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Abstract

The motivation of the present work is to develop the finiteness property in our work [1, 2, 3, 4] by using Garay’s
condition [5]. The mean curvature flow and the finiteness property of the cylindrical surfaces in E3 are investigated.
Additionally, the linear deformation of such surfaces is studied. Finally, the translation surfaces are discussed.
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Introduction

The study of submanifolds of finite type began in the late 1970s through the author’s attempts to find the best possible
estimate of the total mean curvature of a compact submanifold of a Euclidean space and to find a notion of ”degree” for
submanifolds of a Euclidean space. The family of submanifolds of finite type is large, which contains many important
families of submanifolds; including minimal submanifolds of Euclidean space, minimal submanifolds of hyperspheres,
parallel submanifolds as well as all equivariantly immersed compact homogeneous submanifolds.

On one hand, the notion of finite type submanifolds provides a very natural way to apply spectral geometry to
study submanifolds where spectral geometry is a field in mathematics which concerns relationships between geometric
structures of manifolds and spectra of canonically defined differential operators. On the other hand, one can also
apply the theory of finite type submanifolds to investigate the spectral geometry of submanifolds. The first results on
submanifolds of finite type were collected in [6, 7]. A list of twelve open problems and three conjectures on submanifolds
of finite type was published in [8]. Furthermore, a detailed report of the progress on this theory was presented in [9].
Also, the study of finite type submanifolds have received a growing attention with many progresses since the beginning
of this century. In [10], is provided a detailed account of recent development on the problems and conjectures listed
in [8].

One of the most interesting and profound aspects of classical differential geometry is its interplay with the calculus
of variations. The calculus of variations have their roots in the very origins of subject, such as, for instance, in the
theory of minimal surfaces. More recently, the variational principles which give rise to the field equations of the general
theory of relativity have suggested the systematic investigation of a seemingly new type of variational problem. In
the case of the earlier applications one is, at least implicitly, concerned with a multiple integral in the calculus of
variations. In additional, the normal variational problem on general surfaces and hyperruled surfaces were studied by
some geometers, specifically one may cite [11]-[17].

The mean curvature flow has many physical problems in the nature, starting from the well-known Poisson-Laplace
theorem which relates, the pressure and the mean curvature flow of a surface immersed in a liquid until the capillary
theory [18].

In this paper, first,we study Garay’s condition on the cylindrical surfaces and their deformations in E3. Secondly,
we deal with Garay’s condition on the translation surfaces in E3 before and after their deformations. Finally, we give
the necessary conditions to satisfy Garay’s condition of deformed translation surfaces.

1 Basic concepts

Here, we introduce some basic definitions and relations. Let a surface M : X = X(s, v) in an Euclidean 3−space
E3. The map G : M → S2(1) ⊂ E3 which sends each point of M to the unit normal vector to M at the point is called
the Gauss map of a surface M ; where S2(1) denotes the unit sphere of E3. The standard unit normal vector field G
on the surface M can be defined by:

G =
Xs ×Xv

| Xs ×Xv |
, (1)
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where Xs and Xv are the first partial derivatives with respect to the parameters of X. [19, 20] Let M be an
n−dimensional surface. Then the Laplacian ∆ operator (or Laplacian-Beitrami operator) associated with the induced
metric on M is a mapping which sends any differentiable function f to the function ∆ f of the form

∆ = − 1
√
g

∑
i,j

∂

∂xi
(
√
g g ij

∂

∂xj
), (2)

where {xi, xj} are the local coordinates on M, (gij) is the matrix of the Riemannian metric on M where (g ij) = (gij)
−1

and g = det (gij).
We recall theorem of T.Takahashi [21] and [9] which states that a submanifold M of a Euclidean space is of 1−type,

i.e. the position vector field of the submanifold in the Euclidean space satisfies the differential equation

∆X = λX, (3)

for some real number λ, if and only if either the submanifold is a minimal submanifold of the Euclidean space (λ = 0)
or it is a minimal submanifold of a hypersphere of the Euclidean space centered at the origin (λ 6= 0).

As a generalization of Takahashi’s condition 2eq5, Garay [22] studied hypersurfaces in Em whose coordinate
functions are eigenfunctions of the Laplacian operator of the hypersurface, but not necessarily associated to the same
eigenvalue. Specifically, he considered hypersurfaces in Em satisfying the differential equation

∆X = AX, (4)

where A ∈ Diag(m;E) is an m ×m−diagonal matrix, and proved that such hypersurfaces are minimal in Em and
open pieces of either round hyperspheres or generalized right spherical cylinders. Garay called such submanifolds
coordinate finite type. Related to this, Dillen, Pas and Verstraelen [23] observed that Garay’s condition 6eq4 is not
coordinate invariant and they proposed the study of submanifolds of Em satisfying the following equation:

∆X = AX +B, (5)

where A ∈Mat(m;E) is a m×m matrix and B ∈ Em. On the other hand, the class of submanifolds satisfying 6eq4
and the class of submanifolds satisfying 6eq5 are the same if the submanifolds are hypersurfaces of Euclidean space
[24]. Also, the above mentioned study can be extendeded the notion of an immersion of submanifolds into pseudo-
Euclidean space [25]. Recently, many geometers are studying an extension of Takahashi theorem for the linearized
operators of the higher order mean curvatures of hypersurfaces [26]-[29].

