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Abstract: In this paper, closed forms of the sum formulas Y ;_, kW72 and Y _, kW2, for the squares of generalized
Fibonacci numbers are presented. As special cases, we give summation formulas of Fibonacci, Lucas, Pell, Pell-Lucas,
Jacobsthal and Jacobsthal-Lucas numbers. We present the proofs to indicate how these formulas, in general, were
discovered. Of course, all the listed formulas may be proved by induction, but that method of proof gives no clue about

their discovery. Our work generalize second order recurrence relations.
2010 Mathematics Subject Classification. 11B37, 11B39, 11B83.

Keywords. Fibonacci numbers, Lucas numbers, Pell numbers, Jacobsthal numbers, sum formulas.

1 Introduction

Recently, there have been so many studies of the sequences of numbers in the literature and the sequences of numbers
were widely used in many research areas, such as architecture, nature, art, physics and engineering. Specifically, there
are so many studies in the literature that concern about special second order recurrence sequences such as Fibonacci

and Lucas. The sequence of Fibonacci numbers {F,,} is defined by
F,=F,1+F, 2, n>2 F=0F=1
and the sequence of Lucas numbers {L,,} is defined by

Ly=Ln 1+Lp 2, n>2 Ly=2L =1

The Fibonacci numbers, Lucas numbers and their generalizations have many interesting properties and applications to
almost every field. Horadam [8| defined a generalization of Fibonacci sequence, that is, he defined a second-order linear

recurrence sequence {W,, (Wy, Wy;r, s)}, or simply {W,,}, as follows:
Wn = 7nVVn—l + SWn—Q; WO = a7W1 = ba (Tl > 2) (1)

where Wy, W7 are arbitrary complex numbers and r, s are real numbers, see also Horadam m], EII and . Now
these generalized Fibonacci numbers {W,,(a, b;r, s)} are also called Horadam numbers. The sequence {W,,},>0 can be

extended to negative subscripts by defining
T 1
W_pn==-W_@1)y+ -W_(n—2
S s

for n =1,2,3,... when s # 0. Therefore, recurrence holds for all integer n.

For some specific values of a, b, r and s, it is worth presenting these special Horadam numbers in a table as a specific
name. In literature, for example, the following names and notations (see Table 1) are used for the special cases of r, s

and initial values.
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Table 1. A few special case of generalized Fibonacci sequences.

Nameofsequence Notation: W, (a,b;r, s) OEIS: [ll—?ll
Fibonacci F,=W,(0,1;1,1) A000045
Lucas L,=W,(2,1;1,1) A000032

Pell Py = Wy(0,1;2,1) A000129

Pell — Lucas Qn =Wn(2,2;2,1) A002203
Jacobsthal Jn =W,(0,1;1,2) A001045
Jacobsthal — Lucas Jn = Win(2,1;1,2) A014551

The evaluation of sums of powers of these sequences is a challenging issue. Two pretty examples are

- 1
> kP = g(—Psw —(9+8n) Pay +2(3+2n) PoyaPoi1 +1)
k=1

and

= 1
E kF?, = 5(—F3n+1 +(=142n)F? + (1 —-2n)F_, 1 F_, +1).
k=1

In this work, we derive expressions for sums of second powers of generalized Fibonacci numbers. We present some

works on sum formulas of powers of the numbers in the following Table 2.

Table 2. A few special study on sum formulas of second, third and arbitrary powers.

Nameo f sequence sums of second powers sums of third powers sums of powers
Generalized Fibonacci il 1j1215] 519 3lalli3
Generalized Tribonacci 15
Generalized Tetranacci 14 18'

The following theorem presents some summing formulas of generalized Fibonacci numbers with positive subscripts.

Theorem 1.1 For n > 1 we have the following formulas:if (s+ 1) (r+s—1)(r —s+1) #0 then

Zn: s (Q=s)Wio+1—s—r?=r2s)W2  +2rsWy 1 Whio+ (s — 1) WE+ 2 (s — 1) W§ — 2rsW1 W

W =
=" (s+ D) (rts—1)(r—s+1)
(b)
i Wes W — W2, +rs*W2  + (1 =12 = s )W Wi — rWE —rs?WE + s(—r? + s — 1)W1 W
L TR GrDrts—D(r—s+1D) :

Proof. This is given in [18].

The following theorem presents some summing formulas of generalized Fibonacci numbers with negative subscripts.

