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Abstract

In this paper, we are investigating the one dimensional inverse source problem for Helmholtz equation

where the source function is compactly supported in our domain. We show that increasing stability

possible using multi-frequency wave at the two endpoints. Our main result is to obtain a stability

estimate consists of two parts: the data discrepancy and the high frequency tail.
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Introduction and statement of problem

We consider with the one dimensional Helmholtz equation in a one layered medium:

u(x, ω)′′ + k2u(x, ω) = f, x ∈ (−1, 1), (0.1)

where the wave field u is required to satisfy the outgoing wave conditions:

u′(−1, ω) + iku(−1, ω) = 0, u′(1, ω)− iku(1, ω) = 0 (0.2)

Given f ∈ L2(−1, 1), it is well-known that the problem (0.1)-(0.2) has a unique solution:

u(x, ω) =

∫ 1

−1
G(x− y)f(y)dy, (0.3)

where G(x) is the Green function given as follows

G(x) =
ieik|x|

2k
. (0.4)

This work concerns the inverse source problem when the source function f is a complex function with a

compact support contained in (−1, 1). In this paper, our goal is to recover the source function f using

the boundary data u(1, ω) and u(−1, ω) with ω ∈ (0, k) where K > 1 is a positive constant.
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Inverse source problem areas in many area of science. It has numerous applications in acoustical

and biomedical/medical imaging, antenna synthesis, geophysics, and material science ([2, 3]). It has

been known that the data of the inverse source problems for Helmholtz equations with single frequency

can not guarantee the uniqueness ([13], Ch.4). On the other hand, various studies, for instance in [4],

showed that the uniqueness can be regained by taking multifrequency boundary measurement in a non-

empty frequency interval (0,K) noticing the analyticity of wave-field on the frequency [13, 17]. On the

other hand, various studies, for instance in [12], showed that the uniqueness can be regained by taking

multi-frequency boundary measurement in a non-empty frequency interval (0,K) noticing the analyticity

of wave-field on the frequency. Because of the wide applications, these problems have been attracted

considerable attention. These kinds of problems have been extensively investigated by many researchers

such as In the paper [1, 5, 6, 7, 8, 9, 10, 14, 15, 16, 18, 19] and [20]. We also have to mention that these

types of problems and techniques can apply to systems. For an example, in [11], inverse source problems

was considered for classical elasticity system.

In this paper, In this paper, we assume that the medium is homogeneous in the whole space. Here we

try to establish a stability estimate to recover of the source functions for the inverse source problem for

the one-dimensional Helmholtz equation. In this paper both functions f ∈ H2((−1, 1)) are assumed to

be zero outside our domain and suppf ⊂ (−1, 1). The main result is the following theorem.

Theorem 0.1. There exists a generic constant C depending on the domain (−1, 1) such that

‖ f ‖2(0) (−1, 1) ≤ C
(
ε2 +

M2

K
2
3E

1
4 + 1

)
, (0.5)

for all u ∈ H2((−1, 1)) solving (0.1) with K > 1. Here

ε2 =

∫ K

0

ω2
(
|u(1, ω)|2 + |u(−1, ω)|2

)
dω,

E = −lnε and M = max
{
‖ f ‖2(1) (−1, 1), 1

}
where ‖ . ‖(l) (Ω) is the standard Sobolev norm in H l(Ω).

f1 =

f if x > 0,

0 if x < 0,
f2 =

0 if x > 0,

f if x < 0.

Remark 1.1: The estimate in (0.5) consists of two parts: the data discrepancy and the high frequency

part. The first part is of the LIpschitz type. The second part is of logarithmic type. The second part

decrease as K increases which makes the problem more stable. The estimate (0.5) also implies the

uniqueness of the inverse source problem.
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1 Proof of Theorem 1.1

1.1 Increasing Stability of Continuation to higher frequencies

Let

I(k) = I1(k) + I2(k)

where

I1(k) =

∫ k

0

ω2|u(−1, ω)|2dω, I2(k) =

∫ k

0

ω2|u(1, ω)|2dω, (1.1)

using (0.3) and a simple calculation shows that

ωu(1, ω) =

∫ 1

0

i

2
eiω(1−y)f1(y)dy, ωu(−1, ω) =

∫ 0

−1

i

2
eiω(−1−y)f2(y)dy, (1.2)

where y ∈ (−1, 1). Functions I1 and I2 are both analytic with respect to the wave number k ∈ C and

play important roles in relating the inverse source problems of the Helmholtz equation and the Cauchy

problems for the wave equations.

