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Abstract: In this paper, closed forms of the sum formulas
∑n

k=1 kW
2
k and

∑n
k=1 kW

2
−k for the squares of generalized

Fibonacci numbers are presented. As special cases, we give summation formulas of Fibonacci, Lucas, Pell, Pell-Lucas,
Jacobsthal and Jacobsthal-Lucas numbers. We present the proofs to indicate how these formulas, in general, were
discovered. Of course, all the listed formulas may be proved by induction, but that method of proof gives no clue about
their discovery. Our work generalize second order recurrence relations.

2010 Mathematics Subject Classification. 11B37, 11B39, 11B83.

Keywords. Fibonacci numbers, Lucas numbers, Pell numbers, Jacobsthal numbers, sum formulas.

1 Introduction

Recently, there have been so many studies of the sequences of numbers in the literature and the sequences of numbers
were widely used in many research areas, such as architecture, nature, art, physics and engineering. Specifically, there
are so many studies in the literature that concern about special second order recurrence sequences such as Fibonacci
and Lucas. The sequence of Fibonacci numbers {Fn} is defined by

Fn = Fn−1 + Fn−2, n ≥ 2, F0 = 0, F1 = 1.

and the sequence of Lucas numbers {Ln} is defined by

Ln = Ln−1 + Ln−2, n ≥ 2, L0 = 2, L1 = 1.

The Fibonacci numbers, Lucas numbers and their generalizations have many interesting properties and applications to
almost every field. Horadam [8] defined a generalization of Fibonacci sequence, that is, he defined a second-order linear
recurrence sequence {Wn(W0,W1; r, s)}, or simply {Wn}, as follows:

Wn = rWn−1 + sWn−2; W0 = a,W1 = b, (n ≥ 2) (1)

where W0,W1 are arbitrary complex numbers and r, s are real numbers, see also Horadam [7], [9] and [10]. Now
these generalized Fibonacci numbers {Wn(a, b; r, s)} are also called Horadam numbers. The sequence {Wn}n≥0 can be
extended to negative subscripts by defining

W−n = −r
s
W−(n−1) +

1

s
W−(n−2)

for n = 1, 2, 3, ... when s 6= 0. Therefore, recurrence (1) holds for all integer n.

For some specific values of a, b, r and s, it is worth presenting these special Horadam numbers in a table as a specific
name. In literature, for example, the following names and notations (see Table 1) are used for the special cases of r, s
and initial values.
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Table 1. A few special case of generalized Fibonacci sequences.

Nameofsequence Notation: Wn(a, b; r, s) OEIS: [17]

Fibonacci Fn = Wn(0, 1; 1, 1) A000045
Lucas Ln = Wn(2, 1; 1, 1) A000032
Pell Pn = Wn(0, 1; 2, 1) A000129

Pell − Lucas Qn = Wn(2, 2; 2, 1) A002203
Jacobsthal Jn = Wn(0, 1; 1, 2) A001045

Jacobsthal − Lucas jn = Wn(2, 1; 1, 2) A014551

The evaluation of sums of powers of these sequences is a challenging issue. Two pretty examples are

n∑
k=1

kP 2
k =

1

8
(−P 2

n+2 − (9 + 8n)P 2
n+1 + 2 (3 + 2n)Pn+2Pn+1 + 1)

and
n∑

k=1

kF 2
−k =

1

2
(−F 2

−n+1 + (−1 + 2n)F 2
−n + (1− 2n)F−n+1F−n + 1).

In this work, we derive expressions for sums of second powers of generalized Fibonacci numbers. We present some
works on sum formulas of powers of the numbers in the following Table 2.

Table 2. A few special study on sum formulas of second, third and arbitrary powers.

Nameofsequence sums of second powers sums of third powers sums of powers

Generalized Fibonacci [1,2,6,11,12,18] [5,19] [3,4,13]
Generalized Tribonacci [15]
Generalized Tetranacci [14,16]

The following theorem presents some summing formulas of generalized Fibonacci numbers with positive subscripts.

Theorem 1.1 For n ≥ 1 we have the following formulas:if (s+ 1) (r + s− 1) (r − s+ 1) 6= 0 then

(a)

n∑
k=1

W 2
k =

(1− s)W 2
n+2 + (1− s− r2 − r2s)W 2

n+1 + 2rsWn+1Wn+2 + (s− 1)W 2
1 + s2 (s− 1)W 2

0 − 2rsW1W0

(s+ 1) (r + s− 1) (r − s+ 1)
.

(b)

n∑
k=1

Wk+1Wk =
rW 2

n+2 + rs2W 2
n+1 + (1− r2 − s2)Wn+1Wn+2 − rW 2

1 − rs2W 2
0 + s(−r2 + s2 − 1)W1W0

(s+ 1) (r + s− 1) (r − s+ 1)
.

Proof. This is given in [18].

The following theorem presents some summing formulas of generalized Fibonacci numbers with negative subscripts.

Theorem 1.2 For n ≥ 1 we have the following formulas: If (s+ 1) (r + s− 1) (r − s+ 1) 6= 0 then

(a)

n∑
k=1

W 2
−k =

(s− 1)W 2
−n+1 + (r2 + r2s+ s− 1)W 2

−n − 2rsW−n+1W−n + 2rsW1W0

+(1− s)W 2
1 + (1− s− r2 − r2s)W 2

0

(s+ 1) (r + s− 1) (r − s+ 1)
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(b)

n∑
k=1

W−k+1W−k =
−rW 2

−n+1 − rs2W 2
−n + (r2 + s2 − 1)W−n+1W−n + (1− r2 − s2)W1W0 + rW 2

1 + rs2W 2
0

(s+ 1) (r + s− 1) (r − s+ 1)

Proof. This is given in [18].

