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Abstract

Characterizations and properties of Ig̈-closed sets and Ig̈-open sets are given. A characterization of normal spaces is
given in terms of Ig̈-open sets. Also, it is established that an Ig̈-closed subset of an I-compact space is I-compact.
We introduced the concepts of sg -I-locally closed sets, ∧sg-sets and ζsg-I-closed sets. We introduced Ig̈-continuous,
Ig̈-irresolute, sg-I-LC-continuous, ζsg-I-continuous and to obtain decompositions of ?-continuity in ideal topological
spaces.
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1 Introduction

An ideal I on a topological space (X, τ) is a nonempty collection of subsets of X which satisfies (i) A ∈ I and B⊂ A
⇒ B ∈ I and (ii) A ∈ I and B ∈ I ⇒ A ∪ B ∈ I. Given a topological space (X, τ) with an ideal I on X and if ℘(X)
is the set of all subsets of X, a set operator (.)∗ : ℘(X)→℘(X), called a local function [12] of A with respect to τ and I
is defined as follows: for A ⊆ X, A∗ (I, τ)={x ∈ X | U ∩ A /∈ I for every U ∈ τ(x)} where τ(x) = {U ∈ τ | x ∈ U}.
We will make use of the basic facts about the local functions [[10], Theorem 2.3] without mentioning it explicitly. A
Kuratowski closure operator cl∗(.) for a topology τ∗(I, τ), called the ?-topology, finer than τ is defined by cl∗(A) = A
∪ A∗(I, τ) [22]. When there is no chance for confusion, we will simply write A∗ for A∗(I, τ) and τ∗ for τ∗(I, τ).
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2 Preliminaries

If I is an ideal on X, then (X, τ , I) is called an ideal space. N is the ideal of all nowhere dense subsets in (X, τ). A
subset A of an ideal space (X, τ , I) is ?-closed [10] (resp. ?-dense in itself [8]) if A∗ ⊆ A (resp. A ⊆ A∗). A subset A
of an ideal space (X, τ , I) is Ig-closed [2] if A∗⊆U whenever A ⊆ U and U is open. In this paper, we characterize
Ig̈-closed sets and discuss their properties. Also, we characterize normal spaces in terms of Ig̈-open sets. Finally, we
obtain decompositions of ?-continuity. By a space, we always mean a topological space (X, τ) with no separation
properties assumed. If A ⊆ X, cl(A) and int(A) will, respectively, denote the closure and interior of A in (X, τ) and
int∗(A) will denote the interior of A in (X, τ∗). A subset A of a space (X, τ) is an α-open [19] (resp. semi-open [13],
preopen [16]) set if A ⊆ int(cl(int(A))) (resp. A ⊆ cl(int(A)), A ⊆ int(cl(A))). The family of all α-open sets in (X, τ),
denoted by τα, is a topology on X finer than τ . The closure of A in (X, τα) is denoted by clα(A).

2.1 Definition

A subset A of a space (X, τ) is called:

1. g-closed [14] if cl(A) ⊆ U whenever A ⊆ U and U is open in (X, τ). The complement of g-closed set is called
g-open set.

2. a sg-closed set [1] if scl(A) ⊆ U whenever A ⊆ U and U is semi open in (X, τ). The complement of sg-closed set
is called sg-open set.

3. a g̈-closed set [4] if cl(A) ⊆ U whenever A ⊆ U and U is sg-open in (X, τ). The complement of g̈-closed set is
called g̈-open set.

The family of all sg-open sets in (X, τ) is a topology on X. The sg-closure [1] of a subset A of X, denoted by sgcl(A), is
defined to be the intersection of all sg-closed sets containing A.

2.2 Definition

An ideal I is said to be

1. codense [3] or τ -boundary [18] if τ ∩ I = {∅},

2. completely codense [3] if PO(X) ∩ I = {∅}, where PO(X) is the family of all preopen sets in (X, τ).

2.3 Lemma

Every completely codense ideal is codense but not the converse [3].

2.4 Lemma

Let (X, τ , I) be an ideal space and A ⊆ X. If A ⊆ A∗, then A∗ = cl(A∗) = cl(A)
= cl∗(A) [[21], Theorem 5].
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2.5 Lemma

Let (X, τ , I) be an ideal space. Then I is codense if and only if G ⊆ G∗ for every semi-open set G in X [[21], Theorem
3].

2.6 Lemma

Let (X, τ , I) be an ideal space. If I is completely codense, then τ ∗ ⊆ τα [[21], Theorem 6].

2.7 Definition

An ideal topological space (X, τ , I) is said to be a TI-space [2] if every Ig-closed subset of X is a ?-closed set.

2.8 Lemma

If (X, τ , I) is a TI ideal space and A is an Ig-closed set, then A is a ?-closed set [[17], Corollary 2.2].

2.9 Lemma

Every g-closed set is Ig-closed but not conversely [[2], Theorem 2.1].

