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Abstract

In this paper, we introduce a g-analogue of the Weinstein operator and we investigate its eigenfunction. Next, we
define and study its associated Fourier transform which is a g-analogue of the Weinstein transform. In addition to

several properties, we establish an inversion formula and prove a Plancheral theorem for this g-Weinstein transform.
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1 Introduction

The classical Weinstein operator defined by the use of the Laplacian and Bessel operators as
1

It is now known as an important operator in analysis, due to its applications in pure and applied Mathematics, espe-
cially in Fluid Mechanics ([10]).

The relevant harmonic analysis associated with the Weinstein operator is studied by Ben Nahia and Ben Salem
([7, 8, 9]). In particular, the authors have introduced and studied the generalized Fourier transform associated with

the Weinstein operator, called as Weinstein transform.

During the few last decades many authors were interested in g-analogues of different integral transforms and their
applications.

In [2, 1], W. H. Abdi studied a g-analogue of the Laplace transform, in [17], T. H. Koornwinder and R. F. Swarttouw
studied a g-analogue of the Hankel transform, in [13], A. Fitouhi et al. studied a g-analogue of the Bessel trans-
form, in [11], the authors studied a g-analogue of the Mellin transform, in [18, 19], Rubin studied a g-analogue of
the Fourier transform and in [5], the authors studied a g-analogue of the Dunkl transform .... But in literature there
is no manuscript on the subject of Weinstein transform. So, it is in this context that this paper is built around the

construction of a g-analogue of the Weinstein transform and study its properties.

This paper is organized as follows: In Section 2, we present some preliminaries results and notations that will be

useful in the sequel. Section 3 is devoted to recall some result about the g-Rubin’s transform, about the normalized
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third Jackson g-Bessel function and about the g-Bessel transform. Is Section 4, we introduce the ¢-Weinstein operator

and its eigenfunction. Finally, in Section 5, we introduce and study the ¢-Weinstein transform. We provide for this

transform an inversion formula and a Plancheral theorem.

1 Notations and preliminaries

For the convenience of the reader, we provide in this section a summary of the mathematical notations and definitions

used in this paper. We refer the reader to the general references [14] and [16], for the definitions, notations and

properties of the g-shifted factorials and the g-hypergeometric functions. Throughout this paper, we assume ¢ €]0, 1]

and we denote Ry = {£¢" : neZ},Ryy ={¢" : neZ}

1.1 Basic symbols

For x € C, the g¢-shifted factorials are defined by

n—1 oo

(x;q)O =1 (-T;Q)n = H(l - qu)7 n=12 ., (x;Q)oo = H(l - qu)'

k=0 k=0

We also denote

4:9)n
, xz€C and [n]!= (g_;)n,

1.2 Operators and elementary special functions

The ¢-Gamma function is given by ([15] )

T(z) = mu —tT, 2 £0,-1,-2,...

It satisfies the following relations

Loz +1)=[z]Tg(x), Ty(l)=1 and lim Ty(z)=T(z),R(z)>0.

q—1—

The g-trigonometric functions g-cosine and g¢-sine are defined by ([18, 19])

o0 2n o0

X
cos(z;q?) = »_(—1)"g" "t

|
n=0 [Qn]q n=0

The g-analogue exponential function is given by ([18, 19])

e(z;q*) = cos(—iz; ¢*) +isin(—iz; ¢%).

n € N.

. sin(aig?) = Y (—1)g)

(1.3)

(1.4)

(1.5)

These three functions are absolutely convergent for all z in the plane and when ¢ tends to 1 they tend to the

corresponding classical ones pointwise and uniformly on compacts.
Note that we have for all x € R, ([18])

1
(45 9)oo

| cos(z3¢%)| < , |sin(z; )] <

)

(4 9) o

o1
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and )
2
| e(iz;q7)| < . (1.6)
The ¢?-analogue differential operator is ([18, 19])
fla'z)+f(—a'2) — flar) + F(—q2) —2f(—2)
0y(f)(z) = 20— q)z 70 7)
i 9,(N@) (i R,) if =0,

Remark that if f is differentiable at z, then lin% 9y(N)(z) = f'(2).
q—

A repeated application of the g?-analogue differential operator n times is denoted by:
5)2]‘ =f, 8;‘+1f = 0q(9; f)-

For 8 = (681, 02) € N x N, we use the notation
Dﬁ — aﬁl 6ﬁ2

T,97Y,q"

The ¢?-analogue Laplace operator or ¢-Laplacian is given by
Ag=02,+02 .