2 Summing Formulas of Generalized Fibonacci Numbers with Positive

Subscripts

The following theorem presents some summing formulas of generalized Fibonacci numbers with positive subscripts.

Theorem 2.1 For n ≥ 1 we have the following formulas:if (s+ 1) (r + s− 1) (r − s+ 1) 6= 0 then

(a)

n∑
k=1

kW 2
k =

Λ1

(s+ 1)
2

(r − s+ 1)
2

(r + s− 1)
2

where

Λ1 = (− (s− 1) (s+ 1) (r + s− 1) (r − s+ 1)n− r2s2 − 2r2s+ r2 − 2s2 + 4s− 2)W 2
n+2

+(− (s+ 1) (r − s+ 1) (r + s− 1) (s+ r2s+ r2 − 1)n− r4s2 − 2r2s3

−2r4s− r4 − s4 − 2r2s2 + 2s3 + 2r2 − 2s2 + 2s− 1)W 2
n+1

+2rs((s+ 1) (r − s+ 1) (r + s− 1)n+ r2s+ 2r2 + s2 + 2s− 3)Wn+2Wn+1

+(s4 − 2s3 + 2r2s+ 2s2 − 2s+ 1)W 2
1 + s2(r2s2 + 2r2s− r2 + 2s2 − 4s+ 2)W 2

0

−2rs(r2 + s3 + s− 2)W1W0.

(b)

n∑
k=1

kWk+1Wk =
Λ2

(s+ 1)
2

(r − s+ 1)
2

(r + s− 1)
2

where

Λ2 = r((s+ 1) (r − s+ 1) (r + s− 1)n+ s3 + r2 + s− 2)W 2
n+2

+rs2((s+ 1) (r − s+ 1) (r + s− 1)n+ r2s+ 2r2 + s2 + 2s− 3)W 2
n+1

+(− (s+ 1) (r − s+ 1) (r + s− 1) (r2 + s2 − 1)n− 2r2s3 − r4 − s4

−2r2s2 − 2r2s+ 2r2 + 2s2 − 1)Wn+2Wn+1

+r(r2s− 2s3 + s2 + 1)W 2
1 − rs2(s3 + r2 + s− 2)W 2

0

+s(2r2s2 − r4 + s4 + 2r2 − 2s2 + 1)W1W0.

Proof. Using the recurrence relation
Wn+2 = rWn+1 + sWn
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i.e.

sWn = Wn+2 − rWn+1,

s2W 2
n = (Wn+2 − rWn+1)2 = W 2

n+2 + r2W 2
n+1 − 2rWn+2Wn+1

we obtain

s2nW 2
n = nW 2

n+2 + nr2W 2
n+1 − 2r × nWn+2Wn+1

s2(n− 1)W 2
n−1 = (n− 1)W 2

n+1 + (n− 1)r2W 2
n − 2r × (n− 1)Wn+1Wn

s2(n− 2)W 2
n−2 = (n− 2)W 2

n + (n− 2)r2W 2
n−1 − 2r × (n− 2)WnWn−1

s2(n− 3)W 2
n−3 = (n− 3)W 2

n−1 + (n− 3)r2W 2
n−2 − 2r × (n− 3)Wn−1Wn−2

...

s23W 2
3 = 3W 2

5 + 3r2W 2
4 − 2r × 3W5W4

s22W 2
2 = 2W 2

4 + 2r2W 2
3 − 2r × 2W4W3

s2W 2
1 = W 2

3 + r2W 2
2 − 2rW3W2.

If we add the above equations by side by, we get

s2
n∑

k=1

kW 2
k =

n+2∑
k=3

(k − 2)W 2
k + r2

n+1∑
k=2

(k − 1)W 2
k − 2r

n+1∑
k=2

(k − 1)Wk+1Wk. (2)

Note that
n+2∑
k=3

(k − 2)W 2
k = W 2

1 + (n− 1)W 2
n+1 + nW 2

n+2 +

n∑
k=1

kW 2
k − 2

n∑
k=1

W 2
k

n+1∑
k=2

(k − 1)W 2
k = nW 2

n+1 +

n∑
k=1

kW 2
k −

n∑
k=1

W 2
k

n+1∑
k=2

(k − 1)Wk+1Wk = nWn+2Wn+1 +

n∑
k=1

kWk+1Wk −
n∑

k=1

Wk+1Wk.

If we put them into the (2), we get

s2
n∑

k=1

kW 2
k = (W 2

1 + (n− 1)W 2
n+1 + nW 2

n+2 +

n∑
k=1

kW 2
k − 2

n∑
k=1

W 2
k )

+r2(nW 2
n+1 +

n∑
k=1

kW 2
k −

n∑
k=1

W 2
k )

−2r(nWn+2Wn+1 +

n∑
k=1

kWk+1Wk −
n∑

k=1

Wk+1Wk)

⇒

s2
n∑

k=1

kW 2
k − r2

n∑
k=1

kW 2
k −

n∑
k=1

kW 2
k = −r2

n∑
k=1

W 2
k − 2

n∑
k=1

W 2
k + 2r

n∑
k=1

WkWk+1

−2r

n∑
k=1

kWkWk+1 + nW 2
n+1 +W 2

1 −W 2
n+1

+nW 2
n+2 + nr2W 2

n+1 − 2nrWn+1Wn+2

ans so

(s2 − r2 − 1)

n∑
k=1

kW 2
k = (−r2 − 2)

n∑
k=1

W 2
k + 2r

n∑
k=1

WkWk+1 − 2r

n∑
k=1

kWkWk+1 + nW 2
n+1 (3)

