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Abstract

In this paper, we consider a hyperbolic generalized Fisher-KPP equation: ε2utt + g(u)ut = (k(u)ux)x + f(u) where f ,
g and k are arbitrary smooth functions of variable u and ε is a speed parameter. We find invariant solutions by Lie
method. Also, we study standard and weak conditional and approximate symmetries.
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Introduction

The symmetry group method plays a key role in the study of differential equation. The basic method for computing
symmetry groups, using the prolongation formula for their generators, goes back to Sophus Lie. He was the first one
who actually did introduce the general method for finding symmetry groups and invariant solutions [17].

The symmetry group of a PDE constructs some new solutions from known ones. G.W. Bluman and J.D. Cole
generalized the Lie’s method and presented a non-classical method of group invariant solutions for the linear heat
equation [2]. The concept conditional symmetry was introduced and developed by W.I. Fushchych [8, 9]. Non-trivial
conditional symmetries of a PDE allows us to obtain a clear form of solutions of the equation which can not be found
by Lie method. P.J. Olver and P. Rosenau developed this method and proved that any vector field X is a conditional
symmetry and any solution of the equation is an invariant solution under some X [18].

Recently, many mathematicians, mechanicians, and physicists, such as Euler, D’Alembert, Poincare, Bateman used
conditional symmetries for the construction of exact symmetries of the linear wave equation, which some solutions can
not be obtained by Lie’s method. Classical Lie group theory was provided an efficient tool for computing symmetry
groups of a PDE, but any small perturbation in an equation changed the symmetry group, so this method isn’t always
applicable. An approximate theorem is provided us to construct approximate symmetries that are stable under small
perturbations of a PDE. V.A. Baikov, R.K. Gazizov, and N.H. Ibragimov were the first people who worked on this
subject [4]. In this method, the Lie operator is expanded in a perturbation series so that an approximate operator can
be found [13–16,20].

One of the most important and most useful equations is the Fisher-KPP equation which plays an important role
in the medicine and biology science ut = uxx + F (u), where F is monostable and F (0) = F (1) = 0. S.A. Gourley
showed that traveling front of a nonlocal Fisher-KPP equation exists if the nonlocality is sufficiently weak in a certain
sense [10]. In the [11,12], this equation is generalized to the following form m(u)ut = (k(u)ux)x+f(u). As in Mckean’s
approach, S. Dunbar and H. Othmer [6, 7] showed that the function u(t, x) satisfies a nonlinear hyperbolic equation
of the general form

ε2utt + g(u)ut = (k(u)ux)x + f(u), (0.1)

that is derived from models of movement cells and celled organisms and from a mathematical treatment of a branching
random walk. They studied the equation (0.1) while k(u) is a constant function and g(u), f(u) are polynomials
functions and obtained traveling wave solutions of certain speeds. K.P. Hadeler introduced a simplifying transformation
for general parameter functions g, k, u and provided a complete description for the case of a constant or a monotone
function k [11].
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In this paper, we consider the equation (0.1) and find invariant solutions of it by the classical, non-classical and
approximate method. In the first section, we suppose that the parameter ε is constant and obtain symmetry groups
and invariant solutions by using Lie method. In the second section, we assume that the parameter ε is a constant and
the conditional symmetry is found. In the third section, we obtain first and second order approximate symmetries by
the Ibragimov approximate method. In the final section, we analyze the important and useful case of the equation
(0.1) and invariant solutions are found.

1 Lie Symmetries

In this section, we illustrate a general Lie method. Also we find symmetry groups and invariant solutions of the partial
differential equation (0.1) by Lie method. We consider a system of a PDE of order n

∆ν(x, u(n)) = 0, ν = 1, · · · , l, (1.2)

which x = (x1, · · · , xp) and u = (u1, · · · , uq) are independent and dependent variables, respectively and u(n) :=(
uαi1 ; uαi1i2 ; · · · uαi1···in

)
is derivatives of u with respect to x from 0 to n. We consider a one parameter translation

group G that acts on independent and dependent variables of (1.2) by the following form

x̃i = xi + sξi(x, u) +O(s2), i = 1, · · · , p

ũα = uα + sϕα(x, u) +O(s2), α = 1, · · · , q

where ξi and ϕα are the infinitesimal of the translation for the independent and dependent variables, respectively.
The general form of the infinitesimal generator of the translation group G is