2.10 Remark

If (X, τ) is a topological space the following properties hold:

1. Every closed set is sg-closed but not conversely [1].

2. Every closed set is g̈-closed but not conversely [4].

3. Every g̈-closed set is g-closed but not conversely [4].

2.11 Definition

[11] A subset a of ideal topological space (X,τ ,I) is called a weakly I-locally closed set(briefly weakly I-LC) if A = M
∩ N where M is open and N is ?-closed.

2.12 Definition

A function f: (X, τ , I) → (Y, σ) is said to be ?-continuous [9] (resp. Ig-continuous [9], weakly I-LC-continuous [11]) if
f−1(A) is ?-closed (resp. Ig-closed, weakly I-LC-set) in (X, τ , I) for every closed set A of (Y, σ).
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3 Ig̈-closed sets

3.1 Definition

A subset A of an ideal space (X,τ ,I) is said to be

1. Ig̈-closed if A∗ ⊆ U whenever A⊆ U and U is sg-open,

2. Ig̈-open if its complement is Ig̈-closed.

3.2 Theorem

If (X, τ , I) is any ideal space,

1. Every closed set is ?-closed but not conversely.

2. Every Ig̈-closed set is Ig-closed but not conversely.

Proof (1) This is obvious.
(2) It follows from the fact that every open set is sg-open. �

3.3 Example

Let X={5, 6, 7, 8}, τ = {∅, X, {5}, {5, 6}, {5, 6, 7}} and I={∅, {5}}. Then ?-closed sets are ∅, X, {5}, {8}, {5, 8}, {7,
8}, {5, 7, 8}, {6, 7, 8}, Ig̈-closed sets are ∅, X, {5}, {8}, {5, 8}, {7, 8}, {5, 7, 8}, {6, 7, 8} and Ig-closed sets are ∅, X,
{5}, {8}, {5, 8}, {6, 8}, {7, 8}, {5, 6, 8}, {5, 7, 8}, {6, 7, 8}. It is clear that {6, 8} is Ig-closed but it is not Ig̈-closed.

The following theorem gives characterizations of Ig̈-closed sets.

3.4 Theorem

If (X, τ , I) is any ideal space and A ⊆ X, then the following are equivalent.

1. A is Ig̈-closed,

2. cl∗(A) ⊆ U whenever A ⊆ U and U is sg-open in X,

3. For all x ∈ cl∗(A), sgcl({x}) ∩ A 6= ∅.

4. cl∗(A)− A contains no nonempty sg-closed set,

5. A∗ − A contains no nonempty sg-closed set.

Proof (1) ⇒ (2) If A is Ig̈-closed, then A∗ ⊆ U whenever A ⊆ U and U is sg-open in X and so cl∗(A) = A ∪ A∗ ⊆ U
whenever A ⊆ U and U is sg-open in X. This proves (2).
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(2) ⇒ (3) Suppose x ∈cl∗(A). If sgcl({x}) ∩ A = ∅, then A ⊆ X − sgcl({x}). By (2), cl∗(A) ⊆ X −sgcl({x}), a
contradiction, since x ∈ cl∗(A).

(3) ⇒ (4) Suppose F ⊆ cl∗(A) − A, F is sg-closed and x ∈ F. Since F ⊆ X − A and F is sg-closed, then A ⊆ X − F
and F is sg-closed, sgcl({x}) ∩ A = ∅. Since x ∈ cl∗(A) by (3), sgcl({x}) ∩ A 6= ∅. Therefore cl∗(A) − A contains no
nonempty sg-closed set.

(4) ⇒ (5) Since cl∗(A) − A = (A ∪ A∗) − A = (A ∪ A∗) ∩ Ac = (A ∩ Ac) ∪ (A∗ ∩ Ac) =A∗ ∩ Ac = A∗ − A.
Therefore A∗ − A contains no nonempty sg-closed set.

(5) ⇒ (1) Let A ⊆ U where U is sg-open set. Therefore X − U ⊆ X − A and so A∗ ∩ (X − U) ⊆ A∗ ∩ (X − A) =A∗

− A. Therefore A ∗ ∩(X − U) ⊆ A∗ − A. Since A∗ is always a closed set, so A∗ is a sg-closed set and so A∗ ∩(X − U)
is a sg-closed set contained in A∗ − A. Therefore A∗ ∩(X − U) = ∅ and hence A∗ ⊆ U. Therefore A is Ig̈-closed. �

3.5 Theorem

Every ?-closed set is Ig̈-closed but not conversely.

Proof Let A be a ?-closed, then A∗ ⊆ A. Let A ⊂ U where U is sg-open. Hence A∗ ⊆ U whenever A ⊆ U and U is
sg-open. Therefore A is Ig̈-closed. �

3.6 Example

Let X={5, 6, 7, 8}, τ={φ, X, {5, 7}, {5, 6, 7}} and I = {∅, {8}}. Then Ig̈-closed sets are φ, X, {8}, {6, 8}, {5, 6, 8},
{6, 7, 8} and ?-closed sets are φ, X, {8}, {6, 8}. It is clear that {5, 6, 8} is Ig̈-closed set but it is not ?-closed.

3.7 Theorem

Let (X, τ , I) be an ideal space. For every A ∈ I, A is Ig̈-closed.