Let M be a connected (not necessary compact) surface in E3. Then the position vector X and the mean curvature

vector H of M in E3 satisfy
∆ X = −2 H, (6)

where H = H G and H is the mean curvature of the surface which defined by

H =
1

2

2∑
i,j=1

gijLij , (7)

where Lij are the coefficients of the second fundamental form. Form Eq. eq10 yields the following well-known result:
A surface M in E3 is minimal if and only if all coordinate functions of E3, restricted to M, are harmonic functions,
that is,

∆ X = 0. (8)

[11, 15] Let X : U → E 3 be a parameterized 2−surface in E 3. A variation of XisasmoothmapX : U × [0 , 1] → E 3

with the property that X(u i, 0) = X(u i) for all u i ∈ U. Thus a variation surrounds the 2−surface X with a family
of singular 2−surface Xt : U → E 3 defined by

M : Xt(u
i) = X (u i, t) = X(u i) + t φ(u i) G(u i), i = 1 , 2, u i = (u , v), (9)

where φ is a smooth function along X and G is the Gauss map of X, is called a normal variation of X, where t is a
parameter and t ∈ [0 , 1]. And the family of surfaces represented by X(ui, t) is called a deformable surfaces resulting
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from X(ui) by the normal variation. Now, we define a ruled surface M in E3. Let I be an open interval containing

0 in R. The ruled surface M is parametrized by

M : X(u, v) = α(u) + v β(u), u ∈ I, v ∈ R, (10)

where α = α(u) and β = β(u) are smooth mappings from I into E3. The map α is called a base curve and β is called
a director curve. M is said to be cylindrical if β(u) is parallel to fixed direction in E3. It is called non-cylindrical
otherwise see [30, 32].

Also, we define the translation surfaces M in E3. Let X : M → E3 be a translation surface in E3 with planar

generating curves lying in orthogonal planes. Then, it can be parameterized, locally, as

X(u, v) = (u , v , f(u) + h(v)), (11)

where f = f(u) and h = h(v) are smooth functions on M [33, 34, 35].

2 Cylindrical surfaces in E3

Let M be a cylinder over a plane curve α(s) = {α1(s) , α2(s) , 0}. We suppose that α(s) is parameterized by its
arc length s. Then, M is written as:

M : X(s, v) = α(s) + v β, (12)

where β is a constant unit vector, namely β = {0 , 0 , 1}. Then the unit normal vector of M is given by

G = (α′2 , −α′1 , 0), (13)

where α1 = α1(s), α2 = α2(s). Using the coefficients of the first fundamental form we find that

(gij) = diag(1, 1), g = 1, (14)

where diag(1, 1) is 2× 2−diagonal matrix. As well known the formula of Laplacian is taking the following form:

∆ = − ∂2

∂s2
− ∂2

∂v2
. (15)

Therefore, the Laplacian operator ∆ of X is given by

∆X = (−α′2 ψ , α′1 ψ , 0); ψ = α′′1 α
′
2 − α′1 α′′2 . (16)

Suppose X satisfies Garay’s Condition (coordinate finite type) Eq. 6eq4 where A is given by

A =

 λ1 0 0
0 λ2 0
0 0 λ3

 . (17)

Then, Eq. 6eq4 turn to
α′2 ψ + λ1 α1 = 0, α′1 ψ − λ2 α2 = 0, λ3 v = 0. (18)

Since α is parameterized by the arc length, i.e., (α′1)2 + (α′2)2 = 1. Then, we may put [30]

α′1 = cos θ(s), α′2 = sin θ(s), (19)

for some function θ(s). Using R5eq2 into 0eq9, we get

θ′ sin θ − λ1 α1 = 0, θ′ cos θ + λ2 α2 = 0, λ3 v = 0, (20)

where θ = θ(s). From the third equation, we get λ3 = 0. Differentiate the first and seconde equations in R5eq1 w.r.t.
s, it yields

(θ′2 − λ1) cos θ + θ′′ sin θ = 0,

(θ′2 − λ2) sin θ − θ′′ cos θ = 0. (21)
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Since, cos θ and sin θ are linearly independent functions. Consequently, θ′′ = 0 and λ1 = λ2 = θ′2. Hence, θ′ =
constant. If θ′ = 0, then λ1 = λ2 = 0. That’s means M is a plane or minimal surface. But if θ′ 6= 0, then

θ = as+ c ; a =
√
λ1 ⇒ α′1 = cos(a s+ c), α′2 = sin(a s+ c)⇒

α1 =
1

a
sin(a s+ c), α2 = −1

a
cos(a s+ c).

That means α is a circular curve and X is a circular cylinder.
As known, the plane and circular cylinder are the only circular ruled surfaces which are finite type in E3.
Supposes G satisfies Garay’s Condition, i.e.,

∆ G = AG. (22)

Then, we get {
sin θ (θ′2 − λ1)− θ′′ cos θ , cos θ (λ2 − θ′2)− θ′′ sin θ , 0

}
= (0, 0, 0) = 0, (23)

where 0 zero vector. Using the previous technique, we obtain the same result as in the case of the surface X see [31].