X =

p∑
i=1

ξi(x, u)∂xi +

q∑
α=1

ϕα(x, u)∂uα. (1.3)

By theorem 2.36 of [17], the n-th order prolongation of the infinitesimal generator X is the vector field

pr(n)X = X +

q∑
α=1

∑
J

ϕJα(x, u(n))∂uαJ , (1.4)

with 1 ≤ k ≤ n, J = (j1, · · · , jk), 1 ≤ jk ≤ p. The coeffcient functions ϕJα are given by the following formula:

ϕJα(x, u(n)) = DJ

(
ϕα −

p∑
i=1

ξiuαi

)
+

p∑
i=1

ξiuαJ,i, (1.5)

where uαi := ∂uα/∂xi and uαJ,i := ∂uαJ/∂x
i and D is the total derivative.

By theorem 2.71 of [17], G is a symmetry group of the nondegenerate system (1.2) if and only if

pr(n)X(∆ν(x, u(n))) = 0, ν = 1, · · · , l, (1.6)

whenever ∆(x, u(n)) = 0.
By solving the above system, we obtain coefficients of the infinitesimal generator X. By using Lie equations, we

gain the symmetry group G.
To earn invariant solutions, we must acquire functional independent invariants of X by integrating a corresponding

characteristic system.
Now, we consider the equation (0.1) which the parameter ε is a constant. Let x1 = t, x2 = x and u(t, x) be

independent and dependent variables. So the one parameter translation group acts:

(t̃, x̃, ũ) = (t, x, u) + s(τ, ξ, ϕ)(t, x, u) +O(s2).

The infinitesmal vector field corresponding with G is X = τ ∂t + ξ ∂x + ϕ∂u. The second prolongation of X is the
form:

pr(2)X = X + ϕt ∂ut + ϕx ∂ux + ϕtt ∂utt + ϕtx ∂utx + ϕxx ∂uxx
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Suppose that Q = ϕ− τut − ξux. Applying (1.5), the coefficients ϕJ leads as:

ϕt = DtQ+ τutt + ξuxt, ϕx = DxQ+ τuxt + ξuxx,
ϕtt = D2

tQ+ τuttt + ξuttx, ϕtx = DtDxQ+ τuttx + ξutxx,
ϕxx = D2

xQ+ τuxxt + ξuxxx.

Therefore, the invariant condition (1.6) is equivalent to solving the system:

pr2X(ε2utt + g(u)ut − (k(u)ux)x − f(u)) = 0,

ε2utt + g(u)ut − (k(u)ux)x − f(u) = 0.

Then we obtain a polynomial equation including derivative u that the coefficients u are derivatives ξ, τ , ϕ with
respect to t, x, u. The coefficients of derivatives must be zero; therefore, we obtain a determining system of 16
equations:

k(u) ξuu = 0, τuu = 0, k(u) (ϕuu − 2ξux) = 0, · · ·

Solving the above system, leads:

Theorem. The one-parameter Lie group of point symmetry of the equation (0.1) has an infinitesimal generator X,
whose coefficient functions τ = c1, ξ = c2 and ϕ = 0 are constants.

Therefore, this symmetry group has the infinitesimal generators X1 = ∂t, X2 = ∂x. By integrating Lie equation

system, we obtain one parameter symmetry groups with generators X1 and X2:

G1(s) : (t, x, u) 7→ (t+ s, x, u), G2(s) : (t, x, u) 7→ (t, x+ s, u). (1.7)

Thus we can say:

Corollary. If u = f(t, x) is a solution of (0.1), then

u(1) = f(t− s, x), u(2) = f(t, x− s), s ∈ R,

are solutions of (0.1).

Proof: Now, we want to find nontrivial invariant solution of equation (0.1). Consider the symmetry generator
X1 = ∂t, by solving characteristic equations, we obtain functional independent invariants y = x and w = u. Thus the
reduced equation is

k(u)wyy + f(w) = 0,

which is an invariant solution of the equation (0.1) corresponding with X1 by integrating the above reduced equation.
Similarly, we find functional independent invariants y = t, w = u corresponding with X2 = ∂x, and reduced

equation:

ε2wyy − g(w) + wy − f(w) = 0.