+W 2
1 −W 2

n+1 + nW 2
n+2 + nr2W 2

n+1 − 2nrWn+1Wn+2.
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Next we calculate
∑n

k=1 kWk+1Wk. Multiplying the both side of the relation

sWn = Wn+2 − rWn+1

by Wn+1 we obtain
sWn+1Wn = Wn+2Wn+1 − rW 2

n+1

and so

snWn+1Wn = nWn+2Wn+1 − r × nW 2
n+1

s(n− 1)WnWn−1 = (n− 1)Wn+1Wn − r × (n− 1)W 2
n

s(n− 2)Wn−1Wn−2 = (n− 2)WnWn−1 − r(n− 2)W 2
n−1

s(n− 3)Wn−2Wn−3 = (n− 2)Wn−1Wn−2 − r(n− 2)W 2
n−2

s(n− 4)Wn−3Wn−4 = (n− 4)Wn−2Wn−3 − r(n− 4)W 2
n−3

...

s× 4W5W4 = 4W6W5 − r × 4W 2
5

s× 3W4W3 = 3W5W4 − r × 3W 2
4

s× 2W3W2 = 2W4W3 − r × 2W 2
3

sW2W1 = W3W2 − rW 2
2

If we add the above equations by side by, we get

s

n∑
k=1

kWk+1Wk =

n+1∑
k=2

(k − 1)Wk+1Wk − r
n+1∑
k=2

(k − 1)W 2
k . (4)

Note that

n+1∑
k=2

(k − 1)Wk+1Wk = nWn+2Wn+1 +

n∑
k=1

kWk+1Wk −
n∑

k=1

Wk+1Wk,

n+1∑
k=2

(k − 1)W 2
k = nW 2

n+1 +

n∑
k=1

kW 2
k −

n∑
k=1

W 2
k .

We put them in (4) we obtain

s

n∑
k=1

kWk+1Wk = (nWn+2Wn+1 +

n∑
k=1

kWk+1Wk −
n∑

k=1

Wk+1Wk)

−r(nW 2
n+1 +

n∑
k=1

kW 2
k −

n∑
k=1

W 2
k )

⇒

s

n∑
k=1

kWk+1Wk −
n∑

k=1

kWk+1Wk = −r
n∑

k=1

kW 2
k −

n∑
k=1

Wk+1Wk

+r

n∑
k=1

W 2
k − nrW 2

n+1 + nWn+2Wn+1

and so

(s− 1)

n∑
k=1

kWk+1Wk = −r
n∑

k=1

kW 2
k −

n∑
k=1

Wk+1Wk + r

n∑
k=1

W 2
k − nrW 2

n+1 + nWn+2Wn+1. (5)
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Then, using
W2 = (rW1 + sW0)

and Theorem 1.1 and solving the system (3)-(5), the required results of (a) and (b) follow.

Taking r = s = 1 in Theorem 1.1 (a) and (b), we obtain the following proposition.

Proposition 2.2 If r = s = 1 then for n ≥ 1 we have the following formulas:

(a)
∑n

k=1 kW
2
k = 1

2 (−W 2
n+2 − (3 + 2n)W 2

n+1 + (3 + 2n)Wn+2Wn+1 +W 2
1 +W 2

0 −W1W0).

(b)
∑n

k=1 kWk+1Wk = 1
4 ((1 + 2n)W 2

n+2 + (3 + 2n)W 2
n+1 − (5 + 2n)Wn+2Wn+1 +W 2

1 −W 2
0 + 3W1W0).

From the above proposition, we have the following corollary which gives sum formulas of Fibonacci numbers (take
Wn = Fn with F0 = 0, F1 = 1).

Corollary 2.3 For n ≥ 1, Fibonacci numbers have the following properties:

(a)
∑n

k=1 kF
2
k = 1

2 (−F 2
n+2 − (3 + 2n)F 2

n+1 + (3 + 2n)Fn+2Fn+1 + 1).

(b)
∑n

k=1 kFk+1Fk = 1
4 ((1 + 2n)F 2

n+2 + (3 + 2n)F 2
n+1 − (5 + 2n)Fn+2Fn+1 + 1).

Taking Wn = Ln with L0 = 2, L1 = 1 in the last proposition, we have the following corollary which presents sum
formulas of Lucas numbers.

Corollary 2.4 For n ≥ 1, Lucas numbers have the following properties:

(a)
∑n

k=1 kL
2
k = 1

2 (−L2
n+2 − (3 + 2n)L2

n+1 + (3 + 2n)Ln+2Ln+1 + 3).

(b)
∑n

k=1 kLk+1Lk = 1
4 ((1 + 2n)L2

n+2 + (3 + 2n)L2
n+1 − (5 + 2n)Ln+2Ln+1 + 3).

Taking r = 2, s = 1 in Theorem 1.1 (a) and (b), we obtain the following proposition.

Proposition 2.5 If r = 2, s = 1 then for n ≥ 0 we have the following formulas:

(a)
∑n

k=1 kW
2
k = 1

8 (−W 2
n+2 − (9 + 8n)W 2

n+1 + 2 (3 + 2n)Wn+2Wn+1 + (W1 −W0)
2
).

(b)
∑n

k=1 kWk+1Wk = 1
8 ((1 + 2n)W 2

n+2 + (3 + 2n)W 2
n+1 − 4 (1 + n)Wn+2Wn+1 +W 2

1 −W 2
0 ).

From the last proposition, we have the following corollary which gives sum formulas of Pell numbers (take Wn = Pn

with P0 = 0, P1 = 1).

Corollary 2.6 For n ≥ 1, Pell numbers have the following properties:

(a)
∑n

k=1 kP
2
k = 1

8 (−P 2
n+2 − (9 + 8n)P 2

n+1 + 2 (3 + 2n)Pn+2Pn+1 + 1).