Proof Let A ⊆ U where U is a sg-open set. Since A∗ = ∅ for every A ∈ I, then cl∗(A) = A ∪ A∗ = A ⊆ U. Therefore,
by Theorem 3.4, A is Ig̈-closed. �

3.8 Theorem

If (X, τ , I) is an ideal space, then A∗ is always Ig̈-closed for every subset A of X.

Proof Let A∗ ⊆ U where U is a sg-open. Since (A∗)∗ ⊆ A∗ [10], we have (A∗)∗ ⊆ U whenever A∗ ⊆ U and U is a
sg-open. Hence A∗ is Ig̈-closed. �

3.9 Theorem

Let (X, τ , I) be an ideal space. Then every Ig̈-closed, sg-open set is a ?-closed set.

Proof Since A is Ig̈-closed and sg-open. Then A∗ ⊆ A whenever A ⊆ A and A is a sg-open. Hence A is a ?-closed. �
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3.10 Corollary

If (X, τ , I) is a TI ideal space and A is an Ig̈-closed set, then A is a ?-closed set.

Proof By assumption A is Ig̈-closed in (X, τ , I) and so by Theorem 3.2, A is Ig-closed. Since (X, τ , I) is a TI-space,
by Definition 2.7, A is ?-closed. �

3.11 Corollary

Let (X, τ , I) be an ideal space and A be an Ig̈-closed set. Then the following are equivalent.

1. A is a ?-closed set,

2. cl∗(A)− A is a sg-closed set,

3. A∗ − A is a sg-closed set.

Proof (1) ⇒ (2) If A is ?-closed, then A∗ ⊆ A and so cl∗(A) − A = (A ∪ A∗) − A = ∅. Hence cl∗(A) − A is sg-closed
set.

(2) ⇒ (3) Since cl∗(A) − A = A∗ − A and so A∗ − A is sg-closed set.

(3) ⇒ (1) If A∗ − A is a sg-closed set, since A is an Ig̈-closed set, by Theorem 3.4 (5), A∗ − A = ∅ and so A is ?-closed.
�

3.12 Theorem

Let (X, τ , I) be an ideal space. Then every g̈-closed set is an Ig̈-closed set but not conversely.

Proof Let A be a g̈-closed set. Then cl(A) ⊆ U whenever A ⊆ U and U is sg-open. We have cl∗(A) ⊆ cl(A) ⊆ U
whenever A ⊆ U and U is sg-open. Hence A is Ig̈-closed. �

3.13 Example

Let X, τ and I be as in the Example 3.3. Then g̈-closed sets are φ, X, {8}, {7, 8}, {6, 7, 8} It is clear that {5} is an
Ig̈-closed set but it is not g̈-closed.

3.14 Theorem

If (X, τ , I) is an ideal space and A is a ?-dense in itself, Ig̈-closed subset of X, then A is g̈-closed.

Proof Suppose A is a ?-dense in itself, Ig̈-closed subset of X. Let A ⊆ U where U is sg-open. Then by Theorem 3.4 (2),
cl∗(A) ⊆ U whenever A ⊆ U and U is sg-open. Since A is ?-dense in itself, by Lemma 2.4, cl(A) = cl∗(A). Therefore
cl(A) ⊆ U whenever A ⊆ U and U is sg-open. Hence A is g̈-closed. �
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3.15 Corollary

If (X, τ , I) is any ideal space where I={∅}, then A is Ig̈-closed if and only if A is g̈-closed.

Proof The proof follows from the fact that for I = {∅}, A∗ = cl(A) ⊇ A. Therefore A is ?-dense in itself. Since A is
Ig̈-closed, by Theorem 3.14, A is g̈-closed.

Conversely, by Theorem 3.12, every g̈-closed set is Ig̈-closed set. �

3.16 Corollary

If (X, τ , I) is any ideal space where I is codense and A is a semi-open, Ig̈-closed subset of X, then A is g̈-closed.

Proof The proof follows Lemma 2.5, A is ?-dense in itself. By Theorem 3.14, A is g̈-closed. �

3.17 Remark

g-closed sets and Ig̈-closed sets are independent.

3.18 Example

Let X, τ and I be as in the Example 3.3. Then g-closed sets are φ, X, {8}, {5, 8}, {6, 8}, {7, 8}, {5, 6, 8}, {5, 7, 8},
{6, 7, 8}. It is clear that {5, 6, 8} is g-closed set but it is not Ig̈-closed. Also it is clear that {5} is an Ig̈-closed set but
it is not g-closed.

3.19 Remark

We have the following implications for the subsets stated above.

closed −→ g̈-closed −→ g-closed
↓ ↓↓

?-closed −→ Ig̈-closed −→ Ig-closed

Diagram

3.20 Theorem

Let (X, τ , I) be an ideal space and A ⊆ X. Then A is Ig̈-closed if and only if A = F − M where F is ?-closed and M
contains no nonempty sg-closed set.