Theorem 1.2 Forn > 1 we have the following formulas: If (s+ 1) (r+s—1)(r—s+1) #0 then
(a)

(s—=W2, 1+ (2 +r2s+s—1)W2 —2rsW_,  W_,, + 2rsW1 W,
i +(1 =)W+ (1 —s—1r2—ris)W¢

;WE’“: G+D(r+s—1)(r—s+1)
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(b)

W2, —rsPW2 4+ (P + 2 = D)Wy Wopy + (1 = r? = s5)W Wy + rWE + rs?W§
(s+)(r+s—-1)(r—s+1)

n
Z W o iWog =
k=1

Proof. This is given in [18].

2  Summing Formulas of Generalized Fibonacci Numbers with Positive

Subscripts
The following theorem presents some summing formulas of generalized Fibonacci numbers with positive subscripts.

Theorem 2.1 For n > 1 we have the following formulas:if (s+ 1) (r+s—1)(r —s+1) #0 then

(a)
- A
ZkaQ = 2 : 2 2
P (s+ 1) (r—s+1)"(r+s-1)
where
A = (—G-DG+)r+s—1(r—s+1)n—r’s®—2r%s+1r°> -2 +4s — 2)W72,,
+(=(s+D)(r—s+1)(r+s—1)(s+r2s+7r* = 1)n —rts? — 225>
—2rfs —rt — st —2r%s? +28% + 297 — 257 + 25 — )W,
+2rs((s+ 1) (r—s+1)(r+s—1Dn+7r2s4+2r2 + 5% + 25 — )Wy s Wi
(st — 283 + 2r%5 4 257 — 25 + D)W + s%(r?s? + 2r%s — 1% 4+ 25% — 45 + 2)W2
—2rs(r? 4+ 8% + 5 — 2)W, W,
(b)
EWip i Wy, =
; (s+1*(r—s+1)°(r+s-1)°
where
Ay = r((s+D)(r—s+1)(r+s—n+s>+r*+s—2)W7,

+rs?((s+ 1) (r—s+1)(r+s—1)n+r’s+2r’ + s> +2s —3)W2,,
=G+ r=—s+1)(r+s—1)(*+s>—1)n—2r%s> —p? - 5
—2r2s% — 2r%5 4 292 + 25% — DWhaWhi1

r(r?s — 283 + 52 + D)WE —rs?(s® + 1% + 5 — 2)W¢

+5(2r2s% —rt + 57 4 2r% — 257 + 1) W

Proof. Using the recurrence relation
Wi =Wyt + sW,
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ie.
sWy = Wyao — Wiy,
SWE = (Whgo —mWyg1)? = W2, + 72 W2L — 2rW oWy
we obtain
52nW3 = anH_Q + nr2W,2H_1 —2r x nWy oWy
Sn—1W2_, = (n—10W2 +n-1Dr*W:—2rx(n—-1)W, W,
s2n—2W2 ., = (n—=2W2+(n—2)r*W2_, —2r x (n—2)W,,W,_1
s2n—3)W2, = (n—3)W2_,+(n—3)r*W2_,—2rx (n—3)W,_1W,_»

s23WE = 3WZ+3r*W7 — 2r x 3WsW,

sP2WF = 2WP +2r2W3 — 2r x 2W, W
SSWE = W3 +1°W5 — 2rWsW,.
If we add the above equations by side by, we get
n n+2 n+1 n+1
Y KW= (k=2)WZ+r2> (k= D)WZ =2r Y (k= )Wy Wi (2)
k=1 k=3 k=2 k=2
Note that
n—+2 n n
Sk—2)W7 = Wit (n—DW2, +nW2,+Y kWZ—2) W7
k=3 k=1 k=1
n+1 n n
Sk—D)WE = W2+ kW= W
k=2 k=1 k=1
n+1 n n
Sk=OWea Wi = nWuioWoia + > kWi Wi — > Wi Wi
k=2 k=1 k=1
If we put them into the , we get
S KWE = (WP (n—)W2 +nWi,+ > kWZ =2 Wp)
k=1 k=1 k=1

AW+ Y EWE =Y W)
k=1 k=1

—QT(HWn+2Wn+1 + Z kWi AWy, — Z Wk_;,_lW]g)

k=1 k=1
=
Y KWE =Y W =D RWE = =Y WE-2) WRA2r Y Wil
k=1 k=1 k=1 k=1 k=1 k=1
—2r Y kWiWigr +nWiy + WP = W2y,
k=1
—|—nW3+2 + nT2W3+1 —2nr W 1Whio
ans so
n n n n
(s2 =12 —1) Z kW,f = (—7“2 -2) Z Wk2 + 2r Z WiWiy1 —2r Z EWiWii1 + nW,f_H (3)
k=1 k=1 k=1 k=1

