝑗𝑗∈𝐽0

≤ ∑ 𝑎𝑗𝑗∈𝐽0
𝐹2(𝜑𝑗).  

Proof.  Let 𝐹0 be the linear operator defined on the subspace of polynomials, such that the moment conditions 

to be accomplished.Then condition (𝑏) says that for any polynomial 𝑝 which is nonnegative on 𝐴, we have 

0 ≤ 𝐹0(𝑝) ≤ 𝐹2(𝑝)                                                                     (1) 

Hence the implication (a)⇨(b) is obvious. In order to prove the converse, one applies lemma 3.1.1. Let 𝜓 be a 

continuous nonnegative compactly supported function on 𝐴, and (𝑝𝑚)𝑚 a sequence of polynomials given by 

Lemma 3.1.1. Then all polynomials 𝑝𝑚 , 𝑚 ∈ ℕ are nonnegative on 𝐴, so that they verify (1). On the other hand, 

there exists a linear positive extension 𝐹of 𝐹0 to the space of all functions in 𝐿𝜈
1 (𝐴) whose absolute values are 

dominated by a polynomial. This space contains the subspace of continuous compactly supported functions 

and the polynomials. Observe also that for any linear positive continuous functional 𝑦⋆ on  𝑌, 𝑦 ⋆⃘ ∘ 𝐹 can be 

represented by means of a positive Borel measure on 𝐴, which Fatou lemma works for. Using (1), one deduces 

𝑦 ⋆⃘(𝐹(𝜓)) ≤ 𝑙𝑖𝑚𝑖𝑛𝑓𝑦 ⋆⃘(𝐹(𝑝𝑚)) ≤ 𝑙𝑖𝑚𝑦 ⋆⃘(𝐹2(𝑝𝑚)) = 𝑦 ⋆⃘(𝐹2(𝜓))                      (2) 

Assume that 𝐹2(𝜓) − 𝐹(𝜓) ∉ 𝑌+.  Using a separation argument, it should exist a linear positive continuous 

functional 𝑦⋆ on 𝑌, such that 𝑦⋆(𝐹2(𝜓) − 𝐹(𝜓)) < 0, that is  

𝑦⋆(𝐹2(𝜓)) < 𝑦⋆(𝐹(𝜓)). 

 This contradicts (2), so that we must have  

0 ≤ 𝐹(𝜓) ≤ 𝐹2(𝜓), ∀𝜓 ∈ (𝐶𝑐(𝐴))
+

. 
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If 𝜑 is an arbitrary continuous compactly supported function, then 

|𝐹(𝜑)| ≤ 𝐹(|𝜑|) ≤ 𝐹2(|𝜑|) 

Since the norm on 𝑌 is solid, the last inequalities imply 

‖𝐹(𝜑)‖ ≤ ‖𝐹2(|𝜑|)‖ ≤ ‖𝐹2‖ ∙ ‖𝜑‖1, ∀𝜑 ∈ 𝐶𝑐(𝐴) 

Hence ‖𝐹‖ is dominated by ‖𝐹2‖ on a dense subspace of 𝐿𝜈
1 (𝐴). Now the bounded positive linear operator 𝐹, 

having the norm-property mentioned above, has a unique extension to the whole space 𝐿𝜈
1 (𝐴), preserving its 

properties. This concludes the proof.                                                                                                                                     

Next, we give the “scalar version” of Theorem 3.1.1. 

Theorem 3.1.2. Let 𝐴, 𝜈 be as in Theorem 3.1.1, and (𝑦𝑗)
𝑗∈ℕ𝑛 a multi-sequence of real numbers. 

The following statements are equivalent: 

(a)there exists a unique ℎ ∈ 𝐿 𝜈
1 (𝐴), 0 ≤ ℎ ≤ 1  a..e. on 𝐴, such that ∫ 𝜑𝑗 ∙

𝐴
ℎ𝑑𝜈 = 𝑦𝑗 , 𝑗 ∈ ℕ𝑛; 

(b)for any finite subset 𝐽0 ⊂ ℕ𝑛, and any {𝑎𝑗}
𝑗∈𝐽0

⊂ ℝ, we have 

∑ 𝑎𝑗𝑗∈𝐽0
𝜑𝑗 ≥ 0 on 𝐴 ⇨  0 ≤ ∑ 𝑎𝑗𝑗∈𝐽0

𝑦𝑗 ≤ ∑ 𝑎𝑗𝑗∈𝐽0 ∫ 𝜑𝑗𝑑𝜈
𝐴

. 

Note that for particular sets 𝐴, for which the form of positive polynomials on 𝐴 in terms of sums of squares is 

known, one can give a characterization in terms of “computable’ quadratic forms or mappings. For example, if 

𝑛 = 1, 𝐴 = [0, ∞), using the form of positive polynomials on [0, ∞) [1]:  

𝑝(𝑡) ≥ 0, ∀𝑡 ∈ [0, ∞) ⇔ 𝑝(𝑡) = 𝑝1
2(𝑡) + 𝑡𝑝2

2(𝑡), ∀𝑡 ∈ [0, ∞), where 𝑝𝑘 ∈ ℝ[𝑡], 𝑘 = 1,2 

one obtains: 

Theorem 3.1.3. Let 𝜈 be as in Theorem 3.1.1 on 𝐴 ≔ [0, ∞), 𝑌, (𝑦𝑗)
𝑗∈ℕ

,  𝐹2  be as in Theorem 3.1.1. The following 

statements are equivalent 

(a) there exists a unique linear operator 𝐹 ∈ 𝐵(𝐿𝜈
1 ([0, ∞)), 𝑌) such that 𝐹(𝜑𝑗) = 𝑦𝑗 , 𝑗 ∈ ℕ, 𝐹 is between 0 and 

𝐹2 on the positive cone of 𝐿𝜈
1 (([0, ∞)), and ‖𝐹‖ ≤ ‖𝐹2‖, where 𝜑𝑗(𝑡) = 𝑡𝑗 , 𝑗 ∈ ℕ, 𝑡 ≥ 0  