The following lemma lists some useful computational properties of J,, and reflects the sensitivity of this operator to

parity of its argument. The proof is straightforward.

Lemma 1.1
1) 9y sin(z; ¢?) = cos(z; ¢2), 9, cos(z; —sin(z; ¢%) and 3 ez g 2)( e(z;¢?).

) =
2) For all function f on Ry, 0,f(2) = fela (1—)q)z (2) + (() ;Zqz)
3) For two functions f and g on Ry, we have

«if f even and g odd

94(f9)(2) = q04(f)(a2)9(2) + f(az)04(9)(2) = 0q(9)(2)) f(2) + a9(az)04(f)(q2);
if [ and g are even

04(f9)(2) = 0()(2)9(a"2) + f(2)0q(9)(2).

Here, for a function f defined on Ry, fo and f, are its even and odd parts respectively.
The ¢-Jackson integrals are defined by ([15])

| t@dia == a0 X a"fer), [ j@dia= [ g [ e (18)
| t@da=a-0 3 ) (1.9)

and - -
| f@da=0-0 Y 5@+ 0-0) 3 o H-a), (1.10)

provided the sums converge absolutely.

The following simple result, giving g-analogues of the integration by parts theorem, can be verified by direct calculation.

52


http://purkh.com/index.php/mathlab

MathLAB Journal Vol 3 (2019) http://purkh.com/index.php/mathlab

Lemma 1.2 "
1) Fora >0, if | (0,f)(x)g(x)dsx exists, then
—a

/ " (0u) @)g(@)daz = 2 [o(a " a)go(@) + fola)ge( / e

2) If /_OO (0yf)(x)g(x)dyx exists,

/m(a D@)g(@)dge = — / 1(2)(049)(x)dq

In the end of this subsection, let §%, a > —3, denotes the Dirac-measure at y € R, defined on R, by

(A= qlyl?*t2]"" if 2=y
00 (x) =

Y

0 if x#y.

We recall that the ¢g-Rubin’s exponential function satisfies the following orthogonality relation ([6]).

2

< 2 . 2 QIZQ(%) -3
/ e(izt; g*)e(—iyt; ¢°)dgt = | ——=F| 0y 2(z), z,y € Ry.
—o0 (1+4q)2

1.3 Sets and spaces

By the use of the g?-analogue differential operator d,, we note:

o £,(R,) the space of functions f defined on Ry, satisfying
VneN, a>0, P,.f)= sup{|8§f(x)\;0 <k<njz€[-a,a]NR,y} < oo

and
lim 97 f(x) (in Ry) exists.

z—0 ¢
We provide it with the topology defined by the semi norms P, q.
o &, 4(R,) the subspace of £;(R,) constituted of even functions.
o S;(R,) the space of functions f defined on R, satisfying
Vn,m €N, Py q(f) = sup [ 270 f(r) |[< +o0
T€ER,

and
hn}) Oy f(x) (in Ry) exists.

o S, ¢(Ry) the subspace of S;(R,) constituted of even functions.

e D,(R,) the space of functions defined on R, with compact supports.

e D, ,(R,) the subspace of D,(R,) constituted of even functions.

o &, (R, x R,) the space of functions f defined on R, x R, satisfying forall n € N and all a > 0,

Paalf) = sup {ID F(2,9)],| 1< 13 (2,9) € Ry x Ry : | (2, )| = Va2 + 32 Sa} < o
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and

DB . R R -
(z,9)—(0,0) qf(x,y) (in g X q) exists,

where 3 = (f1,2) € N? and | B |= B + Po.
We provide it with the topology defined by the semi norms P, ,.

o &, (R, x R,) the space of functions in &,(R, x R,), even with respect to the last variable.

o S,(R, x Ry) the space of functions f defined on R, x R, satisfying

VneN, P,,(f)= sup sup ‘DB (|| (z,y) ||*" f(x,y))| < 400
z,y€Ry |B|<n
and

(2,y)—(0,0) Dgf(:my) (in Ry xRy) exists.

o S, ¢(Ry x R,) the space of functions in S;(R, x R,), even with respect to the last variable.

