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Abstract 

Inter-conversion processes of labile molecules obey similar laws to those of reversible chemical reactions. The 

main purpose of this review article is to recall and improve and correct previous results on this subject. Namely, 

one corrects a result on the relationship between two rate constants, in the case when an intermediate state is 

involved. One proves that by increasing velocity, the concentrations of the main species at equilibrium are equal. 

This assertion seems to be true in both cases: when an intermediate state is involved and in the opposite case. 

In the latter case, one characterizes the property of being a projector for the linear transform defined by the 

matrix of the differential system which governs the process. Namely, one proves that this transform is a projector 

if and only if the rate constants have a common value. This value is ½ and equals the equal values of the 

concentrations at equilibrium. 

Keywords: inter-conversion; equilibrium; optimal solutions; increasing velocity; Schwarz inequality; remarkable 

rate constants; projector 

1 Introduction 

In this case study, we improve some results from [1]. The inter–conversion processes of labile molecules are 

governed by similar differential systems as those related to linear reversible chemical reactions (see [1] and also 

[2], as well as the references therein). The first purpose of the present mini - review paper is to show that in 

some “optimal” cases, at equilibrium (in the sense of the linear differential systems), a physical equilibrium occurs 

too. In fact, the concentrations of the main species at equilibrium are equal. The second aim of this work is to 

determine remarkable rate constants of the process. In order to determine the special rate constants, an 

additional condition is necessary. In case of no intermediate sate, we found that a suitable such condition is that 

the linear (symmetric) operator defined by the matrix of the corresponding differential system is a projector. 

Our methods do not involve measurements, but only mathematical notions and results. Thus, the notions of an 

eigenvalue, symmetric matrices, as well as that of a projector are applied, in order to obtain remarkable values 

of the rate constants in terms of linear operators. The connection with elementary theory of real and complex 

functions [3] is also pointed out and/or applied. The rest of the paper is organized as follows. Section 2 deals 

with the subjects mentioned above, in the case of two main species, with or/and without an intermediate state. 

Section 3 gives the proofs of the results of Section 2 and their methods. Section 4 concludes the paper. 

2 The results 

Inter-conversion processes of configurationally labile molecules isolated from all external influences are similar 

to the first order reversible chemical reactions, as described below. Starting from this behavior, governed by the 

corresponding linear system of differential equations with constant coefficients, we will show that under some 

natural conditions of increasing the mean of the velocity, one deduces that the concentrations at equilibrium 

(when →t ) verify the equalities 

2
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and the two rate constants are equal: kkk == :21 . Under additional assumption, we infer that the remarkable 

common value for the rate constants is 
2

1
=k  (see Theorem 2.1). Namely, we prove that the operator defined 

by the matrix of the differential system involved has norm one (and it is also a projector) if and only if 

( )ee SRk ][][
2

1
===   

We start by recalling the general law of inter – conversion process (or linear reversible reaction), under some 

initial data assumptions: 
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Here S, R, as well as ][],[ RS  are the concentrations of the main species at a current point ),,0[ t 21, kk  being 

the rate constants. Notations ee SR ][,][  are used for the concentrations at equilibrium, (when →t ). The 

molecules in states ][],[ RS  are going to rearrange such that those from one state to become mirror image of 

those of the other state. Determining the rate constants 21, kk  is an important and quite difficult task. 

By addition of equations, one obtains that the derivative of ][][ RS +  is vanishing everywhere, hence 

CRS =+ ][][ , where 0C  is constant. By the initial conditions, this constant equals one. Thus .1][][ + RS  

Both rate constants appearing below are positive numbers. Derivation in the second equation leads to 
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The first main problem is to show that the optimal values at equilibrium are equal. In the present paper, we 

determine the values at equilibrium and remarkable rate constants of (1), also considering a particular case, 

when the inter-conversion occurs through an achiral intermediate governed by (3). 
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The notations ][],[],[ ARS  are used for the current concentrations of the main species, respectively of the achiral 

intermediate [A], at a current point ),0[ t . One denotes by eee ARS ][,][,][  the values of the corresponding 

species at equilibrium (when →t );  11, −kk   are the rate constants. Solving Cauchy problems related to the 

system is standard. The following case is considered: 

0][][,1][ 000 === RAS , 

where the index zero means that the corresponding concentration is considered at the initial moment 00 =t . 

By using elements of algebra, real and complex analysis, both significant rate constants related to the problem 

(1) are determined in Theorem 2.1 from below. In the sequel, by optimal values we mean those values for which 

the mean of the velocity of the inter–conversion process is maximal. In other words, our aim is to increase the 

velocity. We assume that we know an upper bound 𝑏 for the rate constants 𝑘1, 𝑘2. The significance of the time 

moment 2/1t  is defined below.  

Theorem 2.1. (i) The general problem described by (1) leads to the following optimal values at equilibrium, 

respectively of the time-moment 2/1t : 
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where 𝑡1 2⁄  is the time moment at which the half of the quantity 1 2⁄  obtained at equilibrium passes from state 

[𝑆] to state [𝑅]. 