(b)
∑n

k=1 kPk+1Pk = 1
8 ((1 + 2n)P 2

n+2 + (3 + 2n)P 2
n+1 − 4 (1 + n)Pn+2Pn+1 + 1).

Taking Wn = Qn with Q0 = 2, Q1 = 2 in the last proposition, we have the following corollary which presents sum
formulas of Pell-Lucas numbers.
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Corollary 2.7 For n ≥ 1, Pell-Lucas numbers have the following properties:

(a)
∑n

k=1 kQ
2
k = 1

8 (−Q2
n+2 − (9 + 8n)Q2

n+1 + 2 (3 + 2n)Qn+2Qn+1).

(b)
∑n

k=1 kQk+1Qk = 1
8 ((1 + 2n)Q2

n+2 + (3 + 2n)Q2
n+1 − 4 (1 + n)Qn+2Qn+1).

If r = 1, s = 2 then (s+ 1) (r + s− 1) (r − s+ 1) = 0 so we can’t use Theorem 2.1. In other words, the method of the
proof Theorem 2.1 can’t be used to find

∑n
k=1 kW

2
k and

∑n
k=1 kWk+1Wk. Therefore we need another method to find

them which is given in the following theorem.

Theorem 2.8 If r = 1, s = 2 then for n ≥ 1 we have the following formulas:

(a)
∑n

k=1 kW
2
k = 1

162 ((2 + 27n)W 2
n+2 + 2(−5 + 9n)W 2

n+1 − 4(2 + 9n)Wn+2Wn+1

+8 (2W1 −W0) (W1 +W0) + 9 (W1 − 2W0)
2
n2).

(b)
∑n

k=1 kWk+1Wk = 1
162 ((10 + 9n)W 2

n+2 + 4(10− 9n)W 2
n+1 + 2(−29 + 27n)Wn+2Wn+1

+4 (W1 + 10W0) (2W1 −W0)− 9 (W1 − 2W0)
2
n2).

Proof.

(a) The proof will be by induction on n. Before the proof, we recall some information on generalized Jacobsthal
numbers. A generalized Jacobsthal sequence {Wn}n≥0 = {Wn(W0,W1)}n≥0 is defined by the second-order
recurrence relations

Wn = Wn−1 + 2Wn−2; W0 = a,W1 = b, (n ≥ 2) (6)

with the initial values W0,W1 not all being zero. The sequence {Wn}n≥0 can be extended to negative subscripts
by defining

W−n = −1

2
W−(n−1) +

1

2
W−(n−2)

for n = 1, 2, 3, .... Therefore, recurrence (6) holds for all integer n. The first few generalized Jacobsthal numbers
with positive subscript and negative subscript are given in the following Table 1.

Table 1. A few generalized Jacobsthal numbers

n Wn W−n

0 W0 ...

1 W1 − 1
2W0 + 1

2W1

2 2W0 +W1
3
4W0 − 1

4W1

3 2W0 + 3W1 − 5
8W0 + 3

8W1

4 6W0 + 5W1
11
16W0 − 5

16W1

5 10W0 + 11W1 − 21
32W0 + 11

32W1

6 22W0 + 21W1
43
64W0 − 21

64W1

Binet formula of generalized Jacobsthal sequence can be calculated using its characteristic equation which is
given as

t2 − t− 2 = 0.

The roots of characteristic equation are
α = 2, β = −1
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and the roots satisfy the following
α+ β = 1, αβ = −2, α− β = 3.

Using these roots and the recurrence relation, Binet formula can be given as

Wn =
Aαn −Bβn

α− β
=
A× 2n −B(−1)n

3
(7)

where A = W1 −W0β = W1 +W0 and B = W1 −W0α = W1 − 2W0.

We now prove (a) by induction on n. If n = 1 wee that the sum formula reduces to the relation

W 2
1 =

1

162
(29W 2

3 + 8W 2
2 + 25W 2

1 + 28W 2
0 − 44W3W2 − 28W1W0). (8)

Since

W2 = 2W0 +W1,

W3 = 2W0 + 3W1,

(8) is true. Assume that the relation in (a) is true for n = m, i.e.,

m∑
k=1

kW 2
k =

1

162
((2 + 27m)W 2

m+2 + 2(−5 + 9m)W 2
m+1 − 4(2 + 9m)Wm+2Wm+1

+8 (2W1 −W0) (W1 +W0) + 9 (W1 − 2W0)
2
m2).

Then we get

m+1∑
k=1

kW 2
k = (m+ 1)W 2

m+1 +

m∑
k=1

kW 2
k

=
1

162
((2 + 27m)W 2

m+2 + 4 (45m+ 38)W 2
m+1 − 4(2 + 9m)Wm+2Wm+1

−9 (W1 − 2W0)
2

(1 + 2m) + 8 (2W1 −W0) (W1 +W0) + 9 (W1 − 2W0)
2

(m+ 1)2)

=
1

162
((29 + 27m)W 2

m+3 + 2(4 + 9m)W 2
m+2 − 4(11 + 9m)Wm+3Wm+2

+8 (2W1 −W0) (W1 +W0) + 9 (W1 − 2W0)
2

(m+ 1)2)

=
1

162
((2 + 27(m+ 1))W 2

(m+1)+2 + 2(−5 + 9(m+ 1))W 2
(m+1)+1

−4(2 + 9(m+ 1))W(m+1)+2W(m+1)+1 + 8 (2W1 −W0) (W1 +W0) + 9 (W1 − 2W0)
2

(m+ 1)2)

where

(2 + 27m)W 2
m+2 + 4 (45m+ 38)W 2

m+1 − 4(2 + 9m)Wm+2Wm+1 − 9 (W1 − 2W0)
2

(1 + 2m) (9)

= (29 + 27m)W 2
m+3 + 2(4 + 9m)W 2

m+2 − 4(11 + 9m)Wm+3Wm+2.