Using the ¢-Jackson integrals, we note for p > 0 and o > —5

o Li(Ry) = {f £ llp,q = </ |f($)|pdqx>p <oo},
® Lz,q(Rq) = {f : Hpr,a,q = (/_ |f(33)p|33|2&+1dq$> ’ < oo} ,

-Lz,q<Rq,+>—{f:||fp,a,q—(/o |f<w>|px2““dqx) <oo},
(') —+oo %

o L7 (R, x Ry) = f:||f|Lg,q<quRq,+>=(/ / |f(I7y)py2°‘+1dqxdqy> csol
0 —00

o LF(Ry) = {f N fllooig = sup |f(2)] < 00}7
z€R,

o LP(Rg4) = {f: [flloc.qg = sup [f(z)] < OO},

z€Rg,+

o LE(Ry X Ry ) = {f e @xr, )= sup  [f(2)] < 00} :
(z,y)ERg X Ry, +
2 ¢-Bessel Fourier and ¢-Rubin’s Fourier transforms

2.1 ¢-Rubin’s Fourier transform

R. L. Rubin defined in [19] the ¢*-analogue Fourier transform as

+q)2
~ 2)
Flosa®) = 1)/ F(O)e(—itas ?)dy
2
Letting ¢ 1 1 subject to the condition
Log(1 —
og(1—q) c 2.,
Log(q)

o4

(2.1)
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gives, at least formally, the classical Fourier transform. In the remainder of this paper, we assume that the condition
(2.2) holds.

It was shown in [19] that f(, q?) verifies the following properties:
DT (), uf(u) € Ly(R,), then 0, ( F) (2:0%) = (~iuf (u))w: %)
2 It f, 0, € Ly(Ry), then (9,1) " (w;0%) = i ] (2;%).
3) 7 (:;¢?) is an isomorphism from L2(R,) onto itself. For f € L(R,), we have

A ~

—1 ~
vweR, (F)  (@ig®) = F(-21¢") and |7 (1492 = I |2
2.2 ¢-Bessel Fourier Transform
The normalized g-Bessel function is defined by
+o00 2n
T +1 n(n+1)
ja(wig®) = 3 (=) 2(a+1)q ( T ) . (2.3)
o Fp(a+n+1)Ten+1) \1+¢
Note that we have
Ja(236%) = (1= ¢°)°Tga(a + 1) (1 = @)2) " Ja((1 = @)z36°), (2.4)
where (42 )
z%(¢™ "5 q a
Ja(x;QZ) = W)oo-l@l(oéqz +2§q27q2$2) (2.5)
is the Jackson’s third ¢-Bessel function.
Using the relations (2.3) and (1.4), we obtain
jfé(x; q?) = cos(z;¢%), (2.6)
(o) = L) @)
Jy(@q) = —— :
and
. 2 o . 2
(@) = — N ). 2.8
Ogjalx;q”) Ba i’ +1(7:47) (2.8)
In [12], the authors proved the following estimation.
1
Lemma 2.1 For a > —5 and v € Ry, we have
. (—q% @)oo (=2t ) o _
o |jalz:d?)| < (@ ) 1, if |z| < ﬁ
) e} (Log(lfq)\z:\ )2 . 1
q Logq , if |x| > S

o for all veER,ju(z;¢°) =0(x7") as |z| — oo (in R,).

As a consequence of the previous lemma and the relation (2.8), we have for o > 3

Ja (5 q2) € S*yq(Rq)'
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Then, from the relations (2.6), (2.7) and (1.5), we deduce that the two g-trigonometric functions and the Rubin’s
g-exponential function are in S(R,).