Proof If A is Ig̈-closed, then by Theorem 3.4 (5), M = A∗ − A contains no nonempty sg-closed set. If F = cl∗(A),
then F is ?-closed such that F − M = (A ∪ A∗) − (A∗ − A) = (A ∪ A∗) ∩ (A∗ ∩ Ac)c = (A ∪ A∗) ∩ ((A∗)c ∪ A ) =
(A ∪ A∗) ∩ (A ∪ (A∗)c) = A ∪ (A∗ ∩ (A∗)c) = A.
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Conversely, suppose A = F − M where F is ?-closed and M contains no nonempty sg-closed set. Let U be a sg-open set
such that A⊆U. Then, F − M ⊆ U which implies that F ∩(X − U) ⊆ M. Now, A ⊆ F and F∗ ⊆ F, then A∗ ⊆ F∗ and
so A∗ ∩ (X − U) ⊆ F∗ ∩(X − U) ⊆ F ∩ (X − U) ⊆ M. By hypothesis, since A∗ ∩ (X − U) is sg-closed, A∗ ∩ (X − U)
= ∅ and so A∗ ⊆ U. Hence A is Ig̈-closed. �

3.21 Theorem

Let (X, τ , I) be an ideal space and A ⊆ X. If A ⊆ B ⊆ A∗, then A∗ = B∗ and B is ?-dense in itself.

Proof Since A ⊆ B, then A∗ ⊆ B∗ and since B ⊆ A∗, then B∗ ⊆ (A∗)∗ ⊆ A∗. Therefore, A∗ = B∗ and B ⊆A ∗ ⊆ B∗.
Hence proved. �

3.22 Theorem

Let (X, τ , I) be an ideal space. If A and B are subsets of X such that A ⊆ B ⊆ cl∗(A) and A is Ig̈-closed, then B is
Ig̈-closed.

Proof Since A is Ig̈-closed, then by Theorem 3.4 (5), cl∗(A) − A contains no nonempty sg-closed set. Since cl∗(B) −
B ⊆ cl∗(A) − A and so cl∗(B) − B contains no nonempty sg-closed set and so by Theorem 3.4 (4), B is Ig̈-closed. �

3.23 Corollary

Let (X, τ , I) be an ideal space. If A and B are subsets of X such that A ⊆ B ⊆ A∗ and A is Ig̈-closed, then A and B
are g̈-closed sets.

Proof Let A and B be subsets of X such that A ⊆ B ⊆ A∗ which implies that A ⊆ B ⊆ A∗ ⊆cl∗(A) and A is Ig̈-closed.
By Theorem 3.22, B is Ig̈-closed. Since A ⊆ B ⊆ A∗, then A∗ = B∗ and so A and B are ?-dense in itself. By Theorem
3.14, A and B are g̈-closed. �

The following theorem gives a characterization of Ig̈-open sets.

3.24 Theorem

Let (X, τ , I) be an ideal space and A ⊆ X. Then A is Ig̈-open if and only if F ⊆ int∗(A) whenever F is sg-closed and F
⊆ A.

Proof Suppose A is Ig̈-open. If F is sg-closed and F ⊆ A, then X − A ⊆ X − F and so cl∗(X − A) ⊆ X − F by
Theorem 3.4 (2). Therefore F ⊆ X − cl∗(X − A ) = int∗(A). Hence F ⊆ int∗(A).

Conversely, suppose the condition holds. Let U be a sg-open set such that X − A ⊆ U. Then X − U ⊆ A and so X −
U ⊆ int∗(A). Therefore cl∗(X − A) ⊆ U. By Theorem 3.4 (2), X − A is Ig̈-closed. Hence A is Ig̈-open. �

3.25 Corollary

Let (X, τ , I) be an ideal space and A ⊆ X. If A is Ig̈-open, then F ⊆ int∗(A) whenever F is closed and F ⊆ A.
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The following theorem gives a property of Ig̈-closed.

3.26 Theorem

Let (X, τ , I) be an ideal space and A ⊆ X. If A is Ig̈-open and int∗(A) ⊆ B ⊆ A, then B is Ig̈-open.

Proof Since A is Ig̈-open, then X − A is Ig̈-closed. By Theorem 3.4 (4), cl∗(X − A) − (X − A) contains no nonempty
sg-closed set. Since int∗(A) ⊆ int∗(B) which implies that cl∗(X − B) ⊆ cl∗(X − A) and so cl∗(X − B) −(X − B) ⊆
cl∗(X − A) −(X − A). Hence B is Ig̈-open. �

The following theorem gives a characterization of Ig̈-closed sets in terms of Ig̈-open sets.

3.27 Theorem

Let (X, τ , I) be an ideal space and A ⊆ X. Then the following are equivalent.

1. A is Ig̈-closed,

2. A ∪ (X − A∗) is Ig̈-closed,

3. A∗ − A is Ig̈-open.

Proof (1) ⇒ (2) Suppose A is Ig̈-closed. If U is any sg-open set such that A ∪ (X − A∗) ⊆ U, then X − U ⊆ X − (A
∪ (X − A∗)) = X ∩(A ∪ (A∗)c)c = A∗ ∩ Ac = A∗ − A. Since A is Ig̈-closed, by Theorem 3.4 (5), it follows that X −
U = ∅ and so X = U. Therefore A ∪ (X − A∗) ⊆ U which implies that A ∪ (X − A∗) ⊆ X and so (A ∪ (X − A∗))∗ ⊆
X∗ ⊆ X = U. Hence A ∪(X −A∗) is Ig̈-closed.