(9 ) can be proved by using Binet formula of Wn. Hence, the relation in (a) holds also for n = m+ 1.

(b) We now prove (b) by induction on n. If n = 1 wee that the sum formula reduces to the relation

W2W1 =
1

162
(19W 2

3 + 4W 2
2 −W 2

1 − 76W 2
0 − 4W2W3 + 112W0W1). (10)

Since

W2 = 2W0 +W1,

W3 = 2W0 + 3W1,
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(10) is true. Assume that the relation in (b) is true for n = m, i.e.,

m∑
k=1

kWk+1Wk =
1

162
((10 + 9m)W 2

m+2 + 4(10− 9m)W 2
m+1 + 2(−29 + 27m)Wm+2Wm+1

+4 (W1 + 10W0) (2W1 −W0)− 9 (W1 − 2W0)
2
m2).

Then we get

m+1∑
k=1

kWk+1Wk = (m+ 1)Wm+2Wm+1 +

m∑
k=1

Wk+1Wk

=
1

162
((10 + 9m)W 2

m+2 + 4(10− 9m)W 2
m+1 + 2(−29 + 27m)Wm+2Wm+1

+162(m+ 1)Wm+2Wm+1 + 9 (W1 − 2W0)
2

(1 + 2m)

+4 (W1 + 10W0) (2W1 −W0)− 9 (W1 − 2W0)
2

(m+ 1)2)

=
1

162
((19 + 9m)W 2

m+3 + 4(1− 9m)W 2
m+2 + 2(−2 + 27m)Wm+3Wm+2

+4 (W1 + 10W0) (2W1 −W0)− 9 (W1 − 2W0)
2

(m+ 1)2)

=
1

162
((10 + 9(m+ 1))W 2

(m+1)+2 + 4(10− 9(m+ 1))W 2
(m+1)+1

+2(−29 + 27(m+ 1))W(m+1)+2W(m+1)+1

+4 (W1 + 10W0) (2W1 −W0)− 9 (W1 − 2W0)
2

(m+ 1)2)

where

(10 + 9m)W 2
m+2 + 4(10− 9m)W 2

m+1 + 2(−29 + 27m)Wm+2Wm+1 (11)

+162(m+ 1)Wm+2Wm+1 + 9 (W1 − 2W0)
2

(1 + 2m)

= (19 + 9m)W 2
m+3 + 4(1− 9m)W 2

m+2 + 2(−2 + 27m)Wm+3Wm+2.

(11) can be proved by using Binet formula of Wn. Hence, the relation in (b) holds also for n = m+ 1.

From the last theorem we have the following corollary which gives sum formulas of Jacobsthal numbers (take Wn = Jn

with J0 = 0, J1 = 1).

Corollary 2.9 For n ≥ 1, Jacobsthal numbers have the following property:

(a)
∑n

k=1 kJ
2
k = 1

162 ((2 + 27n)J2
n+2 + 2(−5 + 9n)J2

n+1 − 4(2 + 9n)Jn+2Jn+1 + 16 + 9n2).

(b)
∑n

k=1 kJk+1Jk = 1
162 ((10 + 9n)J2

n+2 + 4(10− 9n)J2
n+1 + 2(−29 + 27n)Jn+2Jn+1 + 8− 9n2)

Taking Wn = jn with j0 = 2, j1 = 1 in the last theorem, we have the following corollary which presents sum formulas
of Jacobsthal-Lucas numbers.

Corollary 2.10 For n ≥ 1, Jacobsthal-Lucas numbers have the following property:

(a)
∑n

k=1 kj
2
k = 1

162 ((2 + 27n)j2n+2 + 2(−5 + 9n)j2n+1 − 4(2 + 9n)jn+2jn+1 + 81n2).

(b)
∑n

k=1 kjk+1jk = 1
162 ((10 + 9n)j2n+2 + 4(10− 9n)j2n+1 + 2(−29 + 27n)jn+2jn+1 − 81n2).

54



MathLAB Journal Vol 5 (2020) ISSN: 2582-0389 http://www.purkh.com/index.php/mathlab

3 Summing Formulas of Generalized Fibonacci Numbers with Negative

Subscripts

The following theorem presents some summing formulas of generalized Fibonacci numbers with negative subscripts.

Theorem 3.1 For n ≥ 1 we have the following formulas: If (s+ 1) (r + s− 1) (r − s+ 1) 6= 0 then

(a)

n∑
k=1

kW 2
−k =

Λ3

(s+ 1)
2

(r − s+ 1)
2

(r + s− 1)
2

where

Λ3 = (n (s− 1) (s+ 1) (r − s+ 1) (r + s− 1)− s4 + 2s3 − 2r2s− 2s2 + 2s− 1)W 2
−n+1

+((s+ 1) (r − s+ 1) (s+ r2s+ r2 − 1) (r + s− 1)n+ r2s2 − 2r2s3 − r2s4 − 2s2 + 4s3 − 2s4)W 2
−n

+2rs((s+ 1) (−r + s− 1) (r + s− 1)n+ s3 + r2 + s− 2)W−n+1W−n

+(s4 − 2s3 + 2r2s+ 2s2 − 2s+ 1)W 2
1 + s2(r2s2 + 2r2s− r2 + 2s2 − 4s+ 2)W 2

0

−2rs(s3 + r2 + s− 2)W1W0.