1
Furthermore, for «a > —5 Ja(.;¢%) has the following g-integral representations of Mehler type

ja(x;q) Caq /W tq)cos(xtq)d

(2.9)
Clo;¢? / Wa(t; ¢*)e(—ixt; ¢*)d,t,
where o D
o+
Clasq®) = (1 +q) ok (2.10)
qu(%)rq2(a+ %)
and (2% )
17475 q%) oo
L2
Wl = e 21
In particular, using the inequality (1.6), we obtain
lja (23 ¢ <2 vzcemr 2.12
Ja 7q )| — ’ T e q- ( N )

(45 @)oo

The orthogonality relation of the Jackson’s third g-Bessel function J,(.; ¢?) proved in [17] gives the following orthog-

onality relation for the normalized ¢-Bessel function:

“+ o0
. . a « 2 (6%
/ Ja(@t;4%)ja(yt; @) dgt = [(1+ )Tz (a + D)7 05 (y), 2,y € Ry (2.13)
0
Using the same technique as in [13], one can prove the following result.

Proposition 2.1 For \ € C, the function j,(A\x;q?) is the unique analytic even solution of the problem

f0) = 1,

1

where Ly f(x) = et

Ol |***10, f ()] is the q-Bessel operator.

Definition 2.1 The g-Bessel Fourier transform is defined for f € Lé’q(Rq’+)7 by

Faal ) = oy /O (@) a2 dye (2.15)

where

(2.16)

O U i
wq Fq2 (a + 1)

Letting g 1 1 subject to the condition (2.2), gives, at least formally, the classical Bessel-Fourier transform.

Some properties of the ¢-Bessel Fourier transform are given in the following results. For their proofs, we refer to [5].

o6
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Proposition 2.2

1. For f € L%, ,(Rq 1), we have Foq(f) € L (Rg1) and

2Caq

[ Faq(f)lloo.g < @)

1111
2. For f,g € L. ,(Ry ), we have
/O (@) Fagg) ()220 dyr = / Faa (N2, A,

8. If f and L f are in L}, ,(Rq ), then

FaaLg FYA) = =X Faq(f)N).

4) If f and 2 f are in L, ,(Ry ), then
L?(-Fa,qoc)) = 7~7:oz,q(1'2f)'
Proposition 2.3 If f € Lé’q(Rq’+), then

VzeR,y, F(@) = cay /0 Fra(F) (N (A )N .

Theorem 2.1
1) Plancherel formula
For all f € D, 4(R,), we have

[Fea(Nll2.aq = [[fll2,000

2) Plancherel theorem

The q-Bessel transform can be uniquely extended to an isometric isomorphism on Li)q(Rq7+) with .7-"(;75

3 The ¢-Weinstein operator and its eigenfunctions

Let us now introduce the generalized Weinstein operator Ag defined on Ry x Ry 4 by:

1 1
_ 92 2041 _ a2
DG =05, + [y|2a+1 Ogy([yl** " 0gy) =05, + Ly, a> 5
where Ly is the g-Bessel operator.
In the case a = —%, A reduces to the ¢*-analogue Laplace operator A,.

The g-Weinstein operator A tends, as ¢ tends to 1, to the classical Weinstein operator A, given by:

0? 1 02 0?2
N =~ - 2a4+1 ¥ .
@ op2 + [y |21 92 <| vl 8y2)

o7

= Faq-

(2.17)

(2.18)

(3.1)
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Remark 3.1 According to Lemma 1.1, we have

2a+1
« —q
Ly f(z,y) = maq,yf(%qy) + 33,yf(35»y)
Proposition 3.1 For all f and g such that
+oo +oo
/ Ag‘f(x,y)g(x,y)y2a+1dqxdqy exists (3.2)
0 —00
we have
o0 o0 _— +o0 o0 01
/ A fa,y)g(z,y)y**Hdaadgy = / AGg(@,y) f(z,9)y™ " dgzdgy. (3.3)
0 —00 0 —o0

That is Ag is self-adjoint.