(b)  for any finite subset 𝐽0 ⊂ ℕ, and any {𝜆𝑗}
𝑗∈𝐽0

⊂ ℝ, we have 

0 ≤ ∑ 𝜆𝑖

𝑖,𝑗∈𝐽0

𝜆𝑗𝑦𝑖+𝑗+𝑘 ≤ ∑ 𝜆𝑗𝜆𝑗𝐹2(𝜑𝑖+𝑗+𝑘)

𝑖,𝑗∈𝐽0

, 𝑘 ∈ {0,1} 

Next one applies a quite similar result, but for a concrete operator valued moment problem, replacing 𝐿𝜈
1 ([0, ∞)) 

by 𝑋 = 𝐶ℝ(𝜎(𝐴)), where 𝜎(𝐴) ⊂ [0, ∞) is the spectrum of a fixed positive self-adjoint operator 𝐴 acting on a 

complex (or real) Hilbert space 𝐻. So, 𝑋 is the space of all real continuous functions on 𝜎(𝐴). Let 𝒜 be the real 

vector space of self-adjoint operators from 𝐻 to itself. Then  𝒜 is an ordered vector space, endowed with the 

order relation defined by 

𝑈 ≤ 𝑉 ⇔ < 𝑈(ℎ), ℎ > ≤ < 𝑉(ℎ), ℎ >, ∀ℎ ∈ 𝐻, 𝑈, 𝑉 ∈ 𝒜 
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Unfortunately, for arbitrary 𝑈, 𝑉 ∈ 𝒜, the supremum 𝑠𝑢𝑝{𝑈, 𝑉} = 𝑈 ∨ 𝑉 or/and the infimum 𝑖𝑛𝑓{𝑈, 𝑉} = 𝑈 ∧ 𝑉 

might not exist in 𝒜. To avoid the fact that 𝒜 is not a vector lattice, as well as the non commutativeness of 

multiplication of elements from  𝒜, for any 𝐴 ∈ 𝒜  one uses the construction of the following space 𝑌 = 𝑌(𝐴). 

Theorem 3.1.4. (see [5]). Let 𝐴 ∈ 𝒜, 𝑌1 ≔ {𝑈 ∈ 𝒜; 𝐴𝑈 = 𝑈𝐴}, 𝑌 = 𝑌(𝐴) ≔ {𝑉 ∈ 𝑌1; 𝑉𝑈 = 𝑈𝑉, ∀𝑈 ∈ 𝑌1}.  Then 𝑌 is 

a commutative (real) Banach algebra and an order-complete Banach lattice, where 

|𝑉| ≔ 𝑠𝑢𝑝{𝑉, −𝑉} = √𝑉2, ∀𝑉 ∈ 𝑌 

(|𝑉| is equal to the positive square root of the positive self-adjoint operator 𝑉2). 

Theorem 3.1.4 allows applying Hahn Banach extension type results of section 2 for linear operators taking values 

in 𝑌 = 𝑌(𝐴).  Let 𝜑 ∈ 𝑋 = 𝐶ℝ(𝜎(𝐴)); one denotes ‖𝜑‖∞ the sup-norm of 𝜑 in the space 𝑋, while ‖∙‖ will be the 

operatorial norm on 𝑌. As before, one denotes 𝜑𝑗(𝑡) = 𝑡𝑗 , 𝑗 ∈ ℕ, 𝑡 ∈ [0, ∞).  

Lemma 3.1.2. Let +→ R),0[:
 
be a continuous function, such that +

→
Rt

t
)(lim   exists. Then there is a 

decreasing sequence llh )(  in the linear hull of the functions 

0,N),(exp)( −= tkkttk , 

such that  ℎ𝑙(𝑡) > 𝜓(𝑡) , 0t , Nl , 𝑙𝑖𝑚ℎ𝑙 = 𝜓  uniformly on ),0[  . There exists a sequence of polynomial 

functions (𝑝𝑙)𝑙∈ℕ, 𝑝̃𝑙 ≥ ℎ𝑙 > 𝜓, 𝑙𝑖𝑚 𝑝𝑙 = 𝜓, uniformly on compact subsets of [0, ∞). 

The idea of the proof is to add the   point and to apply the Stone-Weierstrass Theorem to the subalgebra 

generated by the functions )(exp mt− , +Zm . Then one uses for each such exp – function suitable majorizing 

or minorizing polynomials, as well as the elementary equality  

RsNmdttt
m

s

m

sss
s m

sm

−=













++++−  ,,)exp(

!

)exp(

!!2!1
1)exp(

0

2



 

Using the notations preceding Lemma 3.1.2, we prove the following theorem. 

Theorem 3.1.5. Let 𝐴, 𝑋, 𝑌 = 𝑌(𝐴) be as above, (𝑈𝑛)𝑛≥0 be a sequence of operators in 𝑌.  The following statements 

are equivalent 

(a) there exists a unique linear bounded operator 𝐹: 𝑋 → 𝑌 such that the moment interpolation conditions 

𝐹(𝜑𝑛) = 𝑈𝑛 , 𝑛 ∈ ℕ are verified and 0 ≤ 𝐹(𝜓) ≤ 𝜓(𝐴), ∀𝜓 ∈ 𝑋+, ‖𝐹‖ ≤ 1; 

(b) for any finite subset 𝐽0 ⊂ ℕ and any {𝜆𝑗; 𝑗 ∈ 𝐽0} ⊂ ℝ, the following implication holds true 

∑ 𝜆𝑗𝑡𝑗 ≥ 0

𝑗∈𝐽0

, ∀𝑡 ∈ 𝜎(𝐴) ⇒ 0 ≤ ∑ 𝜆𝑗𝑈𝑗

𝑗∈𝐽0

≤ ∑ 𝜆𝑗

𝑗∈𝐽0

𝐴𝑗; 

(c) for any finite subset 𝐽0 ⊂ ℕ and any {𝜆𝑗; 𝑗 ∈ 𝐽0} ⊂ ℝ, the following relations hold 