Solving the above reduced equation leads to an invariant solution of the equation (0.1) corresponding with X2.
For example, suppose that f(u) = c1, g(u) = c2 and k(u) = c3 are constants. Then the reduced equations

corresponding with X1 and X2 are, respectively:

c3wyy + c1 = 0, ε2wyy − c2 + wy − c1 = 0.

The following invariant solutions are respectively:

w1(y) = − c1
2c3

y2 + c1y + c2,

w2(y) = −c1
c2
ε2 exp(−c2

ε2
y) +

c1
c2
y + c2.

Therefore we can prove that:
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Theorem. If f(u) = c1, g(u) = c2 and k(u) = c3 are constant functions then invariant solutions of the equation
(0.1) corresponding with exact symmetries X1 = ∂t and X2 = ∂x are respectively:

u1 = − c1
2c3

x2 + c1x+ c2,

u2 = −c1
c2
ε2 exp(− c2

ε2
t) +

c1
c2
t+ c2.

2 Conditional Symmetries

In this section, we desrcibe Cicogna method for finding conditional symmetry. By definition of Fuschych, X is a
conditional symmetry (CS) of the equation ∆ = 0 if there is a supplementary equation E = 0 such that X is an exact
symmetry of the system ∆ = E = 0.

Cicogna considered the simplest and more common case of supplementary equation that is called ’side condition’
or invariant surface condition: XQu = ξi uxi − ϕ = 0, where XQ is the symmetry written in evolutionary form [5,17].
This condition indicates that we are finding precisely solutions which are invariant under X. By proposition 1 in [5],
we have:

Proposition. A vector field X is a standard conditional symmetry for the PDE ∆ = 0 if it is a symmetry for the
system

∆ = 0, XQu = 0,

and this corresponds to the existence of a reduced equation in p − 1- independent variables which gives X- invariant
solutions of ∆ = 0. Also, a vector field X is a weak conditional symmetry of order σ if it is a symmetry of the system

∆ = 0, ∆(1) := pr(1)X(∆) = 0, · · · , ∆(σ−1) = 0, XQu = 0,

and this corresponds to the existence of a system of σ reduced equations which gives X -invariant solutions of ∆ = 0.

Proof. Now, we want to find conditional symmetry of the equation (0.1). We consider the evolutional form of X,
so XQ = ϕ(t, x, u)− τ(t, x, u)∂t − ξ(t, x, u)∂x. Then by proposition 2, X is a standard conditional symmetry if X is a
symmetry of the following system:

ε2utt + g(u)ut = (k(u)ux)x + f(u), ϕ− τut − ξux = 0.

Integrating of the above system implies that τ = c1, ξ = c2 = 0 and ϕ = 0. Thus we can state:

Theorem. The infinitesmal standard conditional symmetry of the equation (0.1) are X1 = ∂t, X2 = ∂x and X3 =
∂t + ∂x.

Proof. Infinitesmal generator symmetries X1 and X2 are exact symmetries that we obtained invariant solutions of
them by Lie method. The corresponding characteristic equation with X3 is dt = dx and du = 0. Then functional
independent invariants are y = x− t and w = u and the reduced equation is:

ε2wyy = g(w)wy + k(w)wyy + f(w). (2.8)

Now, we can find invariant solutions of the equation (0.1) by integrating the reduced equation (2.8). For example,
suppose that f(u) = c1, g(u) = c2 and k(u) = c3 are constant functions, so the reduced equation corresponding with
X3 is ε2wyy = c2wy + c3wyy + c1 and the solution is:

w(y) =
c1
c2

(c3 − ε2) exp
( c2y

c3 − ε2
)

+
c1y

c2
+ c2.

Therefore, we can state the following theorem:
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Theorem. Let functions f(u) = c1, g(u) = c2 and k(u) = c3 in the equation (0.1) are constants, then the invaraint
solution corresponding with the standard conditional symmetry X = ∂t + ∂x is:

u =
c1
c2

(c3 − ε2) exp
(c2(x− t)
c3 − ε2

)
+
c1
c2

(x− t) + c2.

