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Abstract 

Recent dedicated lunar gravity mission- Gravity Recovery and Interior Laboratory (GRAIL) provided high-

resolution gravity field data for the Moon. The collected data are the starting material for the construction of 

the latest gravity model GRGM1200A, up to a degree and order 1200° and with sensitivity down to <5 km 

resolution. This article present the results of the study of the probable fractal structure of the lunar “free-air” 

gravity field, based on this data. The "free-air" gravity disturbances are the gravity perturbations computed at 

the reference radius of 1738 km. They show the gravity variations as measured by the spacecraft, and thus 

include contributions from both the surface topography and any sub-surface bodies. The results would throw a 

new light on the nature of the geophysical processes and phenomena that take place on the Moon. 
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Introduction 

The theory of fractals has been largely developed in the last few decades.. The results obtained are frequently 

used for explanation of the self-similarity and the self-organization of different elements related to the Earth 

and planetary science. The recent paradigm of the geodynamics has accepted the nonlinear behavior in time 

and space. For example, the fractal analysis is used in Plate tectonics elements [1], regional seismotectonic 

models [2], regional gravity field interpretation [3], seismicity time series [4]; [5]; [6]; [7]; [8]; [9]; [10]; [11]; [12], 

length of the coastlines [13], drainage network [14]; [15], global distribution of lakes [16], glacial landforms 

analysis [17] and many others.   

In recent years, fractal analysis has become a major methodological tool for analyzing geological and 

geophysical processes and phenomena in others celestial bodies in the solar system. Fractal Theory has been 

successfully applied in the analysis of Mercury's asteroid craters [18], the gravitational fields and the topography 

of Mars ([19]; [20]) and Venus ([19]; [21]), topography of the Moon ([19]; [22]; [23]; [24]), lunar gravity anomalies 

over the basins of Lunar Farside [25].   

The present study aims to analyze and interpret the probability of fractal structure of the “free-air” gravity 

anomalies within the Moon.  Data from the latest lunar gravity model- GRGM1200A, to a degree and order 1200, 

with sensitivity down to <5 km resolution [26] is used.   
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Materials and Methods 

Fractals analysis – methodological base 

The classical example of a fractal object is defined by Mandelbrot [27]. If the length of an object P is related to 

the measuring unit length l by the formula: 

     P~l1-D     (1) 

then P is a fractal and D is a parameter defined as the fractal dimension. This definition was given by B. 

Mandelbrot in the early 60-s of the 20-th century. His ideas support the view that many objects in nature cannot 

be described by simple geometric forms, and linear dimensions, but they have different levels of geometric 

fragmentation. It is expressed into the irregularities of the different scales (sizes) – from very small to quite big 

ones. This makes the measuring unit extremely important parameter, because measuring of the length, the 

surface or the volume of irregular geometric bodies could be obtained so that the measured size could vary 

hundred to thousand orders. This fact was first determined when measuring the coastal line length of West 

England and this gave Mandelbrot the idea to define the concept of a fractal. In geology and geophysics is 

accepted that definition of the different “fractals” as real physical objects is most often connected to 

fragmentation [28]. This reveals that each measurable object has a length, surface or volume, which depends on 

the measuring unit and the object’s form (shape) irregularity. The smaller the measuring unit is, the bigger is the 

total value for the linear (surface, volume) dimension of the object and vice versa. The same is valid for 2D and 

3D objects.  

The theoretical approach for the linear case and for the 2D and 3D cases was developed by [29; 30]. They focused 

the attention on the relations between the smallest measuring unit and object’s size in analyzing linear (1D), 2D 

and 3D objects (Fig.2). 

 

Fig.2: 2D fractal scheme – each linear element is ½ of the larger one. 

If l is the measuring unit and with m we denote the obtained value for N at each measuring cycle, then the 

common sum of the lengths N at level m according to Turcotte [31] is: 
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       (2) 

where pc denotes the probability for measuring of each length for the corresponding cycle of the 

measurement. 

Using formulas (1) and (2) we obtain the following formulas: 

            (3) 

for liner elements, and 

            (4) 

for any area elements (surfaces). 

Another definition of a fractal dimension is related to the serial number of measurement to each of the 

measuring units used and the object dimensions. If the number of the concrete measurement with a selected 

linear unit is bigger than r, then it might be presented by: 

      N~r-D      (5) 

and the fractal is completely determined by D as its characteristic fractal dimension.  

The present study methodology, based on the correlation number-area, is following the algorithm presented 

and effectively applied in a number of previous works [32], [33], [2], [1], [34], [3].  

