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Abstract 

C. C. MacDuffee apparently was the first to point out, in private communications, that a full-rank factorization 

of a matrix A leads to an explicit formula for its Moore-Penrose’s inverse A
+
. Here we apply this idea of 

MacDuffee and the Singular Value Decomposition to construct A
+
. 
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1. Introduction 

   Let’s consider a matrix       such that rank A = p, then its full-rank factorization means the existence of 

matrices      and      with the properties [1]: 

                                                                                    ;                                                        (1) 

then MacDuffee (1959) constructs the Moore-Penrose’s pseudoinverse [2-4] via the expression [1, 5, 6]: 

                                                                                                                               (2) 

where    is the corresponding transpose matrix. 

In Sec. 2 we employ the Singular Value Decomposition (SVD) of A [7-14] and (2) to construct     

2. Full-rank factorization and SVD 

For any real matrix      , Lanczos [7, 15] introduces the matrix: 

                                                                          
  
   

 ,                                                                  (3) 

and he studies the eigenvalue problem: 

                                                                                                                                                                  (4) 

where the proper values are real because S is a real symmetric matrix. Besides: 

                                                                                                                                   (5) 

such that               Then the singular values or canonical multipliers follow the scheme: 

                                                                                                                                       (6) 

that is,     has the multiplicity          Only in the case         can occur the absence of the null 

eigenvalue. 

   The proper vectors of S, named ‘essential axes’ by Lanczos, can be written in the form: 

                                                                                    
   
 
 
 

 ,                                                                    (7) 

then (3) and (4) imply the Modified Eigenvalue Problem: 

                                                                             
 
                                                                (8) 

hence: 

                                                                                                                                                       (9) 

with special interest in the associated vectors with the positive eigenvalues because they permit to introduce 

the matrices: 

                                                                                                                                             (10) 

verifying                because: 
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                                                                                                                                                        (11) 

therefore                                   Thus, the SVD express [7, 8, 10, 12, 15] that A is the product of three 

matrices: 

                                                 
 
                                                                                 (12) 

This relation tells that in the construction of A we do not need information about the null proper value; the 

information from     is important to study the existence and uniqueness of the solutions for a linear system 

associated to A.  

   The expression (12) is a full-rank factorization of A because it has the structure (1) with: 

                                                             and                     
                                                      (13) 

whose substitution into (2) gives the following interesting formula for the Moore-Penrose’s inverse [3]: 

                                                           
             

     
    ,                                                                (14) 

   which coincides with the natural inverse obtained by Lanczos [7, 15]. The matrix (14) satisfies the relations [1, 

3, 16, 17]: 

                                                                                                                          (15) 

which characterize the pseudoinverse of Moore-Penrose. The use of (10) and (12) into (14) implies the 

following expression for the Lanczos generalized inverse: 

                                     ,                    
  
   

  
     

  
   

  
           

  
   

  
                                              (16) 

where    
   

  means the  j th- component of        Similarly: 

                                                       
  
   

  
      

  
   

  
            

  
   

  
                                            (17)      

   MacDuffee proposed [1] to construct    via a full-rank factorization of  , then here we proved that his idea 

can be applied employing the SVD of the matrix under analysis. 
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