0 ≤ ∑ 𝜆𝑖

𝑖,𝑗∈𝐽0

𝜆𝑗𝑈𝑖+𝑗+𝑘 ≤ ∑ 𝜆𝑖

𝑖,𝑗∈𝐽0

𝜆𝑗𝐴𝑖+𝑗+𝑘, 𝑘 ∈ {0,1} 

Proof. Observe that the implications (𝑎) ⇒ (𝑏), (𝑎) ⇒ (𝑐) are obvious, due to the properties of 𝐹. The next idea 

is to extend relations from (b) and (c) on nonnegative polynomials to arbitrary nonnegative functions from 𝑋, 

by means of a passing to the limit process. Namely, to prove the converses (b)⇒(a), (c)⇒(a), denote by 𝑃 the 
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vector space of polynomials with real coefficients, 𝑃+ the convex cone of all polynomials which are nonnegative 

on 𝜎(𝐴) and by 𝑃++ the convex cone of polynomials which are nonnegative on the whole interval [0, ∞). Define 

the linear operator 𝐹0: 𝑃 → 𝑌 by  

𝐹0 (∑ 𝜆𝑗𝜑𝑗

𝑗∈𝐽0

) ≔ ∑ 𝜆𝑗𝑈𝑗

𝑗∈𝐽0

 

where 𝐽0 ⊂ ℕ is an arbitrary finite subset. Than (b) can be written as 

0 ≤ 𝐹0(𝑝) ≤ 𝑝(𝐴), 𝑝 ∈ 𝑃+                                                                        (3) 

so that, in particular, 𝐹0 is a linear positive operator from 𝑃 to 𝑌. It has a linear positive extension 𝐹: 𝑋 → 𝑌, since 

each element from 𝑋 is bounded above by a constant, so that one can apply Theorem 2.5 from above. Obviously, 

𝐹 verifies the interpolation moment conditions, because of 

𝐹(𝜑𝑗) = 𝐹0(𝜑𝑗) ≔ 𝑈𝑗 , 𝑗 ∈ ℕ 

It remains to prove that 𝐹(𝜓) ≤ 𝜓(𝐴), ∀𝜓 ∈ 𝑋+, ‖𝐹‖ ≤ 1. Let 𝜓 ∈ 𝑋+. Then there exists a sequence (𝑝𝑚)𝑚≥0 of 

polynomials such that lim
𝑚

𝑝𝑚 = 𝜓 in 𝑋, i. e. 

‖𝑝𝑚 − 𝜓‖∞ → 0 

Since the convergence is uniform on 𝜎(𝐴), one can assume that 𝑝𝑚 ≥ 𝜓(≥ 0) in 𝑋 for all 𝑚, so that  𝑝𝑚 ∈ 𝑃+, 𝑚 ∈

ℕ. These comments imply 

‖𝑝𝑚(𝐴) − 𝜓(𝐴)‖ = sup 𝜎 ((𝑝𝑚 − 𝜓)(𝐴)) = 𝑠𝑢𝑝(𝑝𝑚 − 𝜓)(𝜎(𝐴)) = ‖𝑝𝑚 − 𝜓‖∞ → 0 

Consequently, lim
𝑚

𝑝𝑚(𝐴) = 𝜓(𝐴). As in the proof of Theorem 3.1.1, from (3) written for all 𝑝𝑚, 𝑚 ∈ ℕ, it results 

(passing to the limit): 𝐹(𝜓) ≤ 𝜓(𝐴), ∀𝜓 ∈ 𝑋+. This further yield 

|𝐹(𝜑)| ≤ |𝜑|(𝐴), 𝜑 ∈ 𝑋 

Since the norm on 𝑌 is solid (𝑌 is a Banach lattice), it results 

‖𝐹(𝜑)‖ ≤ ‖|𝜑|(𝐴)‖ = ‖|𝜑|‖∞ = ‖𝜑‖∞, ∀𝜑 ∈ 𝑋 ⇒ ‖𝐹‖ ≤ 1 

In particular, ‖𝑈0‖ = ‖𝐹(𝜑0)‖ ≤ ‖𝜑0‖∞ = 1. The proof of (𝑏) ⇒ (𝑎) is complete. To prove (𝑐) ⇒ (𝑎), recall that 

𝑝 ∈ 𝑃++ if and only if there exist polynomials 𝑝1, 𝑝2 with real coefficients such that  

𝑝(𝑡) = 𝑝1
2(𝑡) + 𝑡𝑝2

2(𝑡) = ∑ 𝜆𝑖𝜆𝑗𝑡𝑖+𝑗

𝑛

𝑖,𝑗=0

+ ∑ 𝛼𝑘𝛼𝑙

𝑝

𝑘,𝑙=0

𝑡𝑘+𝑙+1, 𝑡 ∈ ℝ+ 

where 𝑝1(𝑡) = ∑ 𝜆𝑗
𝑛
𝑗=0 𝑡𝑗 , 𝑝2(𝑡) = ∑ 𝛼𝑘𝑡𝑘.

𝑝
𝑘=0  It follows that the relations of point (c) can be written as those from 

(3), but only for 𝑝 ∈ 𝑃++. Let 𝜓 ∈ 𝑋+. Then there exists a nonnegative compactly supported extension 𝜓̃ of 𝜓, 

such that 𝜓̃  is continuous on [0, ∞), 𝑠𝑢𝑝𝑝𝑝(𝜓̃) ⊂ [0, ∞). 