2.1 Mean curvature flow of cylindrical surfaces

Now, we research the effect of the deformation of the circular ruled surfaces in direction of mean curvature flow.
Putting u = s in Eq. varl7 then, we get

X(s, v) = X(s, v) + t H G, (24)

where H = ψ(s)
2 and ψ(s) is given from 0eq10. Then

X(s, v) =
{
α1 +

1

2
t ψ α′2 , α2 −

1

2
t ψα′1 , v

}
. (25)

Therefore, one can get the coefficients of the first fundamental form as the following:

(gij) =

(
1− t ψ2 0

0 1

)
. (26)

Consequently, one can find the Laplacian ∆ of M which is given by

∆ =
1

(t ψ2 − 1)2

(
(2t ψ2 − 1)

∂2

∂v2
+ (t ψ2 − 1)

∂2

∂s2
− t
(
α
(3)
1 α′2 − α′1 α

(3)
2

)
ψ
∂

∂s

)
, (27)

where t ψ2 − 1 6= 0. Therefore ∆ X = 1
2(t ψ2−1)2

(
2t (α′2)2 (α′′1)3 − 4t α′1 α

′
2 α
′′
2 (α′′1)2 + 2α′′1

(
t α′1

(
α′1
(
α2

(3)α′2

+ (α′′2)2
)
− α(3)

1 (α′2)2
)
− 1
)

+ t
(
α′2
(
α
(3)
1

(
2(α′1)2 − 3

)
α′′2 + α

(4)
2 α′1

)
+ α

(3)
2 α′1

(
3− 2(α′1)2

)
α′′2 − α

(4)
1 (α′2)2

)
, 2t (α′1)2 (α′′2)3 − 4t α′1α

′
2 α
′′
1 (α′′2)2

+ 2α′′2

(
t α′2

(
α′2
(
α
(3)
1 α′1 + (α′′1)2

)
− α(3)

2 (α′1)2
)
− 1
)

+ t
(
− 2α

(3)
1 (α′2)3α′′1

+ 2α
(3)
2 α′1 (α′2)2 α′′1 +α′2

(
α
(4)
1 α′1 + 3α

(3)
1 α′′1

)
−α′1

(
α
(4)
2 α′1 + 3α

(3)
2 α′′1

))
, 0
)
. Suppose X satisfy Garay’s condition, i.e.,

∆ X = AX; A =

 λ1 0 0

0 λ2 0

0 0 λ3

 . (28)

From the foregoing results, the condition 0eq11 splitted into three equations as the following:(
t θ(3) + (t λ1 + 2)θ′ − 3t θ′3

)
sin θ + t θ′ θ′′ cos θ + 2λ1 α1 (2t θ′2 − 1) = 0,(

3t θ′3 − t θ(3) − (t λ2 + 2) θ′
)

cos θ + tθ′ θ′′ sin θ + 2λ2 α2 (2t θ′2 − 1) = 0,

−v λ3 = 0. (29)

Since, cos θ and sin θ are linearly independent functions. Then, we get some possibilities:
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• If θ′ = 0, then θ = c = constant, and λ1 = λ2 = λ3 = 0. Then,
α1 = a1s+ b1, α2 = a2s+ b2 where a1 = cos c, a2 = sin c. Therefore,
X is a plane.

• If θ′′ = 0, then Eqs. R5eq3 becomes

2λ1 α1 (2t θ′2 − 1) + sin θ
(
(t λ1 + 2)θ′ − 3t θ′3

)
= 0,

2λ2 α2 (2t θ′2 − 1) + cos θ
(
3tθ′3 − (t λ2 + 2) θ′

)
= 0,

−v λ3 = 0. (30)

Also, we use the idea of linear independence for sin and cos , then

(t λ1 + 2)θ′ − 3t θ′3 = 0, (t λ2 + 2)θ′ − 3t θ′3 = 0. (31)

Solving above equations, we get

(1) θ = constant. Then, X is a plane.

(2)

θ = c1 ± s

√
λ1 t+ 2

3 t
= c1 ± s

√
λ2 t+ 2

3 t
(32)

One can conclude λ1 = λ2. Since 2t θ′2 − 1 6= 0 (the denominator not equal zero) then, λ1 = λ2 = 0. Hence, we
conclude that M is an open portion of the plane or circular cylinder.

The deformed cylindrical surface of the mean curvature flow in E3 satisfies Garay’s condition if and only if

• M is a plane where A = A.

• M is a circular cylinder where A 6= A = 0.

2.2 Linear deformation of cylindrical surfaces

Here, we study the deformation of the cylindrical surfaces in direction in its tangent plane. Then one can write
the parametrization of this surface as

X̃ = X + t H (a1 Xs + a2 Xv). (33)

Hence

X̃ =
(1

2
t a1 α

′
1 ψ + α1 ,

1

2
t a1 α

′
2 ψ + α2 ,

1

2
t a2 ψ + v

)
. (34)

The coefficients of the first fundamental form given by

(g̃ij) =
( 1 + t a1ψ

′ 1
2 t a2 ψ

′
1
2 t a2 ψ

′ 1

)
, g̃ = 1 + t a1 ψ

′ 6= 0,

(g̃ ij) =
1

2(1 + t a1 ψ′)

( 2 −t a2 ψ′
−t a2 ψ′ 2(1 + t a1 ψ

′)

)
. (35)

The unit normal vector of M̃ is defined as

G̃ =
1

2
√
t a1 ψ′ + 1

(
t a1 α

′
2

(
α′′1 α

′′
2 − α

(3)
2 α′1

)
− t a1

(
α′1 (α′′2)2 − α(3)

1 (α′2)2
)

+ 2α′2 ,

−t a1 α′1 ψ′ − t a1 ψ α′′1 − 2α′1 , 0
)

(36)

Therefore, The Laplacian ∆̃ of M̃ is written as

∆̃ =
1

2(1 + t a1ψ′)2

(
t ψ′′

(
a1

∂

∂s
+ a2

∂

∂v

)
− (2t a1ψ

′ + 2)
∂2

∂s2
+ 2t a2ψ

′ ∂2

∂s ∂v

−(4t a1 ψ
′ + 2)