The methodological approach follows the following steps:  

1) Calculation of the number of the lunar “free-air” gravity anomalies (N) with corresponding area (in km2) 

for the graphic. The objects are relatively round isometric positive and negative “free-air” gravity anomalies on 

the entire surface of the Moon, probably formed during the Moon history by the meteoritic impacts. 

2) Presentation of the results in graphic form – on the X  axis areas of the free-air gravity anomalies are 

plotted in logarithmic scale, and on the Y axis the corresponding numbers in linear scale are plotted.  

3) The fractal dimensions (D) have been calculated using the data from the graphic and results discussed.   

Data and Software 

The analysis of the lunar “free-air” (“free-air” is the analog of the Earth’s gravitmetry therminology  - as known 

on the Moon the air is missing) surface gravity anomalies was performed on the basis of GRID data (in GeoTIFF 

format) from the latest lunar gravity model GRGM1200A- Gravity Recovery and Interior Laboratory (GRAIL), to 

degree and order 1200, with sensitivity down to <5 km resolution [26]. The data have been explored using free 

Geographic Information System (GIS) QGIS. The study included the absolute values of the lunar free-air surface 

gravity field more than +100 and -100 mGals respectively. The aberration due to the Moon curvature is also 

considered.    
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Free-air gravity anomalies- reflection of the lunar elevation model and its elements 

Free air gravity anomalies are considered as the best expressed relationship between the low depths 

gravitational bodies reflecting the gravity influence of the elevated structures (craters, hills, etc.) (Fig.2). By 

definition the free-air anomaly (frequently called Faye's anomaly) at the representative point is:  

                              gF = gm-[g0 – 0.3088(H+h)] = gm +0.3088(H+h) – g0                             (6) 

Where gF is the free-air gravity anomaly, g0 is the absolute gravity value at the point where the measured value 

is gm. H is the height above average level and the h – is the level difference between the spheroid and the geoid 

(“Moonoid”) at the same point. The values of the free-air anomalies calculated in this way reflect the gravity field 

originated from the lunar surface elevations (Fig.3).  

 

Fig.2: Distribution of the lunar free-air gravity anomalies (in mGals) (Data: Lunar Gravity Model GRGM1200A- 

Gravity Recovery and Interior Laboratory (GRAIL), [26]) 
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 Fig.3: Moon topography map (DEM data: LOLA; [35]) 

Results and Discussion 

The results of this study are graphically presented in Figure 4. The main conclusions and interpretations are 

discussed below.  

 

Fig.4: Fractal analysis of the lunar free-air gravity anomalies (Positive and Negative) 
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The normalized fractal dimensions, calculated in the Fig.4, are respectively D=-1.44 for the positive and D=-0.51 

for the negative anomalies. The first value (-1.44) is approximately three time larger then -0.51. This means that 

the fractal distribution of the positive anomalies are much more nonlinear then the distribution of the negative 

ones (Fig.5). The negative anomalies are dominant and this is an interesting fact. This result could be explained 

by the use of a working hypothesis that the number of asteroids reached the lunar surface and generated the 

negative anomalies is larger then the number of asteroids generated the positive anomalies. If one is to go 

further in this direction, we can get an assumption that the asteroids with lower then average Moon density are 

three times more in numbers then the asteroids with higher density. The self-organized structure is visible even 

on the elevation map. When smaller asteroids impacted in the larger craters, they produced positive, as well as 

negative anomalies. This “spotted” structure is a confirmation that different in density asteroids created the lunar 

surface as well as the absolute free-air surface gravity anomalies. 

 

Fig.5: Fractal dimensions of the lunar free-air gravity anomalies (Positive and Negative) represented as surfaces 

Conclusion 

We use the classical fractal analyses of the free-air gravity anomalies measured and calculated on the entire 

Moon surface in this study. Both – positive and negative anomalies show clear fractal picture with the respective 

fractal dimensions D(+) = - 1.44 and D(-) = - 0.51. As it is considered that both sides (far and near to the Earth) 

are transformed and respectively shaped by the meteoritic impacts from most ancient geological times (even 

during the Moon’s surface formation) up to the present days. It is clear that the negative anomalies are dominant 

due to the extrusion of Moon interior masses during the impact history and probably due to the lower density, 

asteroids impacted the Moon surface. The positive anomalies are most probably determined by the denser 

meteors. The fractal distribution with specific dimensions shows the self-similarity of the larger and smaller 

maskons of the Moon due to the impacts during the development phase of the Moon. 
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