Applying Lemma 3.1.2, there exists a sequence (𝑝𝑚)𝑚≥0 of polynomial functions, with 

𝑝𝑚 > 𝜓̃, 𝑚 ≥ 0, lim
𝑚

𝑝𝑚 = 𝜓̃ ≥ 0, 

the convergence being uniform on compact subsets in [0, ∞). In particular, 𝑝𝑚 ∈ 𝑃++ for all 𝑚 ∈ ℕ, so that for 𝐹 

as above it results 
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0 ≤ 𝐹(𝑝𝑚) ≤ 𝑝𝑚(𝐴), ∀𝑚 ∈ ℕ 

by hypothesis (c), also using the form of nonnegative polynomials on  [0, ∞) in terms of a sum of square of a 

polynomial and another square of polynomial multiplied by 𝜑1(𝑡) = 𝑡.  Using the uniform convergence 

lim
𝑚

𝑝𝑚 = 𝜓̃ on the compact  𝜎(𝐴) and the fact that  𝜓̃(𝑡) = 𝜓(𝑡), ∀𝑡 ∈ 𝜎(𝐴), we derive 

‖(𝑝𝑚 − 𝜓)(𝐴)‖ = ‖𝑝𝑚 − 𝜓‖∞ = ‖𝑝𝑚 − 𝜓̃‖
∞

→ 0 ⇒ lim
𝑚

𝑝𝑚 (𝐴) = 𝜓(𝐴) 

Repeating the passing to the limit process discussed in the proof of Theorem 3.1.1, one obtains 

𝐹(𝜓) ≤ 𝜓(𝐴), 𝜓 ∈ 𝑋+ 

Now the last assertion ‖𝐹‖ ≤ 1 is a consequence of the preceding one, as discussed at (b)⇒(a). This concludes 

the proof.                                                                                                                                                  □          

As we have observed above, the analytic form of positive polynomial on an arbitrary closed subset 𝐴 ⊂ ℝ𝑛 is 

not known. If 𝐴 is a particular subset for which the form of positive polynomials over 𝐴 is known in terms of 

sums of squares, then Markov moment problem on 𝐴 can be solved in terms of quadratic mappings (or products 

of quadratic mappings).  This is the case of a strip 𝐴 ⊂ ℝ2, as claimed in the next theorem.    

Theorem 3.1.6. (M. Marshall [12]).  Suppose that 𝑝(𝑡1, 𝑡2) ∈ ℝ[𝑡1, 𝑡2] is non – negative on the strip 𝐴 = [0,1] × ℝ. 

Then  𝑝(𝑡1, 𝑡2) is expressible as 

𝑝(𝑡1, 𝑡2) = 𝜎(𝑡1, 𝑡2) + 𝜏(𝑡1, 𝑡2)𝑡1(1 − 𝑡1), 

where 𝜎(𝑡1, 𝑡2), 𝜏(𝑡1, 𝑡2) are sums of squares in ℝ[𝑡1, 𝑡2]. 

Let 𝐴 = [0,1] × ℝ, 𝜈 a positive 𝑀 − determinate regular Borel measure on 𝐴, with finite moments of all orders, 

𝑋: = 𝐿𝜈
1 (𝐴), 𝜑𝑗(𝑡1, 𝑡2) ≔ 𝑡1

𝑗1𝑡2
𝑗2, 𝑗 = (𝑗1, 𝑗2) ∈ ℕ2, (𝑡1, 𝑡2) ∈ 𝐴. Let 𝑌 be on order complete Banach lattice, (𝑦𝑗)

𝑗∈ℕ2 a 

sequence of given elements in 𝑌. The following result seems to be new. It is a consequence of Lemma 3.1.1 and 

Theorems 3.1.1, 3.1.6. 

Theorem 3.1.7. Let 𝐹2 ∈ 𝐵+(𝑋, 𝑌) be a linear bounded positive operator from 𝑋 to 𝑌. The following statements are 

equivalent: 

(a) there exists a unique bounded linear operator ,: YXF →  such that 

( ) ,, 2= jyF jj  

F  is between zero and 2F  on the positive cone of ;, 2FFX 
 

(b) for any finite subset 𝐽0⊂ℕ2, and any  {𝜆𝑗; 𝑗 ∈ 𝐽0} ⊂ ℝ, we have 

0 ≤ ∑ 𝜆𝑖𝜆𝑗

𝑖,𝑗∈𝐽0

𝑦𝑖+𝑗 ≤ ∑ 𝜆𝑖𝜆𝑗

𝑖,𝑗∈𝐽0

𝐹2(𝜑𝑖+𝑗); 

0 ≤ ∑ 𝜆𝑖𝜆𝑗

𝑖,𝑗∈𝐽0

(𝑦𝑖1+𝑗1+1,𝑖2+𝑗2
− 𝑦𝑖1+𝑗1+2,𝑖2+𝑗2

) ≤ 

∑ 𝜆𝑖𝜆𝑗

𝑖,𝑗∈𝐽0

(𝐹2(𝜑𝑖1+𝑗1+1,𝑖2+𝑗2
− 𝜑𝑖1+𝑗1+2,𝑖2+𝑗2

)) , 𝑖 = (𝑖1, 𝑖2), 𝑗 = (𝑗1, 𝑗2) ∈ 𝐽0 
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Proof. Theorem 3.1.6 shows that the condition at point (b) of the present theorem is equivalent to (1), written 

for 𝑃+ = 𝑃+(𝐴), where 𝐹0 is the linear operator defined on the space 𝑃 of all polynomial functions, such that the 

moment conditions 𝐹0(𝜑𝑗) = 𝑦𝑗 , 𝑗 ∈ ℕ2 be accomplished. The conclusion follows via Theorem 3.1.1.                   

3.2   Applications of extension theorems for linear operator to concrete spaces (results and methods of 

proving them) 

The purpose of this section is to show how the results of section 2 can be applied to concrete function and/or 

operator spaces. We follow the results from [28], [29]. The next proposition is an application of Theorem 2.7 to 

the space X  of power series in the disc ,rz   continuous up to the boundary, with real coefficients. The order 

relation is given by the coefficients: we write 

( )., 


nzz nn

n

n
n

n

n
n  

 

Denote ( ) .,, rznzz n
n =  Let Y  be the space defined in Theorem 3.1.4, ( )

nnB  a sequence in ,Y  and 

YU  such that .rU   

Proposition 3.2.1. Consider the following statements 

(a) there exists a linear positive bounded operator ( ),,YXLF +  such that 

( ) ( ) ( ) ,,,,
1

XUrIrFnBF nn −
−




 

‖𝐹‖ ≤
𝑟

𝑟 − ‖𝑈‖
; 