(2) ⇒ (1) Suppose A ∪ (X − A∗) is Ig̈-closed. If F is any sg-closed set such that F ⊆ A∗ − A, then F ⊆ A∗ and F A
which implies that X − A∗ ⊆ X − F and A ⊆ X − F.
Therefore A ∪ (X − A∗) ⊆ A ∪(X − F) = X − F and X − F is sg-open. Since (A ∪ (X − A∗))∗ ⊆ X − F which
implies that A∗ ∪ (X − A∗)∗ ⊆ X − F and so A∗ ⊆ X − F which implies that F ⊆ X − A∗. Since F ⊆ A∗, it follows
that F = ∅. Hence A is Ig̈-closed.

(2) ⇔ (3) Since X − (A∗ − A) = X ∩ (A∗ ∩ Ac)c = X ∩((A∗)c ∪ A) =(X ∩ (A∗)c) ∪ (X ∩ A) = A ∪ (X − A∗) is
Ig̈-closed. Hence, A∗ − A is Ig̈-open. �

3.28 Theorem

Let (X, τ , I) be an ideal space. Then every subset of X is Ig̈-closed if and only if every sg-open set is ?-closed.

Proof Suppose every subset of X is Ig̈-closed. If U⊆X is sg-open, then U is Ig̈-closed and so U∗ ⊆ U. Hence, U is
?-closed.

Conversely, suppose that every sg-open set is ?-closed. If U is a sg-open set such that A ⊆ U ⊆ X, then A∗ ⊆ U∗ ⊆ U
and so A is Ig̈-closed. �

The following theorem gives a characterization of normal spaces in terms of Ig̈-open sets.
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3.29 Theorem

Let (X, τ , I) be an ideal space where I is completely codense. Then, the following are equivalent.

1. X is normal,

2. For any disjoint closed sets A and B, there exist disjoint Ig̈-open sets U and V such that A ⊆ U and B ⊆ V,

3. For any closed set A and open set V containing A, there exists an Ig̈-open set U such that A ⊆ U ⊆cl∗(U) ⊆ V.

Proof (1) ⇒ (2) The proof follows from the fact that every open set is Ig̈-open.

(2) ⇒ (3) Suppose A is closed and V is an open set containing A. Since A and X − V are disjoint closed sets, there
exist disjoint Ig̈-open sets U and W such that A ⊆ U and X − V ⊆ W. Since X − V is sg-closed and W is Ig̈-open, X
− V ⊆ int∗(W) and so X −int∗(W) ⊆ V. Again, U ∩ W = ∅ which implies that U ∩ int∗(W) = ∅ and so U ⊆ X −
int∗(W) which implies that cl∗(U) ⊆ X − int∗(W) ⊆ V. U is the required Ig̈-open set with A ⊆ U ⊆ cl∗(U) ⊆ V.

(3) ⇒ (1) Let A and B be two disjoint closed subsets of X. By hypothesis, there exists an Ig̈-open set U such that A ⊆
U ⊆ cl∗(U) ⊆ X − B. Since U is Ig̈-open, A ⊆ int∗(U). Since I is completely codense, by Lemma 2.6, τ ∗ ⊆ τα and so
int∗(U) and X − cl∗(U) ∈ τ α. Hence A ⊆ int∗(U) ⊆ int(cl(int(int∗(U)))) = G and B ⊆ X − cl∗(U) ⊆ int(cl(int(X −
cl∗(U)))) = H. G and H are the required disjoint open sets containing A and B respectively, which proves (1). �

3.30 Definition

A subset A of an ideal space (X, τ , I) is said to be a g̈α-closed set [5] if clα(A) ⊆ U whenever A ⊆ U and U is sg-open.
The complement of g̈α-closed is said to be a g̈α-open set.

If I = N , then Ig̈-closed sets coincide with g̈α-closed sets and so we have the following Corollary.

3.31 Corollary

Let (X, τ , I) be an ideal space where I = N . Then, the following are equivalent.

1. X is normal,

2. For any disjoint closed sets A and B, there exist disjoint g̈ α-open sets U and V such that A ⊆ U and B ⊆ V,

3. For any closed set A and open set V containing A, there exists an g̈ α-open set U such that A ⊆ U ⊆ clα(U) ⊆ V.

3.32 Definition

A subset A of an ideal space is said to be I-compact [7] or compact modulo I [18] if for every open cover {Uα | α ∈ ∆}
of A, there exists a finite subset ∆0 of ∆ such that A − ∪ Uα | α ∈ ∆0} ∈ I. The space (X, τ , I) is I-compact if X is
I-compact as a subset.
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3.33 Theorem

Let (X, τ , I) be an ideal space. If A is an Ig-closed subset of X, then A is I-compact [[17], Theorem 2.17].

3.34 Corollary

Let (X, τ , I) be an ideal space. If A is an Ig̈-closed subset of X, then A is I-compact.