(ii) If 2M  is the matrix of the system (1) determined at point (i), then the linear operator defined by 2M−  is a 

projector if and only if 
2

1
=k . In this case, the remarkable particular solution is  
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Remark 2.1. Consider the modified Jukovsky’s analytic transformation on the complex plane with zero deleted 
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Then a simple calculation shows that 12 k  implies that the function )k2,(J   is univalent in 𝑈\{0}, 𝑈 ≔

{𝑧; |𝑧| < 1}. It follows that 12 =k  is the maximal possible value such that )k2,(J   to be univalent in 𝑈\{0}. This 

leads to a minimum value for 

2ln
)2(

2ln
2/1 ==

k
t . 

The conclusion is that the value 12 =k  is a limit one, for which Jukovsky’s application mentioned above is 

univalent in the open unit disk, with zero deleted. This cannot stand for a proof, but it is a method to guess the 

special value of 2𝑘 and its “geometric” meaning. 

Remark 2.2. The solutions given by (i) of the above theorem, has the following properties: [S] is strictly 

decreasing from 1 to 
2

1
, [R] is strictly increasing from 0 to 

2

1
, hence the graphs of these two functions never 

meet. A common horizontal asymptote at +  is the line
2

1
=y . 

Next we assume that an intermediate state is involved. We consider an intermediate state [A] as described in 

(3), and assume that its role is to increase the velocity of the process. As in the case of Theorem 2.1, one assumes 

that we know an upper bound 𝑏1 for the rate constants 𝑘1, 𝑘−1. 

Theorem 2.2. Assume that [𝑆]0 − [𝑅]0 ≠ 0. Then the solution of (3) is 

 [𝑆](𝑡) =
1

2
(

2𝑘1

𝑘−1+2𝑘1
− ([𝐴]0 −

𝑘−1

𝑘−1+2𝑘1
) 𝑒−(𝑘−1+2𝑘1)𝑡 + ([𝑆]0 − [𝑅]0)𝑒−𝑘−1𝑡), 

[𝑅](𝑡) =
1

2
(

2𝑘1

𝑘−1 + 2𝑘1

− ([𝐴]0 −
𝑘−1

𝑘−1 + 2𝑘1

) 𝑒−(𝑘−1+2𝑘1)𝑡 − ([𝑆]0 − [𝑅]0)𝑒−𝑘−1𝑡), 

[𝐴](𝑡) = ([𝐴]0 −
𝑘−1

𝑘−1 + 2𝑘1

) 𝑒−(𝑘−1+2𝑘1)𝑡 +
𝑘−1

𝑘−1 + 2𝑘1

                   (4) 

In the next result, by optimal solution we mean that solution which maximizes the velocity mean of the process 

which occurs in the intermediate state [𝐴],  in terms of the relationship between 𝑘1 and  𝑘−1.                                                      

Theorem 2.3. Assume that 0][][,1][ 000 === RAS . Then the only optimal solution is obtained for 𝑘−1 = 2𝑘1 ≔

𝑘 and is given by 

[𝑆](𝑡) =
1

2
(

1

2
+

1

2
𝑒−2𝑘𝑡 + 𝑒−𝑘𝑡) 
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2
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1

2
𝑒−2𝑘𝑡 − 𝑒−𝑘𝑡) 

[𝐴](𝑡) =
1

2
(1 − 𝑒−2𝑘𝑡), 𝑡 ≥ 0 

In particular, we have [𝐴]𝑒 =
1

2
, [𝑅]𝑒 = [𝑆]𝑒 =

1

4
.  
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Remark 2,3.  

The matrix of the system (3) is not symmetric for 𝑘−1 = 2𝑘1. That matrix would be symmetric if and only if 𝑘1 =

𝑘−1. The latter equality, used in [1], seems to be not realistic and contradicts the relation 𝑘−1 = 2𝑘1 proved below. 

3 Proofs and related methods 

Proof of Theorem 2.1. (i) Looking for the optimal solution of (1), we observe that maximizing the absolute 

value of the velocity is equivalent to maximizing the square of the velocity. For any number 

00 t , 

maximizing the mean of the square of the velocity on the interval ],0[ 0t  means, thanks to (2), to find an upper 

bound for 
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(recall that 0 < 𝑘1 ≤ 𝑏). We maximize the above integral, from the point of view of relationship between the two 

rate constants. Due to Schwarz inequality, one deduces 
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and, as it is well–known, equality occurs (that is maximum is attained, and the integral in the left-hand side is 

maximal) if and only if and only if there exists a scalar 0c  such that 

)2exp()2exp( 201 tkctk −=−  

for all ],0[ 0tt  . The last relation may be rewritten as 

],0[.,const))(2exp( 0012 ttctkk ==− . 