+W?E - W3+1 + nVV,%Jr2 + nr2V[/3+1 —2nr W1 Whia.
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Next we calculate Y ;_; kW11 Wj. Multiplying the both side of the relation
sWy = Wiao — Wi

by W,,+1 we obtain
sWiia Wi = Wi oW —r W2,

and so

snWp1W, = nWuioW,i1 —1 X nW,%H
stn— VD)W, W1 = (n— D)WW, —7 x (n—1)W2
s(n =)W, W, o = (n—=2)W,W,_1 —r(n—2)W2_,
s(n—3)Wn oWn_ 3 = (n—=2)Wn 1Wy_o—r(n—2)W2_,
(n — )Wy oW, 3 —r(n—4)W2_,

)
s(n - 4)Wn73Wn74 = )

sx AWsWy = AWeWs —r x 4W2

s X 3WyWs = 3WsWy — 7 x 3W2
s X 2WaWy = 2W W3 —r x 2W2
sWoWy = WiWy — W3

If we add the above equations by side by, we get

n n+1 n+1
$Y kWi Wiy = (k= D)W Wi —r Y (k= 1)WZ.
k=1 k=2 k=2
Note that
n+1 n n
Z(k — DWiaWi, = naWpiaWiypt + Z Wi a Wi — Z Wi W,
k=2 k=1 k=1
n+1 n n
S k=W = W2+ KW= W7
k=2 k=1 k=1
We put them in we obtain
sY kWiniWi = (nWasoWars + Y kWisa Wi = > Wi Wa)
k=1 k=1 k=1
—r(W2 4+ > kWE =Y W)
k=1 k=1
=
n n n n
S kWi Wi = > kWi Wi = —r > kWZ =Y Wi Wy
k=1 k=1 k=1 k=1

+7r Z W,f — m"W,%Jr1 +nWyioWyia
k=1

and so

(s = 1)) EWppa Wi = —r > kWZ = Wi Wi+ W2 = Wi,y +nWi oWy,
k=1 k=1

k=1 k=1
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Then, using
Wy = (TWl + SWO)

and Theorem and solving the system (3)-(5), the required results of (a) and (b) follow.

Taking r = s = 1 in Theorem (a) and (b), we obtain the following proposition.
Proposition 2.2 If r = s =1 then for n > 1 we have the following formulas:

(@) S p kW2 =3(-W2, 5 — B+ 2n)W2, | + (34 2n) Wy Wiy + WE+ WE — Wi W).

(b) Yp i kWi i Wi = $(1+2n) W25 + B+ 2n) W2, — (54 2n) Wy poWygr + WE — WE + 3W1 W),

From the above proposition, we have the following corollary which gives sum formulas of Fibonacci numbers (take
Wn = Fn with F() = 0,F1 = 1)

Corollary 2.3 Forn > 1, Fibonacci numbers have the following properties:

(@) Sh  kFE=1(-F2,,—(3+2n)F2  + (3+2n)FyoF,11 +1).

(b) Yohy kFep1Fe = (1 +2n) FZ 5 + (3+2n) Fiyy — (54 2n) FuyaFogr +1).

Taking W,, = L,, with Ly = 2,L; = 1 in the last proposition, we have the following corollary which presents sum

formulas of Lucas numbers.
Corollary 2.4 Forn > 1, Lucas numbers have the following properties:

(@) Yoh i kL; = %(_L%-&-Q —(3+2n)L2 1 + (3+2n)LpioLni +3).

(b) Yoy kLisrLi = 1((1+2n) L7 15+ (3+2n) L7y — (54 2n) LogoLns1 +3).
Taking r = 2,s = 1 in Theorem (a) and (b), we obtain the following proposition.
Proposition 2.5 If r = 2,5 =1 then for n > 0 we have the following formulas:

(@) Sh_ kWZ = 2(=W2, 5 — (9+8n) W2, 1 +2(3+2n) Woipo Wit + (Wi — Wo)?).

(b) Yo KWt Wi = (1 +2n) W2 5 + (3+2n) W2, —4(1+n) Wy oWo g + WP — WE).

From the last proposition, we have the following corollary which gives sum formulas of Pell numbers (take W,, = P,
with Py =0,P =1).

Corollary 2.6 Forn > 1, Pell numbers have the following properties:

(@) Yp_ kPl =3(—P2,—(9+8n) P2, +2(3+42n) Py Pryr +1).

(b) Yy i kPep1Pr=3((1+2n) P2, + (3+2n) P2, —4(1+n) PoyoPryr +1).

Taking W,, = @Q,, with Q¢ = 2,@1 = 2 in the last proposition, we have the following corollary which presents sum

formulas of Pell-Lucas numbers.
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Corollary 2.7 Forn > 1, Pell-Lucas numbers have the following properties:

(a) Yoh_ i kQF = %(_ 20— (948n) Q%1 +2(3+2n) Qui2Qni).