Proof The proof follows from the fact that every Ig̈-closed is Ig-closed. �

4 sg -I-locally closed sets

4.1 Definition

A subset a of ideal topological space (X, τ , I) is called a sg-I-locally closed set(briefly sg-I-LC) if A = M ∩ N where
M is sg-open and N is ?-closed.

4.2 Proposition

Let (X, τ , I) be an ideal topological space and A a subset of X. Then the following holds.

1. If A is sg-open , then A is sg-I-LC set.

2. A is ?-closed, then A is sg-I-LC set.

3. If A is a weakly I-LC-set, then A is an sg-I-LC set.

The converse of the above Proposition 4.2 need not be true as shown in the following examples.

4.3 Example

Let X, τ and I be as in the Example 3.6. Then sg-open sets are φ, X, {5}, {7}, {5, 7}, {5, 6, 7}, {5, 7, 8}, sg-I-LC
sets are φ, X, {5}, {6}, {7}, {8}, {5, 7}, {6, 8}, {5, 6, 7}, {5, 7, 8} and weakly I-LC-set are {6}, {8}, {5, 7}, {6, 8}, {5,
6, 7}. (1) It is clear that {6, 8} is a sg-I-LC set but it is not sg-open. (2) It is clear that {5, 7} is sg-I-LC set but it is
not ?-closed. In (3) it is also clear that {5, 7, 8} is a sg-I-LC set but it is not weakly I-LC-set.

4.4 Theorem

Let (X,τ ,I) be an ideal topological space. If A is a sg-I-LC-set and B is a ?-closed set, then A ∩ B is a sg-I-LC-set.

Proof Let B be ?-closed , then A ∩ B = (M ∩ N ) ∩ B = M ∩ (N ∩ B), where N ∩ B is ?-closed. Hence A ∩ B is an
sg-I-LC-set. �
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4.5 Theorem

A subset of an ideal topological space (X,τ ,I) is ?-closed if and only if it is

1. weakly I-LC-set and Ig-closed [9].

2. sg-I-LC-set and Ig̈-closed.

Proof (2) Necessity is trivial. We prove only sufficiency. Let A be sg-I-LC-set and Ig̈-closed set. Since A is sg-I-LC,
A = M ∩ N , where M is sg-open and N is ?-closed. So we have A = M ∩ N ⊆ M. Since A is Ig̈-closed, A∗ ⊆ M. Also
since A = M ∩ N ⊆ N and N is ?-closed, we have A∗ ⊆ N. Consequently, A∗ ⊆ M ∩ N = A and hence A is ?-closed. �

4.6 Remark

1. The notions of weakly I-LC set and Ig-closed set are independent [9].

2. The notions of sg-I-LC-set and Ig̈-closed set are independent.

4.7 Example

Let X, τ and I be as in the Example 4.3. It is clear that {5} is sg-I-LC- set but it is not Ig̈-closed. Also, is clear that
{5, 6, 8} is an Ig̈-closed but it is not sg-I-LC set.

4.8 Definition

[4] Let A be a subset of a topological space (X, τ). then, sg-kernel of the set A, denoted by sg-ker(A), is the intersection
of all sg-open supersets of A.

4.9 Definition

A subset A of a topological space (X, τ) is called ∧sg-set if A = sg-ker(A).

4.10 Definition

A subset A of an ideal topological space (X, τ , I) is called ζsg-I-closed if A = R ∩ S where R is a ∧sg-set and S is a
?-closed.

4.11 Lemma

1. Every ?-closed set is ζsg-I-closed but not conversely.

2. Every ∧sg-set is ζsg-I-closed but not conversely.
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4.12 Example

Let X , τ and I be as in the Example 4.3. then, ζsg-I-closed sets are φ, X, {5}, {6}, {7}, {8}, {5, 7}, {6, 8}, {5, 6, 7},
{5, 7, 8} and ∧sg-sets are φ, X, {5}, {7}, {5, 7}, {5, 6, 7}, {5, 7, 8}. It is clear that {7} is ζsg-I-closed but it is not
?-closed. also, is clear that {6, 8} is ζsg-I-closed but it is not ∧sg-set.

4.13 Remark

The concepts of ?-closed and ∧sg-set are independent.

4.14 Example

Let X , τ and I be as in the Example 4.12. It is clear that {7} is ∧sg-set but it is not ?-closed. also, it is clear that {8}
is ?-closed set but it is not ∧sg-set.

4.15 Lemma

For a subset A of an ideal topological space (X,τ ,I) the following are equivalent.

1. A is ζsg-I-closed.

2. A = R ∩ cl∗(A) where R is a ∧sg-set .

3. A = sg-ker(A) ∩ cl∗(A)

4.16 Lemma

A subset A ⊆ (X,τ ,I) is Ig̈-closed if and only if cl∗(A) ⊆ sg-ker(A).