This may be true if and only if 012 =− kk , 𝑐0 = 1, that is 

1,: 021 === ckkk . 

From the last equality (1), also using 1][][ + RS , this leads to 
2

1
][][ == ee RS . Under the optimality assumptions 

mentioned at point (i), to find the values of the rate constants, we observe that one of the eigenvalues of the 

matrix 2M  of the linear differential system (1) is zero, and the other one is 

)( 212 kk +−= , 

the associated eigenvector for the latter being 



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corresponding to the eigenvalue 01 =  is 
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 since 21 kk =  leads to the fact that the matrix of the 
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system (1) is symmetric. It follows that the range of the linear symmetric operator defined by 2M  is the one-

dimensional subspace generated by 2 . The value of the moment time 2/1t  defined by 

2/1
][

4

1
tR=  

follows from (2), also using the basic equality 21 kk = . In fact, the following equality should be verified by 2/1t : 

( )
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2/12/1 =−−= . 

Thus the proof of the assertions at point (i) is finished. To prove (ii), observe that in the case of an optimal 

solution, the matrix 2M  of the differential system (1) is symmetric. Its eigenvalues are k2,0 − . The characteristic 

equation is 𝜆(𝜆 + 2𝑘) = 0. By Cayley-Hamilton Theorem, 𝑀2 satisfies the basic relation: 

( ) 2
2

22
2
2 22 kMMkMM −=−−=  

On the other hand, by definition, 2M−
 
defines a projector if and only  

( ) 2
2

2 MM −=−  

Comparing the last two relations, we get 2k = 1, as claimed. Then the matrix 𝑀2 becomes 










−

−
=

11

11

2

1
M2  

and )( 2M−  is a symmetric positive semi-definite matrix of norm one. The vector 2  is a fixed point for 2M− . 

The set )(}1,0{ 2M−=   is the spectrum of −𝑀2. For this special value 1/2k = , also using the results (i), the 

assertions of the statement (ii) follows. This concludes the proof.             □                                                                                                                                     

Proof of Theorem 2.2.  

The equation in ][A  can be solved separately, eliminating the other unknowns of the system (one replaces 

][][ RS +  by ]A[1− ). This leads to a first order linear differential equation in the unknown ]A[ . Solving this 

equation, we find the desired explicit expression for ]A[ . Then standard arguments (such as subtraction and 

addition of the first two equations) lead to simple equations in the unknowns ][][],[][ RSRS +− . The conclusion 

follows by addition and subtraction of these last mentioned relations, via elementary computations.                                                                                

□                        

Proof of Theorem 2.3.  

From the point of view of optimum relationship between 𝑘1 and 𝑘−1 appearing in (4), in order to maximize the 

mean of the velocity in state  [𝐴] on an interval [0, 𝑡0],  we have to maximize  

𝐼 = ∫ 𝑒−(𝑘−1+2𝑘1)𝑡𝑑𝑡 = ∫ 𝑒−𝑘−1𝑡𝑒−2𝑘1𝑡𝑑𝑡 ≤ (∫ 𝑒−2𝑘−1𝑡

𝑡0

0

𝑑𝑡)

1 2⁄

(∫ 𝑒−4𝑘1𝑡

𝑡0

0

𝑑𝑡)

1 2⁄𝑡0

0

𝑡0

0
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because of Schwarz inequality (see also the proof of Theorem 2.1. and use the inequality given by hypothesis 

𝑘−1 ≤ 𝑏1 = 𝑐𝑜𝑛𝑠𝑡.). As it is well known, the maximum value of 𝐼 is attained if and only if when the relation 

between integrals becomes an equality, and this is happening if and only if there exists a constant 𝑐 such that  

𝑒−𝑘−1𝑡 = 𝑐𝑒−2𝑘1𝑡 , 𝑡 ∈ [0, 𝑡0] 

The last equality is equivalent to 

𝑒(2𝑘1−𝑘−1)𝑡 = 𝑐, , 𝑡 ∈ [0, 𝑡0] ⇔ 2𝑘1 − 𝑘−1 = 0, 𝑐 = 1 

Inserting the equality 2𝑘1 = 𝑘−1 into (4), the conclusion follows.                                           □ 

4 Conclusions 

We have proved that in all the cases appearing in the theorems involving optimal solutions, the concentrations 

states at equilibrium [𝑅]𝑒, [𝑆]𝑒 are equal. In particular, we have not only an equilibrium at infinity in the sense of 

differential systems, but also an equilibrium of the concentrations of the main species. In case of no intermediate 

state, one also proves that the rate constants are equal. Under the same assumption, remarkable value for the 

rate constants are proposed in terms of the operator defined by the matrix of the corresponding differential 

system. Namely, the common value of the concentrations at equilibrium equals the common value of the rate 

constants (cf. Sections 2, 3). We have corrected the result from [1] on the case of an intermediate state. It seems 

that in this case, for a maximal velocity at intermediate state, we should have 2𝑘1 = 𝑘−1.. 
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