(b) >y FQr1Qr = %((1 +2n) Q%o+ (B+20) Q% —4(1+ 1) Qui2Qnir)

Ifr=1,s=2then (s+1)(r+s—1)(r—s+1) =0 so we can’t use Theorem In other words, the method of the
proof Theorem can’t be used to find Y ;_, kW? and >_;_, kW41 Wj,. Therefore we need another method to find

them which is given in the following theorem.

Theorem 2.8 Ifr =1,s =2 then for n > 1 we have the following formulas:

(a) Yop_ kWE = 17152((2 +2Tn)W2 5 4+ 2(=5+ In)W2, 1 — 42+ In) Wy o Wyia
+8 (2Wy — Wo) (Wi + Wo) + 9 (W — 2Wp)? n?2).

(b) > kWi Wy, = ﬁ((lo +9In)W2, 5 +4(10 = In)W2, | +2(—29 4+ 2Tn) W, oWy g1
+4 (W1 + IOWO) (2W1 — Wo) -9 (W1 — 2WO)2 n2).

Proof.

(a) The proof will be by induction on n. Before the proof, we recall some information on generalized Jacobsthal
numbers. A generalized Jacobsthal sequence {W,,}n>0 = {W,,(Wo, W1)}n>0 is defined by the second-order

recurrence relations

Wp=Wy1 +2W,_9; Wo=a, W1 =0b, (n2>2) (6)
with the initial values Wy, W1 not all being zero. The sequence {W,, },>¢ can be extended to negative subscripts
by defining ) .

W_p = —§W7(n71) + §W7(n72)
for n = 1,2, 3, .... Therefore, recurrence @ holds for all integer n. The first few generalized Jacobsthal numbers

with positive subscript and negative subscript are given in the following Table 1.

Table 1. A few generalized Jacobsthal numbers

n Wh, W_p,

0 Wy

1 Wi —iWo + 3
2 W+ Wy SWo — W
30 2Wo+3Wy —2IWo+ W,
4 Wo+5W1  EWo— W
5 10Wo+ 11w, —2W, + 1w,

6 22Wo+21Wy  BW,— W,

Binet formula of generalized Jacobsthal sequence can be calculated using its characteristic equation which is
given as
t2—t—-2=0.

The roots of characteristic equation are
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and the roots satisfy the following
a+pf=1,a8=-2,aa— 5 =3.
Using these roots and the recurrence relation, Binet formula can be given as

_ Aa"—BA"  Ax 27— B(—1)"

where A=W; —WyB =W+ Wy and B =W; — Wy = Wy — 2W,,.

W

We now prove (a) by induction on n. If n =1 wee that the sum formula reduces to the relation

1
W2 = @(QQWP? + 8W3 4 25W 7 + 28W3 — 44W3 Wy — 28W, W). (8)
Since
W2 = 2VVO + Wla
Ws = 2W,+ 3Wh,

is true. Assume that the relation in (a) is true for n = m, i.e.,

" 1
S kW = o2+ 21m)W2 o+ 2(=5 + 9Im)W2 .| — 42+ 9Im) Wi o Wit
k=1

+8 (2Wy — Wo) (W 4+ Wo) + 9 (W — 2W5)* m?).

Then we get
m+1 m
DEWE = (mA)WaL + > kW
k=1 k=1
1
= 5@+ 2Tm)W2 o + 4 (45m + 38) W2 | — 4(2 4+ 9m) Wiy 2 Win i1
—9 (W1 — 2Wo)? (1 4 2m) + 8 (2Wy — Wo) (W + W) + 9 (Wi — 2Wp)? (m + 1)?)
1
= @((29 F2Tm)W2 s+ 2(4 + 9m)W2 Ly — 4(11 + 9m) Wiy 3 Wi 10
+8 (2Wy — W) (Wh + Wo) + 9 (W — 2W5)? (m + 1)?)
1
= a3 (@ 27(m A+ D)W1) po +2(=5+9(m+ D)W1) 4
~A2+9(m A+ D) Wins1) 42 W1y +1 +8 @W1 = Wo) (Wi + Wo) +9 (Wi — 2W0)” (m +1)°)
where

(2 + 2Tm)W2 o + 4 (45m + 38) W2 — 42+ 9m) Wiy oWiny1 — 9 (W1 — 2W0)> (14 2m)  (9)
= (294 2Tm)W2 5 +2(4+ 9Im)W2 o — 4(11 + Im) Wy 3 Wi 2.

(©)) can be proved by using Binet formula of W,,. Hence, the relation in (a) holds also for n =m + 1.