Lemma 1.1. Let suppf ∈ (−1, 1) and f ∈ H1(−1, 1). Then

|I1(k)| ≤ C
(
|k| ‖ f ‖2(0) (−1, 1)

)
e2|k2|, (1.3)

|I2(k)| ≤ C
(
|k| ‖ f ‖2(0) (−1, 1)

)
e2|k2|. (1.4)

Proof. Since we have k = k1 + k2i is complex analytic on the set S \ [0, k], where S is the sector

S = {k ∈ C : |arg k| < π
4 } with k = k1 + ik2. Since the integrands in (1.1) are analytic functions of k in

S, their integrals with respect to ω can be taken over any path in S joining points 0 and k in the complex

plane. Using the change of variable ω = ks, s ∈ (0, 1) in the line integral (0.3), the fact that y ∈ (−1, 1).

I1(k) =

∫ 1

0

ks
∣∣ ∫ 1

0

1

2
ei(ks)(1−y)f1(y)dy

∣∣2ds, (1.5)

and

I2(k) =

∫ 1

0

ks
∣∣ ∫ 0

−1

1

2
ei(ks)(−1−y)f2(y)dy

∣∣2ds. (1.6)

Noting

|eiks(−1−y)| ≤ e2|k2|, |eiks(1−y)| ≤ e2|k2|,

using the Schwartz inequality and integrating with respect to s, using the bound for |k| in S, we complete

the proof of (1.3). Using the same technique, we can prove the (1.4).

Noticing that functions I1(k), I2(k) are analytic functions of k = k1 + ik2 ∈ S and |k2| ≤ k1. The

following steps are essential to link the unknown I1(k) and I2(k) for k ∈ [K,∞) to the known value ε in

(0.1).

Obviously

|I1(k)e−2k| ≤ C
(
|k1| ‖ f ‖2(0) (−1, 1)

)
e−2k1 ≤ CM2, (1.7)
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where M = max
{
‖ f ‖2(0) (−1, 1), 1

}
. With the similar argument bound (1.7) is true for I2(k).

Observing that

|I1(k)e−2k| ≤ ε2, |I2(k)e−2k| ≤ ε2 on [0,K].

Let µ(k) be the harmonic measure of the interval [0,K] in S\[0,K], then as known (for example see

[13], p.67), from two previous inequalities and analyticity of the function I1(k)e−2k and I2(k)e−2k we

conclude that

|I1(k)e−2k| ≤ Cε2µ(k)M2, (1.8)

when K < k < +∞. Similarly it also yields for

|I2(k)e−2k| ≤ Cε2µ(k)M2, (1.9)

consequently

|I(k)e−2k| ≤ Cε2µ(k)M2. (1.10)

To achieve a lower bound of the harmonic measure µ(k), we use the following technical lemma. The

proof can be found in [7].

Lemma 1.2. Let µ(k) be the harmonic measure of the interval [0,K] in S\[0,K], then
1
2 ≤ µ(k), if 0 < k < 2

1
4K,

1
π

((
k
K

)4 − 1
)−1

2 ≤ µ(k), if 2
1
4K < k .

(1.11)

Lemma 1.3. Let source function f ∈ L2(−1, 1) with suppf ⊂ (−1, 1), then

‖ f ‖2(0) (−1, 1) ≤ C
∫ ∞
0

ω2
(
|u(−1, ω)|2 + |u(1, ω)|2

)
dω.

Proof. Using the result of [19] by applying the Green function (0.4) and letting k1 = k2 = k.

Lemma 1.4. Let source function f ∈ L2(−1, 1), then

ω2|u(−1, ω)|2 ≤ C
∣∣∣ ∫ 0

−1
e2ωyf2(y)dy

∣∣∣2
ω2|u(1, ω)|2 ≤ C

∣∣∣ ∫ 1

0

e2ωyf1(y)dy
∣∣∣2

Proof. It follows from (1.2) and y ∈ (−1, 1).