(b)

n∑
k=1

kW−k+1W−k =
Λ4

(s+ 1)
2

(r − s+ 1)
2

(r + s− 1)
2

where

Λ4 = r(− (s+ 1) (r − s+ 1) (r + s− 1)n+ 2s3 − r2s− s2 − 1)W 2
−n+1

+rs2(− (s+ 1) (r − s+ 1) (r + s− 1)n+ s3 + r2 + s− 2)W 2
−n

+((s+ 1) (r − s+ 1) (r + s− 1) (r2 + s2 − 1)n− s5 + r4s− 2r2s3 − 2r2s+ 2s3 − s)W−n+1W−n

+rW 2
1 (−2s3 + r2s+ s2 + 1)− rs2(s+ r2 + s3 − 2)W 2

0

+s
(
−r4 + s4 + 2r2s2 + 2r2 − 2s2 + 1

)
W1W0.

Proof. Using the recurrence relation
W−n+2 = r ×W−n+1 + s×W−n

i.e.
sW−n = W−n+2 − rW−n+1

and using

s2W 2
−n = W 2

−n+2 + r2W 2
−n+1 − 2rW−n+2W−n+1,

s2W 2
−n+1 = W 2

−n+3 + r2W 2
−n+2 − 2rW−n+3W−n+2,

s2W 2
−n+2 = W 2

−n+4 + r2W 2
−n+3 − 2rW−n+4W−n+3,
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we obtain

s2 × (n+ 2)W 2
−n−2 = (n+ 2)W 2

−n + r2 × (n+ 2)W 2
−n−1 − 2r × (n+ 2)W−nW−n−1

s2(n+ 1)W 2
−n−1 = (n+ 1)W 2

−n+1 + r2 × (n+ 1)W 2
−n − 2r × (n+ 1)W−n+1W−n

s2 × nW 2
−n = nW 2

−n+2 + r2 × nW 2
−n+1 − 2r × nW−n+2W−n+1

s2 × (n− 1)W 2
−n+1 = (n− 1)W 2

−n+3 + r2 × (n− 1)W 2
−n+2 − 2r × (n− 1)W−n+3W−n+2

s2 × (n− 2)W 2
−n+2 = (n− 2)W 2

−n+4 + r2 × (n− 2)W 2
−n+3 − 2r × (n− 2)W−n+4W−n+3

s2 × (n− 3)W 2
−n+3 = (n− 3)W 2

−n+5 + r2 × (n− 3)W 2
−n+4 − 2r × (n− 3)W−n+5W−n+4

...

s2 × 3W 2
−3 = 3W 2

−1 + r2 × 3W 2
−2 − 2r × 3W−1W−2

s2 × 2W 2
−2 = 2W 2

0 + r2 × 2W 2
−1 − 2r × 2W0W−1

s2W 2
−1 = W 2

1 + r2W 2
0 − 2rW1W0.

If we add the above equations by side by, we get

s2
n∑

k=1

kW 2
−k = (W 2

1 + 2W 2
0 − (n+ 1)W 2

−n+1 − (n+ 2)W 2
−n +

n∑
k=1

(k + 2)W 2
−k)

+r2(W 2
0 − (n+ 1)W 2

−n +

n∑
k=1

(k + 1)W 2
−k)

−2r(W1W0 − (n+ 1)W−n+1W−n +

n∑
k=1

(k + 1)W−k+1W−k)

and so

s2
n∑

k=1

kW 2
−k = (W 2

1 + 2W 2
0 − (n+ 1)W 2

−n+1 − (n+ 2)W 2
−n +

n∑
k=1

kW 2
−k + 2

n∑
k=1

W 2
−k) (12)

+r2(W 2
0 − (n+ 1)W 2

−n +

n∑
k=1

kW 2
−k +

n∑
k=1

W 2
−k)− 2r(W1W0 − (n+ 1)W−n+1W−n

+

n∑
k=1

kW−k+1W−k +

n∑
k=1

W−k+1W−k)

Next we calculate
∑n

k=1 kW−k+1W−k. Using the recurrence relation

W−n+2 = r ×W−n+1 + s×W−n

i.e.
sW−n = W−n+2 − rW−n+1

and multiplying the both side of the last relations by W−n+1 we obtain

sW−n+1W−n = W−n+2W−n+1 − rW 2
−n+1

and so

s× nW−n+1W−n = nW−n+2W−n+1 − r × nW 2
−n+1

s× (n− 1)W−n+2W−n+1 = (n− 1)W−n+3W−n+2 − r × (n− 1)W 2
−n+2
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s× (n− 2)W−n+3W−n+2 = (n− 2)W−n+4W−n+3 − r × (n− 2)W 2
−n+3

s× (n− 3)W−n+4W−n+3 = (n− 3)W−n+5W−n+4 − r × (n− 3)W 2
−n+4

s× (n− 4)W−n+5W−n+4 = (n− 4)W−n+6W−n+5 − r × (n− 4)W 2
−n+5

...

s× 4W−3W−4 = 4W−2W−3 − r × 4W 2
−3

s× 3W−2W−3 = 3W−1W−2 − r × 3W 2
−2

s× 2W−1W−2 = 2W0W−1 − r × 2W 2
−1

sW0W−1 = W1W0 − r ×W 2
0

If we add the above equations by side by, we get

s

n∑
k=1

kW−k+1W−k = (W1W0 − (n+ 1)W−n+1W−n +

n∑
k=1

kW−k+1W−k +

n∑
k=1

W−k+1W−k) (13)

−r(W 2
0 − (n+ 1)W 2

−n +

n∑
k=1

kW 2
−k +

n∑
k=1

W 2
−k)

Then, using Theorem 1.2 and solving the system (12)-(13), the required results of (a) and (b) follow.

Taking r = s = 1 in Theorem 1.2 (a) and (b), we obtain the following proposition.