(b) We now prove (b) by induction on n. If n =1 wee that the sum formula reduces to the relation

1
WoW, = @(1914/32 +AWE — WP — T6W§ — AW W3 + 112WW7). (10)
Since
Wy = 2Wy+ Wi,
W3 - 2VVO + 3W17
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(10)) is true. Assume that the relation in (b) is true for n = m, i.e.,

- 1
Z EWp Wy = @((10 +9m)W2 o+ 4(10 — IM)W2 1 +2(—29 + 27m) Wy 2 Wi
k=1
+4 (W + 10Wy) (2W7 — W) — 9 (W — 2Wo)? m?).
Then we get
m—+1 m
ST EWiaWi = (m+ DWapoaWinga + Y Wi Wi
k=1 k=1
1
= @((10 +9IM)W2 o+ 4(10 — 9Im)W2 1 + 2(=29 + 27m) Wy o Wi
+162(m + D)W oWini1 + 9 (Wh — 2W5)* (1 + 2m)
+4 (W + 10Wy) (2W1 — W) — 9 (W — 2Wo)? (m + 1)?)
1
= @((19 +Om)W2 5+ 4(1 — Im)W2 o +2(—2 4 2Tm) W,y s Wi o
+4 (Wy + 10Wo) (2Wy — Wo) — 9 (Wy — 2Wo)? (m + 1)?)
1
= @((10 +9(m A+ D)WE, 4140 +4(10 = 9(m + 1))WE 14,
+2(—29 + 27(m + 1))W(m+1)+2W(m+1)+1
+4 (Wl + IOWO) (2W1 — Wo) -9 (Wl — 2W0)2 (m + 1)2)
where
(10 + 9m)W2 o + 4(10 — Im)W2 1 + 2(—29 + 27Tm) Wi 2 Win i1 (11)

+162(m + D)W oWini1 + 9 (Wh — 2W5)* (1 + 2m)
= (194 9m)W2 5 +4(1 — IM)W2 5 +2(=2+ 2Tm) W, 3Win o,

can be proved by using Binet formula of W,,. Hence, the relation in (b) holds also for n = m + 1.

From the last theorem we have the following corollary which gives sum formulas of Jacobsthal numbers (take W,, = J,,
with Jo =0,J1 = 1).

Corollary 2.9 Forn > 1, Jacobsthal numbers have the following property:

(@) Yp kJE = 15((2+2Tn)J2 5 +2(=5 + 9In)J2, — 42+ 9n) Jpiadnir + 16 4 9n?).

(b) Ypi ki1 di = 155 (10 +9n)J2 5 + 4(10 — 9n)J2 4 + 2(—29 + 27n) Jni2 i1 + 8 — 9In?)

Taking W,, = j,, with jo = 2,41 = 1 in the last theorem, we have the following corollary which presents sum formulas

of Jacobsthal-Lucas numbers.
Corollary 2.10 For n > 1, Jacobsthal-Lucas numbers have the following property:

(8) Y0, kj2 = (24 27n)52 0 + 2(=5 + 9n)j2, 1 — 4(2 + 9n)jniodnis + 8102).

(b) >y kjksrir = 1a3 (10 +9n)j2 1o 4+ 4(10 — 9n)52 | + 2(—=29 + 27n) jpt2jns1 — 81n?).
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3 Summing Formulas of Generalized Fibonacci Numbers with Negative

Subscripts

The following theorem presents some summing formulas of generalized Fibonacci numbers with negative subscripts.

Theorem 3.1 For n > 1 we have the following formulas: If (s+ 1) (r+s—1)(r —s+1) #0 then

(a)

" A
DR = i >
et (s+1)"(r—s+1)"(r+s—-1)
where
As = (n(s—D(s+1)(r—s+1)(r+s—1)—s'+2s° —2r¥s — 25 + 2s — )W?2 .,
F((s+1)(r—s+1)(s+r2s+r2=1)(r+s—1)n+ris? —2r2s> —r2s? — 257 4 453 — 251 W?
+2rs((s+ 1) (—r+s—1)(r+s—1)n+s+r*+s-2)W_, 1 W_,
(s =283 4+ 2r%s + 25% — 25+ 1)W7 + 52 (r?s? + 2r%s — 1% + 257 — 4s + 2)WZ
—2rs(s® + 12 + 5 — 2)W Wy,
(b)
EW_ i W_y =
]; (s—|—1)2(r—s—|—1)2(r+5—1)2
where
Ay = r(=(+D)(r—s+1)(r+s—1)n+2s —r’s—s* - 1)W?2 .,