Let f and g verify the hypothesis of the proposition. Then, according to the integration by parts theorem and the

Fubini’s theorem, we have

+oo +oo Lo oo
/ / A f(z,y)g(z, y)y**Td,rd,y = / / ag,a:f(x’ y)g(z, y)dqm> y2 ot d,y
0 — 00 0

—00

+o0o
/0 L f(x, y)g(w,y)ym“dqy) dgw

—+oo
/ f(w,y)aﬁ,zg(%y)dqﬂ y**dgy

|
Proposition 3.2 For all A = (A1, \2) € C? the system
anu($7 y) = —)\%u(gc, y)7
07 ,u(z,y) = —Mu(z,y)
u(0,0) = 1, (3.4)
O0qyu(0,0) = 0,
Ogou(0,0) = —i\
has as analytic solution Ag even with respect to the second variable the function given by
o (@) = e(—ihi@; ¢%)ja(Noy; ¢2). (3.5)

Let A = (A1, A2) € C? and impose u(z,y) = e(—iA12; ¢%)ja(A2y; ¢%). Then, according to the expression (2.14), we have

Lou(z,y) = e(—idz;¢®)LE (ja(A210%)) (v)
—)\gu(x,y)

o8
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and according to Lemma 1.1, we have

ag,zu(xa y) - 7)‘%“(1,7 y)

Furthermore, from the definition of the ¢-Rubin’s exponential function and of the normalized ¢-Bessel function, we
get u(0,0) =1, 0g,u (0,0) =0 and
0y,2u(0,0) = —i). |

The function Ag" \(z,y) called g-Weinstein kernel has a unique extension to Cx C. In the following result, we summarise

some of its properties:

Proposition 3.3 Let A = (A, \2),2 € R? and a € C. Then,

1. The g-Weinstein fonction Ag \ satisfies the following g-differential equation

AgAGN) == X2 AG (3.6)

2. ?,A(Z) = A?,z()‘)} ?,a)\(z) = Aga(az) and

q,
AS‘,A(Z) = A?,—,\(Z) = Ag,(—,\l,,\Z)(Z)-

S Ifa= —% then
o (@) = e(—idiz; ¢°) cos(Nay; ¢°).

4. For a > —%, the function A\ has the following g-integral representation
1
Aga(z,y) =aa,q€(—i>\1x;q2)/ Walt, ¢*) cos(Aayt; ¢°)dgt. (3.7)
0

5. For all A € Ry x Ry the function Ay \ is bounded on Ry x Ry and we have

4

| Ag (2, y) |< T (z,y) € Ry x Ry. (3.8)

1. Let A = (A1, A\2) € R%. Then
Ag(Ag ) = 8§,x( ax) T Lg(Ag ) = —(AT+A3) A
=— [ A A7
2. follows from the definition of Ag ;.
3. is a direct consequence of the relation (2.6).
4. The g-integral representation of Mehler type of the normalized ¢-Bessel function (2.9) gives the relation (3.7).

5. follows from the two relations (1.6) and (2.12).
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Remark 3.2 For a > —%, the function Ag y has also the following q-integral representation

1
Qo . .
AS \(z,y) = T”@(—Mw;qz)/ Wa(t, ¢*)e(irayt; ¢°)dqgt.
—1

Now, let d(, > —3, denotes the weighted Dirac-measure at (z,y) € Ry x Ry 1 defined by

(z,y) @

Oy (2:1) = { (@ aPAee i o (z,y) = (2:1),

0 ifnot.

Note that for all (z,y), (2,t) € Ry x Ry 4+ we have

Nl=
—
I3
~—
=2
Q
—
~
N2

(e (:) = 0z

with 6%, o > —1 is given by (1.13).

Proposition 3.4 For all (t,2)e Ry x Ry 4, we have

+oo +oo
~/0 / f(SU, y>685,z) (377 y)y2a+1dqxdqy = f(t7 z).

For (t,z)e Ry, x R, 4, we have

“+o00 “+o00 +oo +oo 1
/O / F(@, )06 . (2, 9)y* H dgwd,y = /0 / fla,y)8: 2 (2)67 (y)y* > dgadyy
+oo

+o0 1
= / 5 (y)y* et [/ f(@,9)d: 2 (x)dgx | dgy.
0

— 00

Then from the definition of the ¢-Jackson’s integral, we obtain the result.

Proposition 3.5 For all (x,y), (t,2)€ Ry x Ry 4, we have

+oo +OO (o7 OL*l 1 g «
/ / AS (2, )N T dgArdgho = { (1+q) zrqz(i)rq2(a+ 1)] 8y (2:1).