∂2

∂v2

)
. (37)
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Using Eq. R5eq4 to find ∆̃ X̃. Then

∆̃ X̃ =
−1

2(1 + t a1ψ′)2

{
t a1 (4α′′1ψ

′ + α
(3)
1 ψ) + 2α′′1 , t a1 (4α′′2 ψ

′ + α
(3)
2 ψ) + 2α′′2 , 0

}
. (38)

Let X̃ be satisfy Garay’s condition, i.e.,

∆̃ X̃ = Ã X̃; Ã =

 λ̃1 0 0

0 λ̃2 0

0 0 λ̃3

 . (39)

Similar to the previous subsection, we get

1

2(t a1 θ′′ − 1)2

(
2λ̃1 α1(s) (2t a1 θ

′′ − 1)

+t a1 θ
′ (λ̃1 − θ′2) cos θ + θ′ (2− 5t a1 θ

′′) sin θ
)

= 0;

1

2(t a1 θ′′ − 1)2

(
2λ̃2 α2(s) (2t a1 θ

′′ − 1)

+t a1 θ
′ (λ̃2 − θ′2) sin θ + θ′ (5t a1 θ

′′ − 2) cos θ
)

= 0;

−1

2
λ̃3 (2v − t a2 θ′) = 0, (40)

where t a1 θ
′′ − 1 6= 0. From third equation, we get λ̃3 = 0, and from first and seconde equation we get θ′ = 0. That

means X̃ ia a plane. The plane in E3 is the only surface which satisfies Garay’s condition after its deformation.
Moreover, we deal with Gauss map G̃ of X̃. Using Eq. R5eq4 we have

∆̃ G̃ =
1

4 (t a1 ψ′ + 1)7/2

{
− 14t a1 α

(3)
2 ψ′ − 2t a1 α

(4)
2 ψ − 4α

(3)
2 , 14t a1α

(3)
1 ψ′

+2t a1 α
(4)
1 ψ + 4α

(3)
1 , 0

}
(41)

Suppose G̃ satisfies Garay’s condition, i.e., ∆̃ G̃ = A G̃. Then, this condition is splitted into two equations as follows:

1

2(1− t a1 θ′′)7/2
(

sin θ
(
t a1 θ

′′ (7λ̃1 − 10 θ′2)− 2λ̃1 + 2θ′2
)

+

cos θ
(
t a1
(
7θ′′2 + θ′ (θ(3) + λ̃1 θ

′ − θ′3)
)
− 2θ′′

))
= 0

1

2(1− t a1 θ′′)7/2
(

cos θ
(
λ̃2 (2− 7t a1 θ

′′) + 2θ′2 (5t a1 θ
′′ − 1)

)
+

sin θ
(
t a1

(
7θ′′2 + θ′ (θ(3) + λ̃2 θ

′ − θ′3)
)
− 2θ′′

))
= 0 (42)

Combining the previous two equations, we have the following:(
7t a1 (λ̃1 − λ̃2)θ′′ + 2(λ̃2 − λ̃1)

)
sin 2θ + t a1 (λ̃1 − λ̃2) θ′2 cos 2θ

+14t a1 θ
′′2 + t a1 λ̃1 θ

′2 + t a1 λ̃2 θ
′2 − 2t a1 θ

′4 + 2t a1 θ
(3) θ′

−4θ′′ = 0. (43)

Based on the linearly independent of cos and sin one can get
if θ′′ = 0, then

• θ′ = λ̃1 = λ̃2 = 0. Then X̃ is plane.

• θ′2 = λ̃1 = λ̃2 6= 0. Then X̃ is circular cylinder.

The plane and circular cylinder are the only surfaces whose Gauss map satisfies Garay’s condition before and after
their deformations. Let α(s) be circle curve. Then, the circular cylinder given by

X(s, v) = (cos s , sin s , v). (44)
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Therefore, by using Eq. R5eq6, we obtain
∆ X = (cos s , sin s , 0). (45)

Applying Garay’s condition, then

∆ X−AX = ((1− λ1) cos s , (1− λ2) sin s , −λ3v) = 0. (46)

From this we get λ1 = λ2 = 1, λ3 = 0. From Eq.R5eq5 we get the deformed surface is given by

X̃ =
(

cos s+
t a1
2

sin s , sin s− t a1
2

cos s , v − t a2
2

)
. (47)

The coefficients of the first fundamental form are

(gij) = (g̃ij) =
( 1 0

0 1

)
, g = g̃ = 1. (48)

Therefore

∆̃ X̃ =
1

2

(
(2 cos s+ t a1 sin s) , (2 sin s− t a1 cos s) , 0

)
. (49)

Consequently

∆̃ X̃− Ã X̃ =
(
− 1

2
(λ̃1 − 1) (a1 t sin s+ 2 cos s) ,

1

2
(λ̃2 − 1) (t a1 cos s− 2 sin s) , λ̃3 (

1

2
t a2 − v)

)
. (50)

Using the notion of linearly independent for sin and cos we get λ̃1 = λ̃2 = 1 and λ̃3 = 0. This example confirms the
theorem.

3 Translation surfaces in E3

In this section, we shall study Garay’s condition of the translation surfaces in E3 where we study these surfaces
before and after their deformations.