(b) the following relations hold 

;,0  nUB n
n  

(c)  the following inequalities hold 

( ) .,
11 −
−+ nUrIrB n

n  

Then ( ) ( ) ( ).cab   

Proof. ( ) ( ).ab   One applies theorem 2.7, (b) implies (a), to ., = jx jj   If 

,,

0

+



=  Rjn

n

n

Jj

jj   

then the hypothesis, Cauchy inequalities and the above relation yield 

( ) ( ) ( )






−==−=







−

=





−
−




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Hence, the implication of (b), Theorem 2.7 is accomplished and an application of the latter theorem leads to the 

existence of a linear positive operator 𝐹 applying 𝑋 into 𝑌,  with the properties stated at point (a): 

𝐹(𝜑𝑛) ≥ 𝐵𝑛 , 𝑛 ∈ ℕ, |𝐹(𝜑)| ≤ ( ) .,
1

XUrIr −


−   

 Since the norm on 𝑌 is solid, we infer that  

‖𝐹(𝜑)‖ ≤ ‖(𝐼 − 𝑈 𝑟⁄ )−1‖ ∙ ‖𝜑‖∞, 𝜑 ∈ 𝑋 

In particular, the following evaluation for the norm of 𝐹 holds 

‖𝐹‖ ≤ ‖∑
𝑈𝑛

𝑟𝑛

∞

𝑛=0

‖ ≤ ∑
‖𝑈‖𝑛

𝑟𝑛

∞

𝑛=0

=
𝑟

𝑟 − ‖𝑈‖
  

On the other hand, ( ) ( )ca   is obvious, because of:  

( ) ( ) ( ) ,
111 −+−


−=−= UrIrUrIrFB n

nnn   

also using + Xn  for all .n  The conclusion follows.                                                                □ 

Theorem 3.2.1. Let ( ) 0,1 =  MLX  and ( )
nn  a sequence of positive functions in ,X  such that 

.,1 = nd

M

n   Let ( ) ( )


 = nnyLY ,0,   a sequence of positive functions in .Y  Then 

= bynnsup  if and only if there is a linear positive operator ( )YXLF ,  such that 

( ) ( ) .,,, XdbFnyF

M

nn 













    

Proof. For the “only if” part, let 0J  be a finite subset,   +
 R

Jjj
0

  be such that 




0Jj

jj   in .X  

Hypothesis on the functions nn ,  and integration in the relation 




0Jj

jj    yield 

( ) ( ) XTTbd

bdyy

dd

M

MJj

jjj

Jj

j

MM

j

Jj

j

Jj

j

−==





















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






=





















,:

00

00

 

Application of theorem 2.7 leads to the existence of a linear positive operator ( )YXLF ,  with the following 

properties 

( ) ( ) .,,, XdbFnyF

M

nn 













    
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 In particular, one has .bF   Next, we prove the “if” part. Assume that ( ) NnFy nn  ,  and F  has the 

qualities in the statement, then, because the norm on 𝑌 is solid, we derive 

( ) ., =













  nbdbFy

M

nnn 

 

This concludes the proof.                                                                                                                        □                                                                                     

Theorem 3.2. 2.. Let ( ) ( )
nnnn yYX ,,,   be as in Theorem 3.2.1, and .;0  b  consider the following 

statements 

(a) there exists a linear positive operator ( )YXLF ,  such that 

( ) ( ) ;,,,, bFXdbFnyF

M

nn =  

 

(b) for any finite subset 0J  and any   ,
0

R
Jjj 


  the following relation holds 

.

00






Jj

jj

Jj

j by   

Then ( ) ( ).ab   

Proof. We apply Theorem 2.4, (b) implies (a). If ,12

0

 −=


j

Jj

j  where ,, 21 + X  then the following 

implications hold 

.1212

0

2

00

1

 

 














−−=+

=−





M MMMJj

j

MJj

j

M

j

M Jj

j

dd

ddd





 

Now the hypothesis (b) yields 

( ) ( ) ( ) 2121122

12

0

000

:,:, FFdbFFF

ddbb

yyy

M

M MJj

j

j

Jj

j

Jj

jj

Jj

jj

−==−

=





























−−





































 









 

Application of theorem 2.4 leads to the existence of a linear operator ( )YXLF ,  such that
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( ) ( ) ( ) ( )

( )

( ) ( ) ( ) ( ) XdbdbFFF

XdbFXdb

FFdbFnyF

MM

MM

M

nn

=++



=−==


−+−+

++















,

,,

,, 21

 

This concludes the proof.                                                                                                                      □ 

Theorems 3.2.1 and 3.2.2 show how different might be the moment problem and Mazur-Orlicz theorem, even 

for similar statements. For the next result, let 𝑋 be the space of all absolutely convergent power series in the 

closed polydisc  

𝐷̅𝑅 = {𝑧 = (𝑧1, … , 𝑧𝑛): |𝑧𝑝| ≤ 𝑅𝑝, 𝑝 ∈ {1, … , 𝑛}} , 𝑅: = (𝑅1, … , 𝑅𝑛), 

with real coefficients. The positive cone of 𝑋  consists in all power series in 𝑋,  having all the coefficients 

nonnegative numbers. The space  𝑌 is the same as in Theorem 3.1.4. Denote 

‖ℎ‖∞ := sup
𝑧∈𝐷̅𝑅

|ℎ(𝑧)| , ℎ ∈ 𝑋. 

Theorem 3.2.3. Let  0 < 𝑟𝑝 < 𝑅𝑝, 𝑝 = 1, … , 𝑛, ℎ𝑘(𝑧) = 𝑧1
𝑘1 ⋯ 𝑧𝑛

𝑘𝑛 , 𝑘 ∈ ℕ𝑛, 𝑧 ∈ 𝐷̅𝑅 , 𝛼 > 0.  Let (𝐵𝑘)𝑘∈ℕ𝑛  be a multi 

indexed sequence of positive operators in 𝑌. Consider the following statements 

(a) there exists a linear positive bounded operator  𝐹 applying  𝑋 to 𝑌 such that 

𝐹(ℎ𝑘) ≥ 𝐵𝑘 , ∀𝑘 ∈ ℕ𝑛, |𝐹(𝜑)| ≤ 𝛼 ∏
𝑅𝑝

𝑅𝑝 − 𝑟𝑝

𝑛

𝑝=1

‖𝜑‖∞𝐼, 

‖𝐹‖ ≤ 𝛼 ∏
𝑅𝑝

𝑅𝑝 − 𝑟𝑝

𝑛

𝑝=1

; 

(b)  𝐵𝑘 ≤ 𝛼𝑟1
𝑘1 ⋯ 𝑟𝑛

𝑘𝑛𝐼, ∀𝑘 ∈ ℕ𝑛, where  𝐼 is the identity operator. 

