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Abstract
C. C. MacDuffee apparently was the first to point out, in private communications, that a full-rank factorization
of a matrix A leads to an explicit formula for its Moore-Penrose’s inverse A*. Here we apply this idea of
MacDuffee and the Singular Value Decomposition to construct A*.
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1. Introduction

Let's consider a matrix A,,,, such that rank A = p, then its full-rank factorization means the existence of
matrices F,,, and G,,,, with the properties [1]:

A=FGQ@G, rank F =rankG =p; (1)
then MacDuffee (1959) constructs the Moore-Penrose’s pseudoinverse [2-4] via the expression [1, 5, 6]:
At =GT(FTAGT )Y *FT =GT(GGT ) *(FTF) 'FT, @)
where FT is the corresponding transpose matrix.
In Sec. 2 we employ the Singular Value Decomposition (SVD) of A [7-14] and (2) to construct A*.
2. Full-rank factorization and SVD
For any real matrix A, Lanczos [7, 15] introduces the matrix:

04, 3)

S(n+m)x(n+m) = (AT 0
and he studies the eigenvalue problem:
S@ = A4, )
where the proper values are real because S is a real symmetric matrix. Besides:
rank A = p = Number of positive eigenvalues of S, (5)
such that 1 < p < min(n, m). Then the singular values or canonical multipliers follow the scheme:

/’{1,/’{2,...,111, _/’{1, _Az,...,_l 0, 0,...,0, (6)

D’

that is, 2 = 0 has the multiplicity n +m — 2p. Only in the case p =n =m can occur the absence of the null
eigenvalue.

The proper vectors of S, named ‘essential axes’ by Lanczos, can be written in the form:

Benemyr = (5) 7)
then (3) and (4) imply the Modified Eigenvalue Problem:

ApxmUmxr = AUyt AT pntingt = A Uyt 8)
hence:

ATAD = 125, AATY = 224, 9)

with special interest in the associated vectors with the positive eigenvalues because they permit to introduce
the matrices:

Unxp = (ﬁl' ‘172, e ﬂp)' mep = (171, 172, ey ﬁp); (10)

verifying UTU = V"V = I,,, because:
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therefore ;- @, = 28y, j, k = 1,2,...,p. Thus, the SVD express [7, 8, 10, 12, 15] that A is the product of three
matrices:

Anxm = Unap Ny VT pxm A = Diag (A3, A3, ..., 4,). (12)
This relation tells that in the construction of A we do not need information about the null proper value; the
information from A = 0 is important to study the existence and uniqueness of the solutions for a linear system
associated to A.
The expression (12) is a full-rank factorization of A because it has the structure (1) with:
F=Upy and G = Wnap Npxp) ™ (13)
whose substitution into (2) gives the following interesting formula for the Moore-Penrose'’s inverse [3]:
A+mxn = mep A;;p UTpxn ' (14)

which coincides with the natural inverse obtained by Lanczos [7, 15]. The matrix (14) satisfies the relations [1,
3,16,171:

AATA=4, A*AAY =A%, (AADT =AAY, (AYA)T = A*A, (15)

which characterize the pseudoinverse of Moore-Penrose. The use of (10) and (12) into (14) implies the
following expression for the Lanczos generalized inverse:

o o N0

+— (£ £ o F =" p 4% 5 o4yl P =
AT = (tl tz tn) B t] A 1% + i v, + + Ap vp ) ] 1, ., n, (16)
where u,(cj) means the j th- component of ;. Similarly:
> - - - v(k) — v(k) — v(k) —
AT = 72 = T, ="+ U+ +2u,, k=1,.,m (17)
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MacDuffee proposed [1] to construct A* via a full-rank factorization of A, then here we proved that his idea
can be applied employing the SVD of the matrix under analysis.
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