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This study presents the numerical approximation method for the nonsingular
fractional derivative known as the Caputo-Fabrizio fractional derivative on uni-
form and nonuniform mesh. It has been found that the accuracy of the utilized
fractional derivative can be improved on nonuniform mesh compare to the uniform
one. In contrast to the previous literatures, the accuracy of nonsingular fractional
derivative is highly weighted by the fractional order and the memory kernel.
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1 Introduction

Over these past years, application of fractional calculus, in different field, has been extensively studied
[1, 2, 3, 4]. Recent developments of fractional derivative also attracted many researchers due to its potential
applications in modelling real world phenomena [5, 6, 7, 8, 9]. Although, fractional calculus is in the verge
of history, many literature still remain a theory due to the lack of feasible mathematical analysis that could
encompasses great systems, from tiny body to the largest, random to discrete.
Fractional calculus committees are still pointing out that the fractional derivative, as well as fractional dif-
ferential equation, have many potential applications. In fact, fractional derivative is a very useful tool in
modelling nonlinear systems that can be encountered in different areas of science and engineering. How-
ever, nonlinear equation is sometimes complicated to deal if handled analytically. To remedy this problem,
many researches uses the numerical methods as an alternative way since one can establish the boundaries of
equation. Several studies have been conducted to test the effeciency of the numerical approximation con-
nected to fractional derivative [10, 11, 12].
One of the recently introduced fractional derivative is the Caputo-Fabrizio fractional derivative [13] given by
the definition
Definition 1.1. Let f ∈ H1(a, b), b > a, α ∈ (0, 1) then the Caputo-Fabrizio fractional derivative is defined
as

CFDα
t f(t) =

M(α)

1− α

∫ t

0
f ′(s) exp

{
−α t− s

1− α

}
ds (1)

WhereM(α) is a normalization function such thatM(0) = M(1) = 1. It can also be applied to the function
that does not belong toH1(a, b), such as the Caputo-Fabrizio (CF) fractional derivative can be reformulated
as

CFDα
t f(t) =

αM(α)

1− α

∫ t

0
(f(t)− f(s)) exp

{
−α t− s

1− α

}
ds (2)
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In view of definition 1.1, the integral term has no singular behavior, which makes it as one of its inter-
esting feature compare to the previous version of the fractional derivative, which is the Caputo derivative.
In the work of Zhang et. al [14], numerical approximation of the fractional derivative with singularity were
studied. L1 method has also been investigated on their work but, however, accuracy must be improved espe-
cially when the temporal variable approaches to zero.
The truncation error estimate of the singular derivative has found to be fractional order dependent on the
uniform mesh. So, accuracy can be improved, naturally, upon considering a non-uniform mesh [14]. In the
context of non-singular derivative, like the CF derivative, can also acquire more accurate estimates.
(Continuation...)

2 Numerical method on non-uniform mesh for CF fractional derivative

For an integer N, the interval [0, T ] can be subdivided into subintervals with 0 = t0 < t1 < t2 < t3 < · · · <
tN = T . Let the time increment be denoted as hn = tn − tn−1, 1 ≤ n ≤ N and let

hmax = max
1≤i≤N

hi, hmin = min
1≤i≤N

hi

Definition 2.1. Suppose N is finite grid size and a sequence of mesh is finite. Then the mesh points are
quasi-uniform if there exist a constant Γ 6= 0 such that

hmax

hmin
≤ Γ

Definition 2.1 characterize the time increment and it must hold hmax ≤ ΓT/N . We can deduce that
when Γ = 1, we can have the uniform mesh with hmax = T/N . Now, we present the following result for
any temporal meshes.
Theorem 2.1. Let the fractional order of CF fractional derivative be α ∈ (0, 1) and a function f(t) ∈
L2[0, T ], it holds

M(α)

1− α

∫ tn

0
f ′(s) exp

[
− α

1− α
(tn − s)

]
ds =

M(α)

(1− α)

n−1∑
j=1

f(tj)− f(tj−1)

hj

×
∫ tn

0
exp

[
− α

1− α
(tn − s)

]
ds+On (3)

where

|On| = M(α)

(1− α)

(
h2max

8
+
hn(1− α)

2α

)
max

0≤t≤tn
|f ′′(t)| exp

(
− α

1− α
hn

)
Proof. We can write the integral of the form∫ tn

0
f ′(s) exp

[
− α

1− α
(tn − s)

]
ds =

∫ tn−1

0
f ′(s)e−

α
1−α (tn−s)ds+

∫ tn

tn−1

f ′(s)e−
α

1−α (tn−s)ds (4)
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Now, we can actually evaluate the two integral in the right-hand side of equation (4), separately. We start
in the first term and by integration by parts, we can have∫ tn−1

0
f ′(s)e−

α
1−α (tn−s)ds =

[
f(s)e−

α
1−α (tn−s)

]tn−1

0
− α

1− α

∫ tn−1

0
f(s)e−

α
1−α (tn−s)ds

=
[
f(tn−1)e

− α
1−α (hn) − f(0)e−

α
1−α (tn)