Then (b) implies (a). 

Proof.  Let  𝐽0 ⊂ ℕ𝑛 be a finite subset and  (𝜆𝑗)
𝑗∈𝐽0

 be a set of nonnegative real scalars, such that ∑ 𝜆𝑗ℎ𝑗𝑗∈𝐽0
≤ 𝜑 

= ∑ 𝛾𝑘ℎ𝑘𝑘∈ℕ𝑛 ⇒ 𝜆𝑗 ≤ 𝛾𝑗, 𝑗 ∈ 𝐽0 , 𝛾𝑘 ≥ 0, ∀𝑘 ∈ ℕ𝑛. Let 𝜀  be an arbitrary number such that 0 < 𝜀 < min
1≤𝑝≤𝑛

{𝑅𝑝 − 𝑟𝑝}. 

The Cauchy’s inequalities for the analytic function 𝜑 lead to 

𝛾𝑘 = |𝛾𝑘| ≤
‖𝜑‖∞

(𝑅1 − 𝜀)𝑘1 ⋯ (𝑅𝑛 − 𝜀)𝑘𝑛
, 𝑘 ∈ ℕ𝑛. 

Using these relations and the preceding ones, as well as the hypothesis on 𝐵𝑘 , 𝑘 ∈ ℕ𝑛 , we infer that 

∑ 𝜆𝑗𝐵𝑗

𝑗∈𝐽0

≤ ∑ 𝛾𝑗𝐵𝑗 ≤ 𝛼‖𝜑‖∞ ∑ (
𝑟1

𝑅1 − 𝜀
)

𝑘1

⋯

𝑘∈ℕ𝑛𝑗∈𝐽0

(
𝑟𝑛

𝑅𝑛 − 𝜀
)

𝑘𝑛

𝐼 = 
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= 𝛼‖𝜑‖∞ ∏ ( ∑ (
𝑟𝑝

𝑅𝑝 − 𝜀
)

𝑘𝑝

𝑘𝑝∈ℕ

)

𝑛

𝑝=1

𝐼 = 𝛼‖𝜑‖∞ ∏
𝑅𝑝 − 𝜀

𝑅𝑝 − 𝜀 − 𝑟𝑝

𝑛

𝑝=1

𝐼 ,  

∀𝜀 ∈ (0, 𝑅𝑝 − 𝑟𝑝), 𝑝 = 1, … , 𝑛. 

Passing through the limit with 𝜀 ↓ 0, the following basic relation follows 

∑ 𝜆𝑗𝐵𝑗

𝑗∈𝐽0

≤ 𝛼‖𝜑‖∞ ∏
𝑅𝑝

𝑅𝑝 − 𝑟𝑝

𝑛

𝑝=1

𝐼 =: 𝑇(𝜑) = 𝑇(−𝜑). 

Application of Theorem 2.7 leads to the existence of a linear positive operator 𝐹,  

𝐹(ℎ𝑘) ≥ 𝐵𝑘 , ∀𝑘 ∈ ℕ𝑛, |𝐹(𝜑)| ≤ 𝛼 ∏
𝑅𝑝

𝑅𝑝 − 𝑟𝑝

𝑛

𝑝=1

‖𝜑‖∞𝐼, ∀𝜑 ∈ 𝑋. 

Since the norm on 𝑌 is solid, we derive 

‖𝐹(𝜑)‖ ≤ 𝛼 ∏
𝑅𝑝

𝑅𝑝 − 𝑟𝑝

𝑛

𝑝=1

‖𝜑‖∞, ∀𝜑 ∈ 𝑋 

This concludes the proof.                                                                                                                         □ 

The next two theorems are applications of the last theorem of section 2 (Theorem 2.8). The first one refers to a 

space of analytic functions, while the second one involves a space of continuous functions. Both these problems 

are multidimensional-type Markov moment problems. Let 𝑛 ≠ 0 be a natural number and 𝑋 be the space of 

absolutely convergent power series in the unit closed poly - disc 𝐷̅1 = {𝑧 = (𝑧1, … , 𝑧𝑛): |𝑧𝑝| ≤ 1, 𝑝 ∈ 〈1, … , 𝑛〉}, 

with real coefficients. The norm on 𝑋 is defined by 

‖𝜑‖∞ = 𝑠𝑢𝑝{|𝜑(𝑧)|: 𝑧 ∈ 𝐷̅1}. 

Denote  

ℎ𝑘(𝑧) = 𝑧1
𝑘1 ⋯ 𝑧𝑛

𝑘𝑛 , 𝑘 = (𝑘1, … , 𝑘𝑛) ∈ ℕ𝑛, 𝑧 ∈ 𝐷̅1, 

 

|𝑘| ≔ 𝑘1 + ⋯ + 𝑘𝑛.. On the other hand, let 𝐻 be a complex Hilbert space, 𝒜 the real vector space of all self 

adjoint operators acting on 𝐻, 𝐴 ∈ 𝒜. Define the space 𝑌 = 𝑌(𝐴) as in Theorem 3.1.4. Let (𝐵𝑘)𝑘∈ℕ𝑛 be a multi - 

indexed sequence of operators in 𝑌, and 𝐵̃ ∈ 𝑌+\{0}. 