3.1 Garay’s condition of translation surfaces

Let M be a surface has the position vector as Eq. 66eq. Then the unit normal vector field G on the surface M
is given by

G =
1√
w

(
− γ , −ρ , 1

)
, (51)

where w = γ2 + ρ2 + 1 6= 0, and γ = f ′(u), ρ = h ′(v). The metric (gij) and the contravariant metric (gij) can be
written as the following

(gij) =

(
γ2 + 1 γ ρ
γ ρ ρ2 + 1

)
, (gij) =

1

w

(
ρ2 + 1 −γ ρ
−γ ρ γ2 + 1

)
, g = w. (52)

Then, via a straightforward computation one can obtain the formula of Laplacian as the following:

∆ =
1

w2

((
γ
∂

∂u
+ ρ

∂

∂v

)
δ − w

(
ρ2 + 1

) ∂2

∂u2
+ 2w γ ρ

∂2

∂u ∂v
− w

(
γ2 + 1

) ∂2

∂v2

)
. (53)

where δ = γ ′ (1 + ρ2) + ρ ′ (1 + γ2). The coefficients of the second fundamental form are

(Lij) =
1√
w

(
γ ′ 0
0 ρ ′

)
. (54)

Hence, the mean curvature of M take the following form

H =
δ

2w
3
2

. (55)
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Therefore,

∆X =
δ

w2

(
γ , ρ , −1

)
. (56)

Let X be satisfy Garay’s condition Eq. 6eq4, then one can get

1

w2

(
δ γ − λ1 u w2 , δ ρ− λ2 v w2 , −δ − λ3 (f + h) w2

)
= 0. (57)

One can rewrite the pervious equation as

δ γ − λ1 u w2 = 0, δ ρ− λ2 v w2 = 0, λ3 (f + h) w2 + δ = 0. (58)

Combining the first and seconde equation in Eq. 6eq1, we obtain

w2
(
λ2 v γ − λ1 u ρ

)
= 0. (59)

Separating the variables u and v, then one can get

λ1 u

γ
= −λ2 v

ρ
= −ξ2, (60)

Since u and v are independent variables, each side of these equations must be constant i.e., ξ2 is a constant. Hence,
we conclude that

f = −λ1 u
2

2 ξ2
+ c1, h = −λ2 v

2

2 ξ2
+ c2, (61)

where c1 , c2 are constants. Using Eq.6eq7 in the third equation of 6eq1 we get

2ξ8
(
− c3 λ3 ξ2 + λ1 + λ2

)
− 2λ31 λ3 ξ

2
(
c3 λ1 − ξ2

)
u4 + λ1ξ

4
(

2λ1
(
λ2 −

2c3 λ3ξ
2
)

+ λ3 ξ
4
)
u2 + 2λ1 λ2 λ3 ξ

2
(
λ1
(
ξ2 − 2c3 λ2

)
+ λ2 ξ

2
)
u2 v2 −

2λ32 λ3 ξ
2
(
c3 λ2 − ξ2

)
v4 + λ2 ξ

4
(
λ3 ξ

2
(
ξ2 − 4c3 λ2

)
+ 2λ1 λ2

)
v2 +

λ51 λ3 u
6 + λ31 λ2 λ3 (λ1 + 2λ2) u4 v2 + λ1 λ

3
2 λ3 (2λ1 + λ2) u2 v4 + λ52 λ3 v

6 = 0. (62)

where c3 = c1 + c2. In view of the independence of the set {up vq}, all coefficients of different combinations of powers
up vq in the previous polynomial should vanish.Then λ1 = λ2 = λ3 = 0. That means, X is a plane or minimal surface.
There is no translation surface satisfing Garay’s condition in E3 except the plane and minimal surfaces.

3.2 Mean curvature flow of translation surfaces in E3

Let M be the deformed translation surface according to varl7 where φ = H. Then, it has the parametrization as

X(u , v) =
1

2w2

(
2u w2 − t γ δ , 2v w2 − t ρ δ , 2w2 (f + h) + t δ

)
. (63)

Then, one can get the coefficients of the first fundamental form as the following:

(gij) =

(
(γ2+1) w2−t δ γ′

w2 γ ρ

γ ρ (ρ2+1) w2−t δ ρ ′

w2

)
, g =

w3 − t δ2

w2
,

(gij) =
1

w3 − t δ2
(

(ρ2 + 1)w2 − tδ ρ ′ −w2γ ρ
−w2γ ρ (γ2 + 1) w2 − t δ γ ′

)
, (64)

where w3 − t δ2 6= 0. Consequently, one can find the Laplacian ∆ of M is given by

∆ =
1

(w3 − t δ2)2

(
w
(
γ γ ′

(
(w − γ2) (2 δ2t+ w3) + t w ρ ′ (2w ρ ′ − 7δ)

)
+ρ ′

(
γ w (w3 − t δ2)− γ ρ2 (2δ2t+ w3) + t w2γ ′′ (w − γ2)

)

8
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+t δ w
(
γ ρ ρ ′′ (w − ρ2)− γ ′′ (w − γ2)2

)) ∂
∂u

+ 2 γ ρ w2 (w3 − δ2t) ∂2

∂u ∂v

+w2
(
(γ2 − w) (w3 − t δ2) + t δ w ρ ′

) ∂2

∂u2
+ w2

(
(w − ρ2) (t δ2 − w3)

+t δ w γ′
)) ∂2

∂v2
+ w

(
ρ
(
γ ′
(
− δ2t (2γ2 + w)− 7t δw ρ ′

+w3 (w − γ2)
)

+ ρ ′ (w − ρ2) (2t δ2 + w3) + 2t w2 (γ ′)2 ρ ′

+t γ δ w γ ′′ (w − γ2)
)

+ t w ρ ′′ (w − ρ2)
(
w γ ′ + δ (ρ2 − w)