Proof Suppose that A ⊆ X is an Ig̈-closed set. Suppose x /∈ sg-ker(A). then, there exists a sg-open set U containing
A such that x /∈ U. Since A is an Ig̈-closed set, A ⊆ U and U is sg-open implies that cl∗(A) ⊆ U and so x /∈ cl∗(A).
therefore, cl∗(A) ⊆ sg-ker(A).
Conversely, suppose cl∗(A) ⊆ sg-ker(A). If A ⊆ U and U is sg-open, then cl∗(A) ⊆ sg-ker(A) ⊆ U . Therefore, A is
Ig̈-closed. �

4.17 Theorem

For a subset A of an ideal topological space (X,τ ,I) the following are equivalent.

1. A is ?-closed.

2. A is Ig̈-closed and sg-I-LC.

3. A is Ig̈-closed and ζsg-I-closed.
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Proof (1) ⇒ (2) ⇒ (3) Obvious.
(3) ⇒ (1). Since A is Ig̈-closed, by (2), Lemma 4.16, cl∗(A) ⊆ sg-ker(A). Since A is ζsg-I-closed, by Lemma 4.15, A =
sg-ker(A) ∩ cl∗(A) = cl∗(A). Hence A is ?-closed. �

4.18 Remark

The concepts of Ig̈-closedness and ζsg-I-closedness are independent.

4.19 Example

Let X , τ and I be as in the Example 4.12. It is clear that {5, 7} is ζsg-I-closed but it is not Ig̈-closed. also, it is clear
that {5, 6, 8} is Ig̈-closed set but it is not ζsg-I-closed.

5 Ig̈-Continuous Function

5.1 Definition

[4] A function f: (X, τ , I) → (Y, σ) is called Ig̈-continuous if f−1(V) is an Ig̈-closed set of (X, τ , I) for every closed set
V of (Y, σ).

5.2 Proposition

Every ?-continuous is Ig̈-continuous but not conversely.

Proof The proof follows from Theorem 3.5. �

5.3 Example

Let X, τ and I be defined as Example 3.6. Let Y = {5, 6, 7, 8} with σ = {φ, Y, {5}, {7}, {5, 7}}. Define f: (X, τ , I)
→ (Y, σ) the identity function. then, is Ig̈-continuous but not ?-continuous, since f−1({5, 6, 8}) = {5, 6, 8} is not
?-closed in (X, τ , I).

5.4 Proposition

Every Ig̈-continuous is Ig-continuous but not conversely.

Proof The proof follows from Theorem 3.2(2). �
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5.5 Example

Let X, τ and I be defined as Example 3.3. Let Y = {5, 6, 7, 8} with σ = {∅, Y, {7}, {5, 7}} and J={∅, {7}}. Define
f: (X, τ , I) → (Y, σ) the identity function. then, f is Ig-continuous but not Ig̈-continuous, since f−1({6, 8})= {6, 8} is
not Ig̈-closed in (X, τ , I).

5.6 Remark

The composition of two Ig̈-continuous functions need not be Ig̈-continuous and this is shown from the following example.

5.7 Example

Let X={5, 6, 7}, τ={φ, X, {5, 6}} and I={∅, {5}}. then, Ig̈-closed sets are φ, X, {5}, {7}, {5, 7}, {6, 7}. Let Y = {5,
6, 7} with σ = {φ, Y, {5}} and J = {∅, {5}}. then, Ig̈-closed sets are φ, Y, {5}, {6, 7}. Let Z = {5, 6, 7} with γ =
{φ, Z, {6}, {5, 7}} and K = {∅}. Define f: (X, τ , I) → (Y, σ, J ) by f(5) = 6, f(6) = 5 and f(7) = 7. Define g : (Y, σ,
J ) → (Z, γ, K) by g(5) = 6, g(6) = 7 and g(7) = 5. Clearly f and g are nIg̈-continuous but their g ◦ f : (X, τ , I) →
(Z, γ, K) is not Ig̈-continuous, because V = {6} is closed in (Z, γ, K) but ( g ◦ f −1({6})= f−1(g−1({6})) = f−1({5}) =
{6}, which is not Ig̈-closed in (X, τ , I).

5.8 Proposition

let f: (X, τ , I) → (Y, σ) be Ig̈-continuous if and only if f−1(U) is Ig̈-open in (X, τ , I) for every open set U in (Y, σ).

Proof Let f: (X, τ , I) → (Y, σ) be Ig̈-continuous and U be an open set in (Y, σ). then, Uc is closed in (Y, σ) and
since f is Ig̈-continuous, f−1(Uc) is Ig̈-closed in (X, τ , I). But f−1(Uc) = f−1((U))c and so f−1(U) is Ig̈-open in (X, τ ,
I).
Conversely, assume that f−1(U) is Ig̈-open in (X, τ , I) for each open set U in (Y, σ). Let F be a closed set in (Y, σ).
then, Fc is open in (Y, σ) and by assumption, f−1(Fc) is Ig̈-open in (X, τ , I). Since f−1(Fc) = f−1((F))c , we have
f−1(F) is closed in (X, τ , I) and so f is Ig̈-continuous. �

We introduce the following definition

5.9 Definition

A function f: (X, τ , I) → (Y, σ, J ) is called Ig̈-irresolute if f−1(V) is an Ig̈-closed set of (X, τ , I) for every Ig̈-closed
set V of (Y, σ, J ).