Proposition 3.2 If r = s = 1 then for n ≥ 1 we have the following formulas:

(a)
∑n

k=1 kW
2
−k = 1

2 (−W 2
−n+1 + (−1 + 2n)W 2

−n + (1− 2n)W−n+1W−n +W 2
1 +W 2

0 −W1W0).

(b)
∑n

k=1 kW−k+1W−k = 1
4 ((−1− 2n)W 2

−n+1 + (1− 2n)W 2
−n + (−3 + 2n)W−n+1W−n +W 2

1 −W 2
0 + 3W1W0).

From the above proposition, we have the following corollary which gives sum formulas of Fibonacci numbers (take
Wn = Fn with F0 = 0, F1 = 1).

Corollary 3.3 For n ≥ 1, Fibonacci numbers have the following properties.

(a)
∑n

k=1 kF
2
−k = 1

2 (−F 2
−n+1 + (−1 + 2n)F 2

−n + (1− 2n)F−n+1F−n + 1).

(b)
∑n

k=1 kF−k+1F−k = 1
4 ((−1− 2n)F 2

−n+1 + (1− 2n)F 2
−n + (−3 + 2n)F−n+1F−n + 1).

Taking Wn = Ln with L0 = 2, L1 = 1 in the last proposition, we have the following corollary which presents sum
formulas of Lucas numbers.

Corollary 3.4 For n ≥ 1, Lucas numbers have the following properties.

(a)
∑n

k=1 kL
2
−k = 1

2 (−L2
−n+1 + (−1 + 2n)L2

−n + (1− 2n)L−n+1L−n + 3).

(b)
∑n

k=1 kL−k+1L−k = 1
4 ((−1− 2n)L2

−n+1 + (1− 2n)L2
−n + (−3 + 2n)L−n+1L−n + 3).

Taking r = 2, s = 1 in Theorem 1.2 (a) and (b), we obtain the following proposition.

Proposition 3.5 If r = 2, s = 1 then for n ≥ 1 we have the following formulas:
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(a)
∑n

k=1 kW
2
−k = 1

8 (−W 2
−n+1 + (−1 + 8n)W 2

−n + 2 (1− 2n)W−n+1W−n + (W1 −W0)
2
).

(b)
∑n

k=1 kW−k+1W−k = 1
8 ((−1− 2n)W 2

−n+1 + (1− 2n)W 2
−n + 4nW−n+1W−n + (W 2

1 −W 2
0 )).

From the last proposition, we have the following corollary which gives sum formulas of Pell numbers (take Wn = Pn

with P0 = 0, P1 = 1).

Corollary 3.6 For n ≥ 1, Pell numbers have the following properties.

(a)
∑n

k=1 kP
2
−k = 1

8 (−P 2
−n+1 + (−1 + 8n)P 2

−n + 2 (1− 2n)P−n+1P−n + 1).

(b)
∑n

k=1 kP−k+1P−k = 1
8 ((−1− 2n)P 2

−n+1 + (1− 2n)P 2
−n + 4nP−n+1P−n + 1).

Taking Wn = Qn with Q0 = 2, Q1 = 2 in the last proposition, we have the following corollary which presents sum
formulas of Pell-Lucas numbers.

Corollary 3.7 For n ≥ 1, Pell-Lucas numbers have the following properties.

(a)
∑n

k=1 kQ
2
−k = 1

8 (−Q2
−n+1 + (−1 + 8n)Q2

−n + 2 (1− 2n)Q−n+1Q−n).

(b)
∑n

k=1 kQ−k+1Q−k = 1
8 ((−1− 2n)Q2

−n+1 + (1− 2n)Q2
−n + 4nQ−n+1Q−n).

If r = 1, s = 2 then (s+ 1) (r + s− 1) (r − s+ 1) = 0 so we can’t use Theorem 3.1. In other words, the method of the
proof Theorem 3.1 can’t be used to find

∑n
k=1 kW

2
−k and

∑n
k=1 kW−k+1W−k. Therefore we need another method to

find them which is given in the following theorem.

Theorem 3.8 If r = 1, s = 2 then for n ≥ 1 we have the following formulas:

(a)
∑n

k=1 kW
2
−k = 1

162 (−(16 + 9n)W 2
−n+1 + 2(4 + 27n)W 2

−n − 4(2 + 9n)W−n+1W−n

+8 (2W1 −W0) (W1 +W0) + 9 (W1 − 2W0)
2
n2).

(b)
∑n

k=1 kW−k+1W−k = 1
162 (−(8 + 27n)W 2

−n+1 + 4(10− 9n)W 2
−n + 2(−38 + 9n)W−n+1W−n + 4(2W1 −W0)(W1 +

10W0)− 9(W1 − 2W0)2n2).

Proof. (a) and (b) can be proved by mathematical induction.

(a) (a) We prove (a). The proof will be by induction on n. We now prove (a) by induction on n. If n = 1 wee that
the sum formula reduces to the relation

W 2
−1 =

1

162
(25W 2

1 + 28W 2
0 + 62W 2

−1 − 28W0W1 − 25W 2
0 − 44W0W−1). (14)

Since
W−1 = (−1

2
W0 +

1

2
W1)

(14) is true. Assume that the relation in (a) is true for n = m, i.e.,

m∑
k=1

kW 2
−k =

1

162
(−(16 + 9m)W 2

−m+1 + 2(4 + 27m)W 2
−m − 4(2 + 9m)W−m+1W−m

+8 (2W1 −W0) (W1 +W0) + 9 (W1 − 2W0)
2
m2).
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Then we get

m+1∑
k=1

kW 2
−k = (m+ 1)W 2

−(m+1) +

m∑
k=1

W 2
−k

= (m+ 1)W 2
−m−1 +

1

162
(−(16 + 9m)W 2

−m+1 + 2(4 + 27m)W 2
−m

−4(2 + 9m)W−m+1W−m + 8 (2W1 −W0) (W1 +W0) + 9 (W1 − 2W0)
2
m2)