)) ∂
∂v

)
. (65)

Therefore

∆X1 =
w

2 (w3 − t δ2)2

(
ρ ′
(
γ
(
− 2ρ 2 (2t δ2 + w3) + 2w (w3 − t δ2)− 9t ρ w ρ ′′

(w − ρ2)2
)

+ twγ′′
(
γ2 ρ2 (5w − 9γ2) + (γ2 + 2) w (w − γ2)

))
+ t w

(
δ γ ′′ (2γ4

−w2 − γ2 w) + γ
(
γ(3)w (w − γ2)2 + 2δ ρ ρ′′ (ρ2 − w) + ρ(3) w (w − ρ2)2

))
+

γ ′
(

2γ (w − γ2) (2t δ2 + w3) + t
(

2γw (ρ′)2
(
w2 − w (γ2 + 10ρ2 − 2) + 9ρ2(w

−1)
)

+ γ δ ρ ′
(
ρ2 (17w − 56γ2) + 8γ2w − 5w (w + 2)

)
+ γ ρ w ρ ′′

(
ρ2 (w − 9γ2)

−w (w − 5γ2)
)

+ w γ ′′ (2w − 9γ2) (w − γ2)2
))

+ t γ (γ ′)2
(
δ (w − γ2) (28γ2

−13w)− 6w ρ ′ (3γ2 − w)
)
− 4t γ δ (ρ ′)2 (w − 7ρ2) (w − ρ2)

)
,

∆X2 =
w

2 (w3 − t δ2)2

(
t w
(
− δ ρ ′′ (−2ρ4 + w2 + ρ2 w) + 2γ δ ργ ′′ (γ2 − w) + ρ w(

γ(3) (w − γ2)2 + ρ(3) (w − ρ2)2
))

+ 2t ρ (γ′)2
(
w ρ′

(
w2 − w (10γ2 + ρ2 − 2)

+9γ2(w − 1)
)
− 2δ (w − 7γ2) (w − γ2)

)
+ t δ ρ (ρ′)2 (−28ρ4 − 13w2 + 41ρ2 w)

+ρ ′
(

(w − ρ2)
(
2ρ (2δ2t+ w3) + t w ρ′′ (2w − 9ρ2) (w − ρ2)

)
+ t γ ρ w γ ′′(

− 9γ2ρ2 − w2 + w (γ2 + 5ρ2)
))

+ γ ′
(
− 2ρ

(
δ2t (2γ2 + w) + w3 (γ2 − w)

)
+t w ρ ′′

(
2w2 + ρ4

(
− (9γ2 + w)

)
+ ρ2 w (5γ2 + w − 2)

)
+ t ρ

(
δρ′
(
8ρ2 (w

−7γ2) + 17γ2w − 5w(w + 2)
)
− 9γwγ′′ (w − γ2)2 + 6w (ρ′)2 (w − 3ρ2)

)))
,

∆X3 =
w

2 (w3 − t δ2)2
2t (γ ′)2

(
w ρ ′

(
9γ4 + w2 − 3ρ2 (w − 3γ2)− 10γ2 w

)
− 2δ (w

−7γ2) (w − γ2)
)

+ γ ′
(

2
(
w3 (w − γ2)− δ2 t (2γ2 + w)

)
+ t
(

2δρ′
(
− 28γ2 ρ2

+2(w − 2) w2 − (w − 1) (2w − 9) w
)

+ 2w (ρ′)2
(
w2 − w (3γ2 + 10ρ2) + 9ρ2

(w − 1)
)

+ ρ w ρ 2
))
− 9γ w γ ′′ (w − γ2)2

))
+ ρ ′

(
t γ w γ ′′

(
− 9γ2 ρ2 − w2

+w (γ2 + 5ρ2)
)

+ 2
(
− ρ2 (2t δ2 + w3)− δ2 tw + w4

)
− 9t ρ w ρ ′′(w − ρ2)2

)
+t w

(
2γ δ γ ′′ (γ2 − w) + γ(3) w (w − γ2)2 + 2δ ρ ρ ′′ (ρ2 − w) + ρ(3) w (w

−ρ2)2
)
− 4t δ (ρ ′)2 (w − 7ρ2) (w − ρ2)

)
. (66)

Supposes X satisfies Garay’s condition, ∆ X = AX. By a manner similar to the pervious subsections we have three
equation:

w

2 (w3 − t δ2)2

(
w
(
λ1 w (4t δ2 u+ t γ δ w − 2u w3)− t δ γ′′ (−2γ4 + w2 + γ2 w)
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+t γ
(
γ(3) w (w − γ2)2 + 2δ ρ ρ ′′ (ρ−w) + ρ(3) w (w − ρ2)2

))
+ ρ ′

(
γ
(
− 2ρ2 (2t δ2

+w3) + 2w (w3 − t δ2)− 9t ρ w ρ ′′ (w − ρ2)2
)

+ t wγ ′′
(
γ2 ρ2 (5w − 9γ2) + (γ2 + 2)

w (w − γ2)
))

+ t γ (γ ′)2
(
δ (−28γ4 − 13w2 + 41γ2 w) + 6wρ ′ (3γ2 − w) (γ2 + ρ2 − w)

)
−4γ δt (ρ ′)2 (7ρ4 + w2 − 8ρ2 w) + γ ′

(
2γ (w − γ2) (2t δ2 + w3) + t

(
2γw (ρ ′)2

(
9ρ2

(γ2 + ρ2) + w2 − w (γ2 + 10ρ2 − 2)
)