+rs?(—(s+ D) (r—s+1)(r4+s—1)n+s+r*+s5-2)W?2,
H(s+D)(r—s+1)(r+s—1)(r*+s*—1)n—s° +ris —2r%s> — 225+ 253 — s )W_, 1, W_,,
+rWE (=28 + 125 + 52 + 1) —rs(s + 12 + 5 — 2)W2

+s (=1t + st 4+ 2r%s? + 217 — 25 + 1) W1 W,

Proof. Using the recurrence relation

W_n+2 =7rX W_n+1 +sxW_,

i.e.
SW_n = W_n+2 - ’I“W_n+1
and using
27172 2 21772
sW2, = WZ o +r" W2, 1 —2rW_ oW 44,
W2 = W2, 3+ W2, o —2rW_, 3W
S —n+l = —nt3TT —n+2 ™V _ny3WV_nt2,
W2 = W2, W2, =2k W, W
S —n42 = ntaTT —n+3 ™V _nyaVV _ny3,
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we obtain
SExn+2W2, 5, = (m+2W2, +r2x (n+2)W2, | —2rx (n+2)W_,W_,
Sn+1DW2, 1 = (m+DW2 L+ x (n+1D)W2, —2r x (n+ )W_, 1 W,

2 xnW?, = nWEnJrQ + 72 x nWEnH —2rxnW_, 1 oW_, 1
Fxn-—1DW2 ., = (n—-DW2 s+r"x(n—1W2 5 —2rx(n—1)W_psW_p o
Fxn=2W2 ., = (n=2)W2 ,+7r*x(n—2)W2 _5—2rx (n—2)W_paW_p43
Sxn=3)W2 5 = (n=3)W2,  s+r°x(n—=3)W2, _, —2rx (n—3)W_,1sW_p44

2 x3W?2;, = 3W?2, +r? x3W2, —2r x SW_W_,

s2x2W2, = 2W§ +7r? x 2W2, — 2r x 2W W_,

SW?2, = WE+r2WE - 2rWV W

If we add the above equations by side by, we get

Y KW2, = (WP42W3 —(n+DW2, — (n+2W2, + ) (k+2)W?))
k=1 k=1

(W3 = (n+ DW2, + > (k+ 1)W?))
k=1

n
—=2r(WiWo — (n+ DW_ppa Wy + Y (k+ 1)W1 W)
k=1

and so

$2 Yy kW2, (WP +2W5 — (n+ W2,y — (n+2)W2, + > kW2, 42> W?)) (12)
k=1 k=1 k=1

Hr2WE = (n+ W2, + 3 kW2, + ) W2 = 2r(WiWo — (n+ )W_pa Wy,
k=1 k=1

A RW W+ Y W Wog)
k=1 k=1

Next we calculate ZZ=1 kW _g11W_g. Using the recurrence relation
W pyo=rxW_,41+sxW_,

i.e.
sW_p =W_p10—rW_,11

and multiplying the both side of the last relations by W_,, 11 we obtain
5W—n+1W—n = W—n+2W—n+1 - TWEn+1
and so

2
sXxnW_p Wy = nW_ oWy —rxnaW2,

s X (TL — 1)W7n+2W7n+1 = (TL — 1)W7n+3W7n+2 —1rX (TL — 1)W3n+2
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sx(M=2)W_pisW_pia = (n—2)W_poaW_pi5—7x (n—2)W2, 4
sX (n=3)W_piaW_pny3 = (n=3)W_pisW_,pu—7rx (n—3)W2 .,
sX (=W pysWopis = (=W W5 —1rx (n—4)W2, 5
sXAW 3W_y = AW _oW_3 —r x 4W2,
sX3W_oW_3 = 3W_ W_y—rx3W2,
SX2W_ A W_y = 2WeW_; —r x 2W2,
sWoW_y = WiWy—rx Wg

If we add the above equations by side by, we get

$Y KW_pWop = (WiWo— (n+ DWopaWop + Y EW_pd Wop + > W1 Woy) (13)
k=1 k=1 k=1

(W5 = (n+ W2, + Y kW2, 4+ > W2
k=1 k=1

Then, using Theorem [1.2 and solving the system (12)-(13)), the required results of (a) and (b) follow.

Taking r = s = 1 in Theorem (a) and (b), we obtain the following proposition.
Proposition 3.2 If r = s =1 then for n > 1 we have the following formulas:

(@) Sop_ kW2, =2(-W2 4+ (=1 +20)W2, + (1 = 2n)W_, W, + WE + WZ — W1 W).

(b) Yp i kW ot Wy = (=1 =2n)W2 . + (1 = 2n)W2, + (=3 + 2n)W_, 1 W_,, + WE — W¢ + 3W1 W),

From the above proposition, we have the following corollary which gives sum formulas of Fibonacci numbers (take
Wn = Fn with FO = O,Fl = 1)

Corollary 3.3 For n > 1, Fibonacci numbers have the following properties.