]
− α

1− α

n−1∑
j=1

∫ tj

tj−1

f(s)e−
α

1−α (tn−s)ds (5)

By linear interpolation of the function f(s), we have∫ tn−1

0
f(s)e−

α
1−α (tn−s)ds =

[
f(tn−1)e

− α
1−α (hn) − f(0)e−

α
1−α (tn)

]
− α

1− α

n−1∑
j=1

∫ tj

tj−1

(tj − s)f(tj−1)− (tj−1 − s)f(tj)

hj
e−

α
1−α (tn−s)ds−On1

(6)

we can then deduce that

On1 =
α

1− α

n−1∑
j=1

∫ tj

tj−1

1

2
f ′′(εj)(s− tj)(s− tj−1)e−

α
1−α (tn−s)ds, tj−1 < εj < tj

Further manipulation on the second term of equation (6), we can have the following equalities

α

1− α

∫ tj

tj−1

(tj − s)e−
α

1−α (tn−s)ds = −hje−
α

1−α (tn−tj−1) +

∫ tj

tj−1

e−
α

1−α (tn−s)ds

α

1− α

∫ tj

tj−1

(tj−1 − s)e−
α

1−α (tn−s)ds = −hje−
α

1−α (tn−tj) +

∫ tj

tj−1

e−
α

1−α (tn−s)ds

substituting these expressions to equation (6) to get∫ tn−1

0
f ′(s)e−

α
1−α (tn−s)ds =

[
f(tn−1)e

− α
1−α (hn) − f(0)e−

α
1−α (tn)

]
+
n−1∑
j=1

f(tj−1)e
− α

1−α (tn−tj−1) −
n−1∑
j=1

f(tj)e
− α

1−α (tn−tj)

+

n−1∑
j=1

f(tj)− f(tj−1)

hj

∫ tj

tj−1

exp

[
− α

1− α
(tn − s)

]
ds−On1 (7)

one can show that the first four term on the right-hand side of equation (7) cancels each other by using
induction method. Hence, we have∫ tn−1

0
f ′(s)e−

α
1−α (tn−s)ds =

n−1∑
j=1

f(tj)− f(tj−1)

hj

∫ tj

tj−1

exp

[
− α

1− α
(tn − s)

]
ds−On1 (8)
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hence,

|On1 | ≤
α

1− α
max

0≤t≤tn−1

|f ′′(t)|
n−1∑
j=1

h2j
8

∫ tj

tj−1

exp

[
− α

1− α
(tn − s)

]
ds

≤ α

1− α
h2

8
max

0≤t≤tn−1

|f ′′(t)|
∫ tn−1

0
exp

[
− α

1− α
(tn − s)

]
ds

≤h
2
max

8
max

0≤t≤tn−1

|f ′′(t)| exp

[
− α

1− α
hn

]
(9)

and by Taylor expansion of the first order derivative∣∣∣∣f ′(τ)− f(tn)− f(tn−1)

hn

∣∣∣∣ ≤ hn
2

max
tn−1≤t≤tn

|f ′′(t)|

We can have the error in the interval [tn−1, tn] of the second term on the right-hand side of equation (4).
Then the over-all interval satisfies the absolute error function of the form

|On| =
(
h2max

8
+
hn(1− α)

2α

)
max

0≤t≤tn
|f ′′(t)| exp

(
− α

1− α
hn

)
(10)

which satisfies to our required error estimate.
In this case, the numerical error estimate of the CF fractional derivative is of exponentially weighted order,
with the weigth term α

1−α . The error estimate has found to be of orderO = O
(
1−α
α N−1 exp

[
− α

1−αN
−1
])

which vanishes for large N . Thus, minimal error can be acquired easily using this method. In this study, we
are also interested in the non-uniform mesh as found in [14] defined as

hn = (N − n+ 1)ν, 1 ≤ n ≤ N (11)

where ν = 2T
N(N+1) . We aim to improve the error estimate upon considering the non-uniform mesh.

Theorem 2.2. Let the fractional order be α ∈ (0, 1) and a function f(t) ∈ L2[0, T ]. Then for non-uniform
mesh, the CF fractional derivative approximation holds

|(O1)
n| ≤

(
1− α
α

)2

max
0≤t≤tn−1

|f ′′(t)|
[

α

1− α
T

N + 1

]3
exp

[
− α

1− α
T

N + 1

]
(12)

for error estimate for the interval [0, tn−1]. Meanwhile, the trunction function at the interval [0, tn] satisfies

|On| ≤

{
α

1− α

[
T

(N + 1)

]3
+

1− α
α

[
T

(N + 1)

]}
max

0≤t≤tn
|f ′′(t)| exp

[
− α

1− α

(
2T

N + 1

)]
(13)

Proof. The error estimate presented in Theorem 2.1 in the interval [0, T ] on the nonuniform mesh satisfies

|(O1)
n| ≤ α

1− α
max

0≤t≤tn−1

|f ′′(t)|
n−1∑
j=1

h2j
8

∫ tj

tj−1

exp

[
− α

1− α
(tn − s)