+ γ δ ρ ′ (ρ2 (17w − 56γ2) + 8γ2w − 5w(w + 2))

+γ ρ w ρ ′′
(
ρ2 (w − 9γ2)− w (w − 5γ2)

)
+ w γ ′′ (2w − 9γ2) (w − γ2)2

)))
= 0,

w

2(w3 − t δ2)2

(
w
(
λ2w (4t δ2v + t δ ρ w − 2v w3) + t

(
− δ ρ ′′ (−2ρ4 + w2 + ρ2w)

+2γ δ ρ γ ′′ (γ2 − w) + ρ w
(
γ(3) (w − γ2)2 + ρ(3) (w − ρ2)2

)))
+ 2t ρ (γ ′)2

(
wρ ′

(
9γ2

(γ2 + ρ2) + w2 − w (10γ2 + ρ2 − 2)
)
− 2δ (7γ4 + w2 − 8γ2w)

)
+ t δ ρ (ρ ′)2 (−28ρ4

−13w2 + 41ρ2w) + ρ ′
(

(w − ρ2)
(
2ρ (2δ2t+ w3) + t w ρ ′′ (2w − 9ρ2) (w − ρ2)

)
+t γ ρ w γ ′′

(
− 9γ2ρ2 − w2 + w (γ2 + 5ρ2)

))
+ γ ′

(
− 2ρ

(
δ2t (2γ2 + w) + w3

(γ2 − w)
)

+ t w ρ ′′
(
2w2 − ρ4 (9γ2 + w)

)
+ ρ2 w (5γ2 + w − 2)

)
+ t ρ

(
δ ρ ′

(
8ρ2

(w − 7γ2) + 17γ2 w − 5w(w + 2)
)

+ 6w (ρ ′)2 (w − 3ρ2) (−γ2 − ρ2 + w)− 9γ w γ ′′

(w − γ2)2
)))

= 0,

− w

2(w3 − t δ2)2

(
2γ ′w5 + 2ρ ′w5 − 4γ2 γ′ w4 − 2ρ2 γ′w4 − 2γ2ρ ′ w4 − 4ρ2 ρ′ w4

+t γ(3) w4 + 2t γ′ (ρ ′)2 w3 + t δ λ3 w
3 + 2γ4 γ ′ w3 + 2γ2 ρ2 γ ′ w3 + 2ρ4 ρ ′ w3

+2γ2 ρ2 ρ ′ w3 + 2t (γ ′)2 ρ ′ w3 + 2t γ δ γ ′′ w3 − 9t γ γ ′ γ ′′ w3 − t γ ρ ′ γ ′′ w3

+2t δ ρ ρ ′′ w3 − t ρ γ ′ ρ ′′ w3 − 9t ρ ρ ′ ρ ′′ w3 − 2t γ2 γ(3) w3 − 4t δ (γ ′)2 w2

−4t δ (ρ ′)2 w2 − 6t γ2 γ ′ (ρ ′)2 w2 − 20t ρ2 γ ′ (ρ ′)2 w2 + 2(w3 − 2t δ2) f λ3 w
2

+2(w3 − 2t δ2) h λ3 w
2 − 2t δ2 γ ′ w2 − 2t δ2 ρ ′ w2 − 20t γ2 (γ ′)2 ρ ′ w2

−6t ρ2 (γ ′)2 ρ ′ w2 + 4t δ ρ2 γ ′ ρ ′ w2 + 4t γ2 δ γ ′ρ ′ w2 − 4t δ γ ′ ρ ′ w2

−2t γ δ ρ2 γ ′′ w2 − 4t γ3 δ γ ′′ w2 − 4t γ δγ ′′ w2 + 18t γ3 γ ′ γ ′′ w2 + t γ3 ρ ′ γ ′′ w2

+5t γ ρ2 ρ ′ γ ′′ w2 − 4t δ ρ3 ρ ′′ w2 − 2t γ2 δ ρ ρ ′′ w2 − 4t δ ρ ρ ′′ w2 + t ρ3 γ ′ ρ ′′ w2

+5t γ2 ρ γ ′ ρ ′′ w2 + 18t ρ3 ρ ′ ρ ′′ w+t γ4 γ(3) w2 + t (w − ρ2)2 ρ(3) w2 + 32t γ2 δ (γ ′)2 w

+32t δ ρ2 (ρ ′)2 w + 18t ρ4 γ ′ (ρ ′)2 w + 18t γ2 ρ2 γ ′ (ρ ′)2 w − 2t γ2 δ2 γ ′ w

+2t δ2 ρ2 γ ′ w + 2t γ2 δ2 ρ ′ w − 2t δ2 ρ2 ρ ′ w + 18t γ4 (γ ′)2 ρ ′ w + 18t γ2 ρ2 (γ ′)2 ρ ′ w

−4t δ ρ4 γ ′ ρ ′ w − 8t γ2 δ ρ2 γ ′ ρ ′ w + 14t δ ρ2γ ′ ρ ′ w − 4t γ4 δ γ ′ ρ ′ w

+14t γ2 δ γ ′ ρ ′ w + 2t γ3δ ρ2 γ ′′ w + 2t γ5 δ γ ′′ w + 4t γ3 δ γ ′′ w − 9t γ5 γ ′ γ ′′ w

−9t γ3 ρ2ρ ′ γ ′′ w + 2t δ ρ5 ρ ′′ w + 2t γ2 δ ρ3 ρ ′′ w + 4t δ ρ3 ρ ′′ w − 9t γ2 ρ3 γ ′ ρ ′′ w

−9t ρ5 ρ ′ ρ ′′ w − 28t γ4 δ (γ ′)2 − 28t δ ρ4 (ρ ′)2 + 4t γ4 δ2 γ ′ + 4t γ2 δ2 ρ2 γ ′

+4t δ2 ρ4 ρ ′ + 4t γ2 δ2 ρ2 ρ ′ − 56t γ2 δ ρ2 γ ′ ρ ′
)

= 0. (67)

The translation surfaces satisfy Garay’s condition if and only if it satisfy equations system in Eq. 6eq6.