1.2 Increasing stability for inverse source problem

To continue the estimate for reminders in (1.5) and (1.6) for (k,∞), we need the following lemma.

Lemma 1.5. Let u be a solution to the forward problem (0.1) with f1 ∈ H1(Ω) with suppf ⊂ (−1, 1),

then ∫ ∞
k

ω2|u(−1, ω)|2dω +

∫ ∞
k

ω2|u(1, ω)|2dω ≤ Ck−1
(
‖ f ‖2(1) (−1, 1)

)
(1.12)
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Proof. Using (1.2), we obtain ∫ ∞
k

ω2|u(−1, ω)|2dω +

∫ ∞
k

ω2|u(1, ω)|2dω (1.13)

≤ C
( ∫ ∞

k

∣∣∣ ∫ 1

0

eiωyf1(y)dy
∣∣∣2dω +

∫ ∞
k

∣∣∣ ∫ 0

−1
eiωyf2(y)dy

∣∣∣2dω). (1.14)

Using integration by parts and the fact that suppf1 ⊂ (0, 1) and suppf2 ⊂ (0, 1), we have∫ 1

0

e−iωyf1(y)dy =
1

iω

∫ 1

0

e−iωy(∂yf1(y))dy,

and ∫ 0

−1
e−iωyf2(y)dy =

1

iω

∫ 0

−1
e−iωy(∂yf2(y))dy,

consequently for the first and second terms in (1.14) we obtain∣∣∣ ∫ 1

0

eiωyf1(y)dy
∣∣∣2 ≤ C

ω2
‖ f1 ‖2(1) (0, 1) ≤ C

ω2
‖ f1 ‖2(1) (−1, 1)

≤ C

ω2
‖ f ‖2(1) (−1, 1),

utilizing the same argument for the second term in (1.14) and integrating with respect to ω the proof is

complete.

Now, we are ready to proof Theorem 0.1.

Proof. We can assume that ε < 1 and 3πE−
1
4 < 1, otherwise the bound (0.1) is obvious. Let

k =

K
2
3E

1
4 if 2

1
4K

1
3 < E

1
4

K if E
1
4 ≤ 2

1
4K

1
3 ,

(1.15)

if E
1
4 ≤ 2

1
4K

1
3 , then k = K, using the (1.8) and (1.10), we can conclude

|I(k)| ≤ 2ε2. (1.16)

If 2
1
4K

1
3 < E

1
4 , we can assume that E−

1
4 < 1

4π , otherwise C < E and hence K < C and the bound

(0.5) is straightforward. From (1.15), Lemma 2.2, (1.8) and the equality ε = 1
eE

we obtain

|I(k)| ≤ CM2e4ke
−2E
π

(
( kK )4−1

)−1
2

≤ CM2e−
2
πK

2
3E

1
2 (1− 5π

2 E
−1
4 ),

using the trivial inequality e−t ≤ 6
t3 for t > 0 and our assumption at the beginning of the proof, we

obtain

|I(k)| ≤ CM2 1

K2E
3
2

(
1− 5π

2 E
− 1

4

)3 . (1.17)
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Due to the (1.5), (1.16), (1.17), and Lemma 2.5. we can conclude∫ +∞

0

ω2|u(−1, ω)|2dω +

∫ +∞

0

ω2|u(1, ω)|2dω (1.18)

≤ I(k) +

∫ ∞
k

ω2|u(−1, ω)|2dω +

∫ ∞
k

ω2|u(1, ω)|2dω

≤ 2ε2 +
CM2

K2E
3
2

+
‖ f ‖2(2) (−1, 1)

K
2
3E

1
4 + 1

)
.

Using the inequalities in (1.18) and Lemma 2.3., we finally obtain

‖ f ‖2(0) (Ω) ≤ C
(
ε2 +

M2

K2E
3
2

+
‖ f ‖2(1) (−1, 1)

K
2
3E

1
4 + 1

)
Due to the fact that K

2
3E

1
4 < K2E

3
2 for 1 < K, 1 < E, the proof is complete.

2 Conclusion

In this paper, we studied the inverse source problem with many frequencies in a one dimensional domain.

The result showed that if K grows the estimate improves. It also showed that if we have date exists for

all wave number k ∈ (0,∞), the estimate will be a Lipschitz estimate.
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