=
1

162
(−(16 + 9m)W 2

−m+1 + 2(4 + 27m)W 2
−m + 162(m+ 1)W 2

−m−1 − 4(2 + 9m)W−m+1W−m

−9 (W1 − 2W0)
2

(1 + 2m) + 8 (2W1 −W0) (W1 +W0) + 9 (W1 − 2W0)
2

(m+ 1)2)

=
1

162
(−(25 + 9m)W 2

−m + 2(31 + 27m)W 2
−m−1 − 4(11 + 9m)W−mW−m−1

+8 (2W1 −W0) (W1 +W0) + 9 (W1 − 2W0)
2

(m+ 1)2)

where

−(16 + 9m)W 2
−m+1 + 2(4 + 27m)W 2

−m + 162(m+ 1)W 2
−m−1 (15)

−4(2 + 9m)W−m+1W−m − 9 (W1 − 2W0)
2

(1 + 2m)

= −(25 + 9m)W 2
−m + 2(31 + 27m)W 2

−m−1 − 4(11 + 9m)W−mW−m−1.

(15) can be proved by using Binet formula of Wn. Hence, the relation in (a) holds also for n = m+ 1.

(b) We now prove (b) by induction on n. If n = 1 wee see that the sum formula reduces to the relation

W0W−1 =
1

162
(−W 2

1 − 111W 2
0 + 4W 2

−1 + 112W0W1 − 58W0W−1) (16)

Since
W−1 = (−1

2
W0 +

1

2
W1),

(16) is true. Assume that the relation in (b) is true for n = m i,e.,

m∑
k=1

kW−k+1W−k =
1

162
(−(8 + 27m)W 2

−m+1 + 4(10− 9m)W 2
−m

+2(−38 + 9m)W−m+1W−m + 4(2W1 −W0)(W1 + 10W0)− 9(W1 − 2W0)2m2).

Then we get

m+1∑
k=1

W−k+1W−k = (m+ 1)W−(m+1)+1W−(m+1) +

m∑
k=1

W−k+1W−k

= (m+ 1)W−mW−m−1 +
1

162
(−(8 + 27m)W 2

−m+1 + 4(10− 9m)W 2
−m

+2(−38 + 9m)W−m+1W−m + 4(2W1 −W0)(W1 + 10W0)− 9(W1 − 2W0)2m2)

=
1

162
(−(8 + 27m)W 2

−m+1 + 4(10− 9m)W 2
−m + 2(−38 + 9m)W−m+1W−m

+162(m+ 1)W−mW−m−1

+9 (W1 − 2W0)
2

(1 + 2m) + 4(2W1 −W0)(W1 + 10W0)− 9 (W1 − 2W0)
2

(m+ 1)2)

=
1

162
(−(35 + 27m)W 2

−m + 4(1− 9m)W 2
−m−1 + 2(−29 + 9m)W−mW−m−1

+4(2W1 −W0)(W1 + 10W0)− 9(W1 − 2W0)2(m+ 1)2)
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where

−(8 + 27m)W 2
−m+1 + 4(10− 9m)W 2

−m + 2(−38 + 9m)W−m+1W−m (17)

+162(m+ 1)W−mW−m−1 + 9 (W1 − 2W0)
2

(1 + 2m)

= −(35 + 27m)W 2
−m + 4(1− 9m)W 2

−m−1 + 2(−29 + 9m)W−mW−m−1.

(17) can be proved by using Binet formula of Wn. Hence, the relation in (b) holds also for n = m+ 1.

From the last theorem, we have the following corollary which gives sum formula of Jacobsthal numbers (take Wn = Jn

with J0 = 0, J1 = 1).

Corollary 3.9 For n ≥ 1, Jacobsthal numbers have the following property:

(a)
∑n

k=1 kJ
2
−k = 1

162 (−(16 + 9n)J2
−n+1 + 2(4 + 27n)J2

−n − 4(2 + 9n)J−n+1J−n + 16 + 9n2).

(b)
∑n

k=1 kJ−k+1J−k = 1
162 (−(8 + 27n)J2

−n+1 + 4(10− 9n)J2
−n + 2(−38 + 9n)J−n+1J−n + 8− 9n2)

Taking Wn = jn with j0 = 2, j1 = 1 in the last proposition, we have the following corollary which presents sum formulas
of Jacobsthal-Lucas numbers.

Corollary 3.10 For n ≥ 1, Jacobsthal-Lucas numbers have the following property:

(a)
∑n

k=1 kj
2
−k = 1

162 (−(16 + 9n)j2−n+1 + 2(4 + 27n)j2−n − 4(2 + 9n)j−n+1j−n + 81n2).

(b)
∑n

k=1 kj−k+1j−k = 1
162 (−(8 + 27n)j2−n+1 + 4(10− 9n)j2−n + 2(−38 + 9n)j−n+1j−n − 81n2).

4 Conclusion

Recently, there have been so many studies of the sequences of numbers in the literature and the sequences of numbers
were widely used in many research areas, such as architecture, nature, art, physics and engineering. In this work, sum
identities were proved. The method used in this paper can be used for the other linear recurrence sequences, too. We
have written sum identities in terms of the generalized Fibonacci sequence, and then we have presented the formulas
as special cases the corresponding identity for the Fibonacci, Lucas, Pell, Pell-Lucas, Jacobsthal, Jacobsthal-Lucas
numbers. All the listed identities in the corollaries may be proved by induction, but that method of proof gives no clue
about their discovery. We give the proofs to indicate how these identities, in general, were discovered.
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