5.10 Theorem

Every Ig̈-irresolute function is Ig̈-continuous but not conversely.
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Proof Let f: (X, τ , I) → (Y, σ, J ) be a Ig̈-irresolute function. Let V be a closed set of (Y, σ). then, by the Theorems
3.2(1) and 3.5, V is Ig̈-closed. Since f is Ig̈-irresolute, then f−1(V) is an Ig̈-closed set of (X, τ , I). therefore, f is
Ig̈-continuous. �

5.11 Example

Let X = {5, 6, 7}, τ = {φ, X, {7}, {5, 6}} and I = {∅}. then, Ig̈-closed sets are φ, X, {7}, {5, 6}. Let Y = {5, 6, 7},
σ = {φ, Y, {5, 6}} and J = {∅, {5}}. then, Ig̈-closed sets are φ, Y, {5}, {7}, {5, 7}, {6, 7}. Define f: (X, τ , I) → (Y,
σ, J ) by the identity function. (i) V = {7} is closed on (Y, σ, J ) it is clear that f−1({7}) ={7} is Ig̈-closed set of (X,
τ , I). (ii) It is clear that {6, 7} is an Ig̈-closed set of (Y, σ, J ) but f−1({6, 7}) ={6, 7} is not an Ig̈-closed set of (X, τ ,
I). thus, f is not Ig̈-irresolute function. However, f is Ig̈-continuous function.

5.12 Theorem

Let f: (X, τ , I) → (Y, σ, J ) and g : (Y, σ, J ) → (Z, γ, K) be any two functions. then,

1. g ◦ f is Ig̈-continuous if g is ?-continuous and f is Ig̈-continuous.

2. g ◦ f is Ig̈-irresolute if both f and g are Ig̈-irresolute.

3. g ◦ f is Ig̈-continuous if g is Ig̈-continuous and f is Ig̈-irresolute.

Proof (1) Since g is a ?-continuous from (Y, σ, J ) → (Z, γ, K), for any closed set z as a subset of Z, we get g−1(z) =
G is a closed set in (Y, σ, J ). As f is an Ig̈-continuous function. We get (g ◦ f)−1(z)= f−1(g−1(z)) = f−1(G) = S and
S is an Ig̈-closed set in (X, τ , I). Hence (g ◦ f) is an Ig̈-continuous function.
(2) Consider two Ig̈-irresolute functions, f: (X, τ , I) → (Y, σ, J ) and g : (Y, σ, J ) → (Z, γ, K) is an Ig̈-irresolute
functions. As g is considered to be an Ig̈-irresolute function, by Definition 5.9, for every Ig̈-closed set z ⊆ (Z, γ, K),
g−1(z) = G is an Ig̈-closed in (Y, σ, J ). Again since f is Ig̈-irresolute, (g ◦ f)−1(z)= f−1(g−1(z)) = f−1(G) = S and S
is an Ig̈-closed set in (X, τ , I). Hence (g ◦ f) is an Ig̈-irresolute function.
(3) Let g be an Ig̈-continuous function from (Y, σ, J ) → (Z, γ, K) and z subset of Z be a closed set. therefore, g−1(z)
is an Ig̈-closed set in (Y, σ, J ), by Theorems 3.2(1) and 3.5, g−1(z) = G is an Ig̈-closed set in (Y, σ, J ). Also since f
is Ig̈-irresolute, we get (g ◦ f)−1(z)= f−1(g−1(z)) = f−1(G) = S and S is an Ig̈-closed set in (X, τ , I). Hence (g ◦ f) is
a Ig̈-continuous function. �

6 Decompositions of ?-continuity

6.1 Definition

A function f: (X, τ , I) → (Y, σ) is said to be sg-I-LC-continuous (resp ζsg-I-continuous) if f−1(A) is sg-I-LC-set
(resp ζsg-I-closed) in (X, τ , I) for every closed set A of (Y, σ).
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6.2 Theorem

A function f: (X, τ , I) → (Y, σ) is ?-continuous if and only if it is

1. weakly I-LC-continuous and Ig-continuous [9].

2. sg-I-LC-continuous and Ig̈-continuous.

Proof It is an immediate consequence of Theorem 4.5. �

6.3 Theorem

A function f: (X, τ , I) → (Y, σ) the following are equivalent.

1. f is ?-continuous.

2. f is Ig̈–continuous and sg-I-LC-continuous.

3. f is Ig̈-continuous and ζsg-I-continuous

Proof It is an immediate consequence of Theorem 4.17. �

Conclusions

In this paper, characterizations and properties of Ig̈-closed sets and Ig̈-open sets are given. A characterization of
normal spaces is given in terms of Ig̈-open sets. Also, it is established that an Ig̈-closed subset of an I-compact space
is I-compact. We introduced the concepts of sg -I-locally closed sets, ∧sg-sets and ζsg-I-closed sets. We introduced
Ig̈-continuous, Ig̈-irresolute, sg-I-LC-continuous, ζsg-I-continuous and to obtain decompositions of ?-continuity in
ideal topological spaces. In future, we have extended this work in various ideal topological fields with some applications.
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