Theorem 3.2.4. Assume that 𝐴1, … , 𝐴𝑛 are elements of 𝑌 such that there exists a real number 𝑀 > 0, so that 

|𝐵𝑘| ≤ 𝑀
𝐴1

2𝑘1

𝑘1!
⋯

𝐴𝑛
2𝑘𝑛

𝑘𝑛!
, ∀𝑘 ∈ ℕ𝑛, ∑ 𝐴𝑝

2

𝑛

𝑝=1

≤ 𝐼, 

where 𝐼 is the identity operator. Let {𝜑𝑘}𝑘∈ℕ𝑛 ⊂ 𝑋 be such that 1 = ‖𝜑𝑘‖ = 𝜑𝑘(0), ∀𝑘 ∈ ℕ𝑛 . Then there exists a 

linear bounded operator 𝐹 ∈ 𝐵(𝑋, 𝑌) such that  

𝐹(ℎ𝑘) = 𝐵𝑘 , |𝑘| ≥ 1, 𝐹(𝜑𝑘) ≥ 𝐵,̃ ∀𝑘 ∈ ℕ𝑛, 

𝐹(ℎ) ≤ (2 + ‖𝐵̃‖𝑀−1𝑒−1)‖ℎ‖∞𝑢0, ∀ℎ ∈ 𝑋, 𝑢0 ≔ 𝑀𝑒𝐼. 
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In particular, the following evaluation holds: ‖𝐹‖ ≤ 2𝑀𝑒 + ‖𝐵̃‖. 

Proof. One applies Theorem 2.8. The subspace generated by {ℎ𝑘: |𝑘| ≥ 1} stands for 𝑆 of Theorem 2.1, and the 

convex hull of the set of the functions 𝜑𝑘 , 𝑘 ∈ ℕ𝑛, stands for the set 𝐴. The following remark is essential: 

‖𝑠 − 𝜑‖∞ ≥ |𝑠(0) − 𝜑(0)| = |0 − 1| = 1, ∀𝑠 ∈ 𝑆, ∀𝜑 ∈ 𝐴. 

This proves that (𝑆 + 𝐵(0,1)) ∩ 𝐴 = ∅, so that 𝐵(0,1) stands for 𝑉 and ‖∙‖∞ stands for 𝑝𝑉 from Theorem 2.1. The 

operator  𝐵̃ will stand for 𝑦.̃ Now let 

𝜑 = ∑ 𝛽𝑗

𝑗∈𝐽0

ℎ𝑗 ∈ 𝑆 ∩ 𝐵(0,1), 

where  𝐽0 is a finite subset of ℕ𝑛. The following relations hold 

|∑ 𝛽𝑗𝐵𝑗

𝑗∈𝐽0

| ≤ ∑|𝛽𝑗||𝐵𝑗|

𝑗∈𝐽0

≤ ‖𝜑‖∞ ∑
1

𝑟1
𝑗1 ⋯ 𝑟𝑛

𝑗𝑛

𝑗∈𝐽0

|𝐵𝑗|, 

for any 0 < 𝑟𝑝 < 1, 𝑝 ∈ {1, … , 𝑛}, thanks to Cauchy inequalities. Passing to the limit with 𝑟𝑝 ↑ 1. 𝑝 ∈ {1, … , 𝑛} and 

using the fact that 𝜑 ∈ 𝐵(0,1), as well as the hypothesis in the statement, the preceding relation further yields 

|∑ 𝛽𝑗𝐵𝑗

𝑗∈𝐽0

| ≤ ∑|𝐵𝑗|

𝑗∈𝐽0

≤ 𝑀 ∑
𝐴1

2𝑗1

𝑗1!
𝑗∈𝐽0

⋯
𝐴𝑛

2𝑗𝑛

𝑗𝑛!
≤ 𝑀 ( ∑

𝐴1
2𝑘1

𝑘1!
𝑘1∈ℕ

) ⋯ ( ∑
𝐴𝑛

2𝑘𝑛

𝑘𝑛!
𝑘𝑛∈ℕ

) = 

= 𝑀𝑒𝑥𝑝 (∑ 𝐴𝑝
2

𝑛

𝑝=1

) ≤ 𝑀𝑒𝑥𝑝(𝐼) = 𝑀𝑒𝐼 = 𝑢0. 

The conclusion is that denoting by 𝑓: 𝑆 → 𝑌 the linear operator which satisfies the moment conditions 𝑓(ℎ𝑘) =

𝐵𝑘 , 𝑘 ∈ ℕ𝑛, |𝑘| > 1, we have 

−𝑀𝑒𝐼 ≤ 𝑓(𝑠) ≤ 𝑀𝑒𝐼 = 𝑢0, ∀𝑠 ∈ 𝑆 ∩ 𝐵(0,1). 

On the other hand, the following relations hold 

𝐵̃ ≤ ‖𝐵̃‖𝐼 = ‖𝐵̃‖𝑀−1𝑒−1𝑢0 = 𝛼1𝑢0, 

where 𝛼1 ≔ ‖𝐵̃‖𝑀−1𝑒−1. The conditions on the norms of the functions 𝜑𝑘 , 𝑘 ∈ ℕ𝑛 lead to  

‖𝜑‖ ≤ 1, ∀𝜑 ∈ 𝐴. 

So, the constant 1 stands for 𝛼 from Theorem 2.8. Now all the conditions from the statement of theorem 2.8 are 

accomplished. Application of the latter theorem, leads to the existence of a linear mapping 𝐹: 𝑋 → 𝑌, such that 

𝐹(ℎ𝑘) = 𝑓(ℎ𝑘) = 𝐵𝑘 , 𝑘 ∈ ℕ𝑛, |𝑘| > 1, 𝐹(𝜑𝑘) ≥ 𝐵̃, ∀𝑘 ∈ ℕ𝑛, 

𝐹(ℎ) ≤ (2 + ‖𝐵̃‖𝑀−1𝑒−1)‖ℎ‖∞𝑀𝑒𝐼, ∀ℎ ∈ 𝑋. 