4 Conclusion

The effect of the deformed cylindrical and translation surfaces in deferent directions of finiteness property (Garay’s
condition) is summarized as the following:
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(1) The deformed cylindrical surfaces in E3 satisfy Garay’s condition if and only if they are planes. Reality, the
circular cylinder doesn’t satisfy Garay’s condition if A 6= 0.

(2) A plane is the only surface which satisfies Garay’s condition after its deformation in the direction of the tangent
plane of X.

(3) The deformed plane and circular cylinder are the only surfaces whose Gauss map satisfies Garay’s condition in
direction of the tangent plane of X.

(4) There are no translation surfaces satisfying Garay’s condition in E3 except the plane and minimal surfaces.

Conflicts of Interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

References

[1] M. A. Soliman, H. N. Abd-Ellah, S. A. Hassan and S. Q. Saleh, Frenet surfaces with pointwise 1−Type Gauss
Map, Wulfenla. J., Klagenfurt Austria, 22 no. 1 (2015), 169-181.

[2] M. Abdelatif, H. Nour alldeen, H. Saoud, and S. Suorya, Finite type of the pedal of revolution surfaces in E3, J.
Korean Math. Soc., 53 no. 4 (2016), 909-928.

[3] M. A. Soliman, H. N. Abd-Ellah, S. A. Hassan, S. Q. Saleh, Finiteness property of deformed revolution surfaces
in E3 (part I), EJMAA, 4 no.1 (2016), 211-226.

[4] M. A. Soliman, H. N. Abd-Ellah, S. A. Hassan, S. Q. Saleh, Finiteness property of deformed revolution surfaces
in E3 (part II), J. Math. Comput. Sci., 6 no. 3 (2016), 315-336.

[5] D. W. Yoon and J. W. Lee Translation invariant surfaces in the 3−dimensional heisenberg group, Bull. Iranian
Math. Soc., 40 no. 6 (2014), 1373-1385.

[6] B. Y. Chen, Finite type submanifolds and generalizations, University of Rome, Rome, (1985).

[7] B. Y. Chen, Total mean curvature and submanifolds of finite type, World Scientific, (1984).

[8] B. Y. Chen, Some open problems and conjectures on submanifolds of finite type, Soochow J. Math., 17 (1991),
169-188.

[9] B. Y. Chen, A report on submanifolds of finite type, J. Math. Soc., 22 no. 2 (1996), 117-337.

[10] B. Y. Chen, Some open problems and conjectures on submanifolds of finite type: recent development, Tamkang
J. Math., 45 no. 1 (2014), 87-108.

[11] B. Y. Chen, On a variational problem on hypersurfaces, J. London Math. Soc., 2 no. 6 (1973), 321-325.

[12] A. J. Zaslavski, Stracture of extremals of variatinal problems in the regions close to the endpoints, Calculus of
Variations and Partial Differential Equations, 53 no. 3-4 (2015), 847-878.

[13] H. V. D. Mosel, Nonexistence results for extremals of curvature functionals, Arch. Math., 69 (1997), 427-434.

[14] Y. Shen and Y. Rugang, On stable minimal surfaces in manifolds of positive Bi-Ricci curvatures, Duke Math. J.,
85 no. 1 (1996), 109-116.

[15] N. H. Abdel-All, H. N. Abd-Ellah, Stability of closed hyperruled surfaces, Chaos, Solitons and Fractals, 13 (2002),
1077-1092.

[16] N. H. Abdel-All, H. N. Abd-Ellah, The tangential variation on hyperruled surfaces, Applied. Math. and Compu-
tation, 1 no. 149 (2004), 475-492.

[17] N. H. Abdel-All, R. A. Hussien, S. G. Mohamed, Variational problem and stability for hypersurfaces of revolution,
J. Math. & Computer Sci., Ass. Univ., 37 no. 2 (2008), 1-13.

11

http://purkh.com/index.php/mathlab


MathLAB Journal Vol 2 (2019) http://purkh.com/index.php/mathlab

[18] X. P. Zhu, Lectures on mean curvature flows, Amer. Math. Soc. & Inter. Press, 32 (2002).

[19] R. Chen, Neumann eigenvalue estimate on a compact Riemannian manifold, Proc Am Math. Soc., 108(4):9 (1990),
61-70.

[20] M. Deserno, Notes on differential geometry, Germany, (2004).

[21] T. Tahakashi, Minimal immersions of Riemannian manifolds, J. Math. Soc. Japan, 18 (1966), 380-385.

[22] O. J. Garay, An extension of Takahashi’s theorem, Geom. Dedicata, 34 no. 2 (1990), 105-112.

[23] F. Dillen, J. Pas and L. Vertraelen, On surfaces of finite type in Euclidean 3− space, Kodai Math. J. 13 no. 1
(1990), 10-21.

[24] T. Hasanis and T. Vlachos, Hypersurfaces of En+1 satisfying 4X = AX + B, J. Austral. Math. Soc. Ser. A 53
no. 3 (1992), 377-384.
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