(@) Yop  kF? = 3(—F%,  +(-1+2n)F2, + (1 —2n)F_p 1 F_, + 1).

(b) Yp i kF i Fp=3((-1=2n)F2 + (1 —2n)F2, + (=34 2n)F_, 1 F_,, + 1).

Taking W,, = L,, with Ly = 2,L; = 1 in the last proposition, we have the following corollary which presents sum

formulas of Lucas numbers.
Corollary 3.4 For n > 1, Lucas numbers have the following properties.

(a) S0 kL%, = L(—L2, 4 (=14 20)L2, + (1 — 20)L 1L, +3).

(0) i kLopialow = 3((=1=2n)L2, 4 + (1= 2n)L2, + (=3 +2n)L_ny1 L +3).
Taking r = 2, s = 1 in Theorem (a) and (b), we obtain the following proposition.

Proposition 3.5 If r = 2,5 =1 then for n > 1 we have the following formulas:
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(a) Sho AW = 3 (W2, 0+ (—1+8n) W2, 4+ 2(1 = 20) Wep i Wopy + (W1 — W)?).

(b) Sr kW ot W = (=1 =2n) W2,y + (1 = 2n) W2, + 4nW_,  W_,, + (W — W)).

From the last proposition, we have the following corollary which gives sum formulas of Pell numbers (take W,, = P,
with PO = 07P1 = ].)

Corollary 3.6 For n > 1, Pell numbers have the following properties.

(@) Y1 kP2 = g(=P2, 0 + (=14 8n) P2, +2(1 = 2n) P_p1 P + 1)
(b) Sh i kP_jp1 P = 5((=1=2n) P2, + (1 —2n) P2, +4nP_, 1 P, +1).

Taking W,, = Q,, with Q9 = 2,@Q1 = 2 in the last proposition, we have the following corollary which presents sum

formulas of Pell-Lucas numbers.

Corollary 3.7 Forn > 1, Pell-Lucas numbers have the following properties.

(a) 22:1 kQ%k = %(_QQ—n-‘,—l + (_1 + 8") Q2—n + 2 (1 - 2”) Q—7L+1Q—n)-

(b) ZZ:1 kQ_1Q-y = %((—1 - 2”) anﬂ + (1 - 2”) Q%n + 4nQ7n+1an)-

Ifr=1,s=2then (s+1)(r+s—1)(r—s+1) =0 so we can’t use Theorem In other words, the method of the
proof Theorem [3.1| can’t be used to find >°;_, kW?, and >}, kW_j11W_j. Therefore we need another method to

find them which is given in the following theorem.

Theorem 3.8 Ifr =1,s =2 then for n > 1 we have the following formulas:

(@) Ypo kW2, = 15 (=16 +9n)W?2, || +2(4 +27Tn)W2, — 42+ 9In)W_, W,
+8 (2W — Wo) (Wi 4+ Wo) + 9 (W — 2W4)* n2).

(b) Sp i W Wy = 105 (—(8 4+ 27Tn)W?2, | +4(10 — In)W2, + 2(—=38 4+ 9In)W_,, 1 W, + 4(2W1 — Wo) (W7 +
10W0) — 9(W1 — 2W0)27’L2).

Proof. (a) and (b) can be proved by mathematical induction.

(a) (a) We prove (a). The proof will be by induction on n. We now prove (a) by induction on n. If n =1 wee that
the sum formula reduces to the relation
1
W2, = 16—2(2514/12 + 28WZ + 62W2, — 28Wo W — 25W2 — 44WoW_ ). (14)

Since ) )
W_y = (*iwo + §W1)

is true. Assume that the relation in (a) is true for n = m, i.e.,
< 1
> kW2, = 1o (16 + Im)W?2, 1+ 2(4 4+ 20m)W2 L — 42+ 9Im)W_ Wy,
k=1

+8 (2W — W) (W 4+ Wo) + 9 (W, — 2Wo)* m?).
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Then we get
m+1 m
STEW2 = (mA)W? g+ W
k=1 k=1
= (m+1)W23,_,+ 1(152 (—(16+9m)W2, | +2(4+2Tm)W?2
—4(2 4 IM)W_ e A W + 8 (2W1 — Wo) (W1 4+ Wo) + 9 (W — 2Wo)* m?)
= %(_(16 FImM)W2 24+ 20m)W2 L+ 162(m 4+ D)W — 42+ Im)W o 1 Wy,
—9 (W1 — 2Wo)? (1 + 2m) + 8 (2Wy — Wo) (W1 + W) 4+ 9 (W1 — 2Wp)? (m + 1)?)
= %(—(25 +9m)W2, +2(31 +2Tm)W2, | — 411+ 9m)W_,W_p, 4
+8 (2W — Wo) (Wi 4+ Wo) + 9 (W — 2W5)? (m + 1)?)
where