From the last inequality, we derive 

|𝐹(ℎ)| ≤ (2𝑀𝑒 + ‖𝐵̃‖)‖ℎ‖∞𝐼 , ∀ℎ ∈ 𝑋. 
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Since the norm on 𝑌 is solid, we infer that 

‖𝐹(ℎ)‖ ≤ (2𝑀𝑒 + ‖𝐵̃‖)‖ℎ‖∞, ∀ℎ ∈ 𝑋 ⇒ ‖𝐹‖ ≤ 2𝑀𝑒 + ‖𝐵̃‖. 

This concludes the proof.                                                                                                                      

 Let H  be a complex Hilbert space, ,,...,1, nkAk =  linear positive commuting self -adjoint operators on .H   

( )   

 HhhhVYVY

YUUVVUYVYnkUAUAHUY kk

=

=====

+ ,0),(;

,,;,,...,1,; 11
 

X  will be the space    ( ) ( )nn AAYYbbC ,...,,,0,0 11 =  is the space just defined above. It seems that repeating 

the arguments in [5], one can prove that 𝑌 is an order complete Banach lattice (and a commutative real Banach 

algebra). Assume additionally that ( )   .,...,1,,0 nkbA kk ==
 

Let 

( ) ( )    

( ) .1:,,...,

,,0,0,...,,,...,,

1

1

11
1

11

==

=


=

n

k

k
n

n

nn
nj

n
j

njj

jjjjj

bbttttttX 

 

Theorem 3.2.5. Let ( ) njj 
  be a sequence in X  such that 𝜓𝑗(0, … ,0) = 1, ( ) ,1

0,...,0
 1


j  for all 

,nj   and let ., IBYB   Then there exists a linear bounded positive operator ( ),,YXBF   which is 

multiplicative on the subspace of continuous functions vanishing at the origin, such that 

( )

( ) ( ) ( ) .,2,,

,1,,1
1

XIBFjBF

jjAAF

n
j

nnj
n

j
j

+

=



 
 

Proof. Denote    ( ).1;,; == jSpanSjconvA j
n

j   Then we get 

‖𝑠 − 𝑎‖∞ ≥ |𝑠(0) − 𝑎(0)| = 1, ∀𝑠 ∈ 𝑆, ∀𝑎 ∈ 𝐴 ⇒ 

( )( ) ( ) ABVABS ===+


 ,:1,1,0:,1,0   

Thus, the unit ball ( )1,0B  of the space X  stands for V of Theorem 2.8,  stands for ,Vp  and A  is the convex 

hull of the collection of functions ., n
j Nj  Define 

( ) ,,:

0

1
1

0




=
















=→

Jj

nj
n

j
j

Jj

jj AAaafsfYSf   

where   nn NjNjJ  1;0  is a finite subset. If ( ),1,0BSs   then 
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( )    

( ) ,

,0,0,...,11

1
1

0

11
1

1

0

IAAasfI

bbttttas

nj
n

j

Jj

j

nn
nj

n
j

Jj

j

=−

=−













 

because of the positivity of the spectral measures associated to the 𝑛 − tuple ( ).,...,1 nAA  On the other hand 

,IBB   so that all conditions of theorem 2.8 are verified for 

IuB === 01 ,1,  

Application of theorem 2.8 leads to the existence of a linear extension F  of ,f  such that 

( ) ( ) ( ) ( )

( ) ( ) BFjyBF

BFIBFXIBF

n
j =

+++


1,~:

,22,2




 

In particular, F  is continuous. Now we prove that 𝐹 is also positive. Let  𝑝  be a polynomial  

( ) ( )    ,,0,0,...,0,..., 11

1

1
11 nn

Jj

nj
n

j
jn bbttttattp = 





 

where 
nNJ 1  is a finite subset. Then using the positivity of the spectral measures attached to 𝑛 − tuple of 

operators (𝐴1, … , 𝐴𝑛), as well as the relations 

𝐹(1) = 𝐹(𝜓(0,…,0)) ≥ 𝐵 ≥ 𝐼, 𝑎(0,….,0) = 𝑝(0, … ,0) ≥ 0,    

we derive the following implications 

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )( ) ( )( ) 011

:
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1

1

1,1
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1

1

1,1

−−+=

−=−= 


IBaIFasFFapF

IaAAasFattas nj
n

j

jJj

j
nj

n
j

jJj

j 

 

Application of Weierstrass approximation theorem and the continuity of F lead to the positivity of F on X. 

Hypothesis on the fact that nAA ,...,1  are permutable and a straightforward computation shows that 

( ) ( ) ( )2121 pfpfppf =  

for all polynomials of n  variables, vanishing at the origin. Since 𝐹 is a continuous linear extension of f  and the 

product operation on the Banach algebra Y  is continuous, we infer that F  is multiplicative on the subspace of 

continuous functions vanishing at the origin (use Bernstein approximating polynomials of n  variables: if a 

continuous function vanishes at the origin, then all the corresponding Bernstein polynomials do the same). This 

concludes the proof.                                                                                                                                  

4 Conclusions    

The present review article is essentially based on results in constrained extension for linear operators, polynomial 

approximation on unbounded subsets and the analytic form of positive polynomials on certain closed   subsets.  
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These are earlier results, which are recalled without their proofs. Using this background and general results in 

classical and functional analysis, one obtains solutions for Markov moment problems and Mazur-Orlicz type 

problems on concrete spaces. All our solutions involving concrete spaces are operator-valued or function-

valued. These are relative new published results and are accompanied by their proofs. The methods can be seen 

following these proofs. Between the main background-domains mentioned above there is a strong relationship. 

For example, in the proof of the approximation result given by Lemma 3.1.1, Theorem 2.5 and Haviland theorem 

are applied, as discussed in [6], [25]. On the other hand, approximation and extension of linear operators solve 

Markov moment problems.  To conclude, in particular, the relationship between the subjects in the title is 

illustrated. The results are stated and the corresponding methods follow from their proofs or from appropriate 

reference citations.  The main purpose of this review article is to prove theorems of subsections 3.1 and 3.2. This 

aim is attained by means of methods recalled in the other two sections (no. 1 and no. 2), also using general type 

results in measure theory and functional analysis, referred during the proofs.                                                                                                                                                                                                                                                  
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