For all (z,y), (t,2)€ Ry x Ry 4, we have

—+oo +oo —+o00
/ / (2, y)AZ (2, A5 dgAidy A = (/ JoMoy; @*)ja(Mat; ¢ N2 a )\2>
0

+o00
X (/ e(—i)\lx;qQ)e(i)\lz;q2)dq)\1) .

—00

The relations (1.14), (2.13) and (3.11) finish the proof.

Proposition 3.6

1. The operator Ag lives Ex o(Ry x Ry) and S o(R, x R,) invariant.

60
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2. For all B = (B1,B2) € N*, A, (x,y) € R, x R, we have

a 4[| Ag]
8. For all A € Ry x Ry, AZy € Sy q(Rg X Ry).
1. The result follows from the fact that
2a+1
@ —q
AL f(x,y) = 0F . f(z,y) + Wawf(% qy) + 02, f(2,y).

2. The g-integral representation (3.9) of the ¢-Weinstein function, Lemma 1.1 and the relation (1.6) give the result.

3. Since the ¢g-Rubin exponential function is in S;(R,) and the normalized third Jackson ¢-Bessel function is in
S..q(Ry), then for all X = (A1, A2) € Ry X Ry, the function A, (2,y) = e(iM1;¢%)ja(N2y; ¢°) is in S 4(Ry X Ry).

|
Remark 3.3 A repeated application of the operator Ay is defined by induction as
0 n+1 n
(2) f=f (A7 f=07((87)" 1)
From (1), we have for allm € N and all f € S. ;(Ry x Ry), (AF)"f € Svq(Ry x Ry).
4 ¢-Weinstein transform
Definition 4.1 The q- Weinstein Fourier transform is defined for f € Lé,q(Rq X Ry.4), by
+oo  ptoo et 1
F OO =Ko [ [ 5w phgalon)® dyadyg (41)
0 —o0
where )
1 5—Q
Koy = — 0+ 0 (4.2)

2Fq2 (%) qu (a + 1).
Remark 4.1 Letting q 1 1 subject to the condition (2.2), gives, at least formally, the classical Weinstein transform.

Some properties of the g-Weinstein transform are summarised in the following proposition.

Proposition 4.1

1. For f € L}, ,(Ry x Ry 1), we have Fip?(f) € Li®(Rg X Ry 1),

41K
(q;;;f [fllzy  ®oxRy ) (4.3)

||‘FI(/I¥/7q(f)HLg°(Rq><]Rq,+) <
and

lim  F39(f)(A) = 0.

Al =00
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2. For f € L}, ,(Ry x Ry y) such that A f € L, ,(Rq x Ry y), we have
Fwl(Dg HN) = = [IX 1P Fp(H V. (4.4)

3. For f,g € L}, ,(Ry x Ry 1), we have

+oo +oo “+o0 “+o0
/ FSIUF) (A, A2)g(Aa, M) A2 d A dg A = / / Fl@, ) F(g) (2, v)y** T dgadyy.
0 0 —00

— 00

L. Let f € L}, ,(Rg x Ry 4 ). From (3.8), we have

V(.I',y),)\ERq XRq,+7 ‘f(%y)AZl,)\(%y” < |f($7y)‘

(5 9)%

Then, from the definition of the g-generalized Weinstein transform Fj;;?, we have
+oo +o00
FON < Ko [ [ ) | 8ga(w0) |92 gy

4:K ,q /+00/+°O xy 2a+1d fEdy
q

_ 4Ka Xl
(9

and according to the Riemann-Lebesgue theorem, we get

1£111,0.9

+oo +oo
lim  F?(f / / (z,y) lim AZ,\(z,y)y 2ol xdy = 0.

IA]| =00 IA |00
2. The result follows from the relation (3.3) and Proposition 3.3.

3. Let f,g € L}, ,(Ry x Ry ). Then, from the relation (3.8), we have

+oo +oo +oo “+o0o
/ / / | g da) A )] 12 8 dynd i, dihe
—o0

< (q’) 1Ny, Ry xRy 1912, Ry xRy, )

So, by the Fubini-Tonelli theorem, we can exchange the order of the g-integrals and obtain the desired result.