—(16+9m)W2, | +2(4+2Tm)W2 +162(m + )W?2,
—4(2 4+ IM)W_ e a W — 9 (W1 — 2W0)? (1 + 2m)
= —(254+9m)W?2, +2(31+2Tm)W2, | —4(11 + 9m)W_,, W_,,_1.

can be proved by using Binet formula of W,,. Hence, the relation in (a) holds also for n = m + 1.

(b) We now prove (b) by induction on n. If n = 1 wee see that the sum formula reduces to the relation

1
WoW_; = @(—Wf — 11IWE +4W2 | + 112W W, — 58WW_1)

Since . )
W71 = (_§WO + §Wl)7

is true. Assume that the relation in (b) is true for n = m ie.,

Ui 1
§ EW_jaW_py = @(—(8 +2Tm)W2, | +4(10 — 9m)W?2
k=1

+2(=38 + 9IM)W_ s AWy +4(2W1 — Wo) (W1 + 10Wy) — 9(W; — 2Wp)*m?).

Then we get
m—+1 m
Z W aWop = (m+DW_ iy Womer) + Z W_ g1 Wy
k=1 k=1

1
= m+1D)W_, W_p 1+ @(—(8 +27Tm)W?2, L +4(10 —9m)W?2

+2(=38 + IM)W_ s 1 W + 4(2W1 — Wo) (W1 + 10Wy) — (W — 2Wp)?m?)

1
= 16+ 21m)W2, 1 +4(10 — 9m)W?2 | +2(=38 + 9m)W_ 1 W_pp,

+162(m + ].)memefl

(16)

+9 (W1 — 2Wo)? (1 4 2m) + 4(2Wy — Wo)(Wy + 10Wp) — 9 (Wy — 2Wo)* (m +1)?)

1
= (-G XTM)W2, +4(1 — 9m)W?2, | +2(—29 + 9m)W_ W_m_1

+4(2W, — Wo)(Wy + 10Wo) — 9(W; — 2W5)% (m + 1)?)
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where

—(84+2Tm)W?2, | +4(10 —9m)W2  +2(=38 + Im)W_,, 1 W_p, (17)
+162(m + DW_ W1 + 9 (W) — 2W0)” (1 4 2m)
= —(3542tm)W?2, +4(1 —9m)W? | +2(=29+9Im)W_,,W_,,_1.

can be proved by using Binet formula of W,,. Hence, the relation in (b) holds also for n = m + 1.

From the last theorem, we have the following corollary which gives sum formula of Jacobsthal numbers (take W,, = J,,
with J() = 0, Jl = 1)

Corollary 3.9 Forn > 1, Jacobsthal numbers have the following property:

(@) Yp_ikJ?), = 105 (—(16 +9n)J% 1 +2(4+2Tn)J2, — 42+ 9n)J_pi1J_y + 16 + 9n?).
(b) S i kJ pi1d i = 15 (—(8+27n)J2, 11 +4(10 — 9n)J?, +2(—38 4+ 9In)J_p 1 + 8 — In?)

Taking W,, = j, with jo = 2,j; = 1 in the last proposition, we have the following corollary which presents sum formulas

of Jacobsthal-Lucas numbers.
Corollary 3.10 For n > 1, Jacobsthal-Lucas numbers have the following property:

(@) Y1 ki2e = 105 (—(16 +9n)j2, 1 +2(4 +27n)j%,, — 424 9n)j—nt1j—n + 81n2).

(b) Y kjkrrjok = ﬁ(—@ + 27n)j3n+1 +4(10 — 9n)j2,, + 2(=38 + 9n)j_pni1j—n — 81n?).

4 Conclusion

Recently, there have been so many studies of the sequences of numbers in the literature and the sequences of numbers
were widely used in many research areas, such as architecture, nature, art, physics and engineering. In this work, sum
identities were proved. The method used in this paper can be used for the other linear recurrence sequences, too. We
have written sum identities in terms of the generalized Fibonacci sequence, and then we have presented the formulas
as special cases the corresponding identity for the Fibonacci, Lucas, Pell, Pell-Lucas, Jacobsthal, Jacobsthal-Lucas
numbers. All the listed identities in the corollaries may be proved by induction, but that method of proof gives no clue

about their discovery. We give the proofs to indicate how these identities, in general, were discovered.
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