]
ds

≤ α

1− α
max

0≤t≤tn−1

|f ′′(t)|
n−1∑
j=1

h3j
8

exp

[
− α

1− α
(tn − tj)

]
(14)
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from the given definition of the time increment, we can have

tn − tj =
1

2
(hj − hj+1)(n− j)

=
n− j

2
((N − n+ 1)ν + (N − j)ν)

=
ν(n− j)

2
((2N + 1− j − n)

we can now get

n−1∑
j=1

h3j exp

[
− α

1− α
(tn − tj)

]
= ν3

n−1∑
j=1

(N − j + 1)3 exp

[
− α

1− α

(
ν(n− j)

2
((2N + 1− j − n)

)]

≤ ν3
n−1∑
j=1

(N − j + 1)3 exp

[
− α

1− α

(
ν(n− j)

2
((N − j + 1)

)]

≤ ν3N3
n−1∑
j=1

exp

[
− α

1− α

(
νNn

2

)]
exp

[
α

1− α

(
νNk

2

)]

≤ ν3N3 exp

[
− α

1− α
(νN)

]
≤ 8T 3

(N + 1)3
exp

[
− α

1− α

(
2T

N + 1

)]
which is the truncation error we wanted as presented in equation (12) when the above inequalities were
substituted in equation (14). Now, if the mesh hn is monotonically decreasing, such that hn ≤ h1 for all
n ≥ 1. Then the truncation error at the interval [tn−1, tn] can be obtained same method in Theorem 2.1 that
satisfies

|(O2)
n| ≤ hn(1− α)

2α
max

tn−1≤t≤tn
|f ′′(t)| exp

[
− α

1− α
hn

]
≤ h1(1− α)

2α
max

tn−1≤t≤tn
|f ′′(t)| exp

[
− α

1− α
h1

]
≤ 1− α

α

T

N + 1
max

tn−1≤t≤tn
|f ′′(t)| exp

[
− α

1− α
2T

(N + 1)

]
(15)

Combining inequalities (12) and (15), we can have the estimated error for the interval [0, tn].

The above theorems shows that the CF fractional derivative on the nonuniform mesh is having a third
order trunction function which is really improves the accuracy of the numerical approximation. In addition,
it can also be seen that the memory kernel of the fractional derivative is a great impact on the error estimate.
In order to verify the accuracy of the presented numerical approximation, we give some numerical examples
in the next section.

3 Numerical experiment

Consider a linear diffusion-wave equation whose exact solution is given by

x(t) = 3.5 sin(2.3πt) exp (−3.23t)
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We compute the fractional derivative of order α on the nonuniform and uniform mesh and we showed the
errors by considering thegrid sizes to be N = [20, 50, 70, 130, 220, 550, 670, 730]. It is clear, in figure (1),
that for non-uniform mesh, the error estimate have a third order convergence rate while the uniform mesh
generates a second order accuracy. This new method of approximation for nonsingular fractional derivative
improves the accuracy on non-uniform mesh.

Figure 1 – Estimate errors for the approximation fractional derivative of the given diffusion-wave equation using
CF fractional derivative with order α = 0.6

Example: Consider the transcendental function of second order

f(t) = exp

(
−1.7

t2

τ2

)
where τ is interpreted as the relaxation time of the function. We wish to obtain its fractional derivative
using numerical approximation introduced in this study and investigate the absolute error with respect to the
fractional order α. We let τ = 1.7 and considered the interval [0, 1]. We also presented the table below to
see the error estimate between the uniform and nonuniform mesh.

α N hn Error(uniform) Error(nonuniform) ratio(%)
1/2 10 0.10000 0.0248830 0.0013721 5.5140

20 0.05000 0.0124849 0.0002059 1.6493
50 0.02000 0.0049990 0.0000148 0.2957
70 0.01429 0.0035711 0.0000055 0.1543
90 0.01111 0.0027776 0.0000026 0.0945

3/4 10 0.10000 0.0157424 0.0034319 21.8001
20 0.05000 0.0086071 0.0005616 6.5252
50 0.02000 0.0036258 0.0000426 1.1762
70 0.01429 0.0026151 0.0000161 0.6145
90 0.01111 0.0020449 0.0000077 0.3767
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Table 1: Error estimate for a given function using the uniform and nonuniform mesh.
We investigate the error convergence order of a given sample function with different values of the N . Table
1 presents the error estimate for both uniform and non-uniform mesh, as well as the ratio between the two
method and the values of fractional order. Evidently, the nonuniform mesh shows lesser error estimate
compare to the uniform mesh, thus, accuracy can be improved if nonuniform mesh is considered in Caputo-
Fabrizio fractional derivative. In addition, it is also evident that the error estimate is dependent on the
fractional order value. However, the efficiency of uniform mesh becomes negligible compare to nonuniform
mesh for larger value of N , as can be seen in the ratio between the two method.

4 Conclusion

We have shown that the nonuniform mesh for nonsingular fractional derivative improves the accuracy of the
numerical approximation compared to the uniform mesh. To support the presented numerical scheme, we
provide some examples and interestingly shows the given claimed error estimate. In addition, the presented
numerical schemes can also be applied to a fractional differential equation.
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