Theorem 4.1 For all f € L}, ,(Ry x Ry 1), we have for all (x,y) € Ry X Ry 4,

+oo +o00
f(z,y) = Ko / E (£ (A1, M)A (5 o) (T 9)A 22 d Adg o
0 —00 (4'5)

= Iy (B () (@, ).
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Let f € L, ,(Ry x Ry 4) and (z,y) € Ry X Ry 4.

+00 +oo
Kaq / CYq(f)()\lﬂ\g)A a )\2)( ay)Aia“dq/\lquQ

+oo —+oo
= Ko, ; / Fp U (F) A, A2)AS (o (A1, A2) A5 dg Ardg A

—+o0 —+oo —+oo —+o0
K2, / / ( / / f(tl,tg)A;“,,\(tl,tg)tg"‘“dqtldth) A2 ) (A0 A2) A2 A .
0 —0o0 0 —00

But, from the relation (3.8) and the fact that A? € S 4(Rg x Ry), we have

“+o0 “+ o0 “+ o0 400
/ / / / \f(tl,tz)A;ﬁA(tl,tz)A;(r,y)(—Al,AQ)‘tga“Agaﬂdqtldq@dqxldm

(q q) ||f||L <quRq,+)IIA§,<x,y)( )||L1 (RgxRy 1) < OO.

Hence, by the Fubini-Tonelli theorem, we can exchange the order of the g-integrals, and by Propositions 3.5 and 3.4,

we obtain

—+o00 —+o00
Ko / FE(F) O M)AS o (0 9) A2 A dg o

+oo +oo +oo +oo
/ / f(t,t2) (/ / A1, t2) Aqy()\1,/\2)(;3,y))\go‘“dq)\ldq)\g)t%aﬂdqtldqtg

+oo +oo
= k2 [ [ st e
0 —oo

The second equality is a follows directly from the definition of the g-Weinstein transform, the definition of the g-
Jackson integral and Proposition 3.3. ]

Theorem 4.2 Plancherel formula

For o > —1/2, the q-Weinstein transform Fy? is an isomorphism from S, 4(Ry x Ry) onto itself. Moreover, for all
Siq(Ry x Ry), we have

IFG )iz gxgn) = 12 oy o) (4.6)

From Theorem 4.1, to prove the first part of theorem it suffices to prove that Fy;? lives S, 4(R, x Ry) invariant.
Moreover, from the definition of S, 4(R, x R,) and the properties of the operator 9, (Lemma 1.1), one can ecasily see
that S, 4(R, x R,) is also the set of all function defined on R, x R,, such that for all | € N and 3 = (31, B2) € N2, we
have

sup |D? x, 2 f(x, < oo and lim 8°f(x, exists.
we%q\ g (I (@y) I fla,y)] o 0 05 (@)

Let f € S 4(R, xR,), I € Nand 8 = (B, 52) € N, from the relation (4.4), we have

A2 FSUH) = (“D)IES9(ADF)()
(1)Ko / / (A e A )
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So, using the relation (3.13), we obtain
DEIA P F OO = 0B [ [ @) A DA Ol g
—0o0
4Ka oo oo
I e T

(q7Q)oo 0 —00
This together with the Remark 3.3 and the Lebesgue theorem prove that Fyj??(f) belongs to S, 4(Rq x Ry).
By Theorem 4.1, we deduce that Fy;;? is an isomorphism of S, 4(R, x R,) onto itself and for f € S, 4(R, x R,), we
have (Fy*) 7 (f)(z.y) = B (f)(—(2,9)), 2,y € Ry

Finally, the Plancheral formula (4.6) is a direct consequence of the second equality in Theorem 4.1 and the relation
(4.5). |

Theorem 4.3 Plancheral theorem The q- Weinstein transform can be uniquely extended to an isometric isomorphism

on L2 (Ry xRy 1). Its inverse transform (Fg{;q)_l is given by :

+o00 +o00
(Fp") " ())(@,9) = Kag / FVAG A (@, 9)- 237 dgArdgAa = Fiy () (= (x,9)).- (4.7)
0 —oo
The result follows from Plancherel formula, Theorem 4.1 and the density of S, 4(R, x Ry) in L2  (Ry x Ry 1). [ |
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