Proof. Now, let X = τ(t, x, u)∂t+ ξ(t, x, u)∂x+ϕ(t, x, u)∂u be a vector field. For finding weak conditional symmetry
of order 1 of the equation (0.1), we must solve the following system:

∆ : ε2utt + g(u)ut = (k(u)ux)x + f(u),
∆(1) : pr(1)X(∆) = 0,
XQu : ϕ− τut − ξux = 0.

Then we gain τ = c1, ξ = c2, ϕ = 0. Thus weak conditional symmetry of order 1 are exactly the standard conditional
symmetries X = ∂t, X2 = ∂x.

The weak conditional symmetry of order 2 are obtained by integrating the following system:
∆ : ε2utt + g(u)ut = (k(u)ux)x + f(u),
∆(1) : pr(1)X(∆) = 0,
∆(2) : pr(2)X(∆) = 0,
XQu : ϕ = τut + ξux,

that these are the same as the weak conditional symmetry of order 1.

3 Approximate Symmetries

In this section, we illustrate approximate symmetries of the equation (0.1) by Ibragimov approximate method. Now,
consider an approximate equation:

F (z, ε) = F0(z) + εF1(z) = 0. (3.9)

By theorem 2.2.1 in [13], the equation (3.9) is an approximate invariant under approximate transformation group G
with the generator

X = X0 + εX1 = ξi0∂zi + εξi1(z)∂zi ,

if and only if
[
XF (z, ε)

]
F=0

= O(ε).
The Theorem 2.2.2 of [13] statted that ”If the equation (3.9) admits an approximate transformation group with the

generator X = X0+εX1, then the operator X0 = ξi0(z)∂zi is an exact symmetry of the equation F0(z) = 0”. Therefore,
we can give an infinitesmal method for calculating approximate symmetries X of the first order for differential equation
(3.9):

1. Computation of the exact symmetry X0 of the unperturbed equation F0(z) = 0.

2. Determination of the auxiliary function H by the equation:

H =
1

ε

[
X0(F0(z) + εF1(z))

∣∣∣
F0(z)+εF1(z)=0

]
,

3. Calculation of the operator X1 by solving the determining equation:

X1F0(z)
∣∣
F0(z)=0

+H = 0.

By similar method, we find approximate symmetry of the second order for the equation F0(z) + εF1(z) + ε2F2(z) = 0.
By using Ibragimov method, we gain approximate symmetries of the first and second order of the equation (0.1),

then we can state the following theorem:

130

http://purkh.com/index.php/mathlab


MathLAB Journal Vol 2 No 1 (2019) http://purkh.com/index.php/mathlab

Theorem. Approximate symmetries of order 1 of the equation (0.1) are ∂t, ∂x, ε2∂t, ε
2∂x. And approximate

symmetries of order 2 of the equation (0.1) are ∂t, ∂x, ε∂t, ε∂x, ε2∂t and ε2∂x.

4 Illustration

We consider the problem of traveling fronts proceeded by growth together with cell dispersal. This is the appearance
in populations of bacteria swimming inside a narrow channel [1, 19]. S. Dunbar and H. Othmer [6, 7] introduced a
model of cell dispersal. They consider a position migration process with branching. A newborn particle moves with
constant speed to the right. It remains in this state and reverses its direction if it leaves this state. Moreover, the
particle may split into two daughters which each of them chooses its direction of movement with probability 1/2. Due
to this phenomenon, they were modeling equation (0.1). E. Bouin, V. Calvezyz, and G. Nadin used this model and
studied a special case of it [3]. In fact, they supposed that g(u) = 1 − ε2F ′(ρε(t, x)), k(u) = −1,f(u) = F (ρε(t, x))
in equation (0.1) where (t, x) and ρε(t, x) are independent and dependent variables and the growth function F is a
concave function. So the equation (0.1) changes to the following form:

ε2∂ttρε + (1− ε2F ′(ρε))∂tρε − ∂xxρε = F (ρε), (4.10)

where ρε(t, x) is cell density and the parameter ε is a scaling factor. We consider the equation (4.10) and obtained
invariant solutions of it.

The equation (4.10) is equivalent to the hyperbolic system

∂tρε + ε−1∂x(jε) = F (ρε), ε∂tjε + ∂xρε = −ε−1jε, (4.11)

which ρε(t, x) and jε(t, x) are dependent variables. Then solutions of (4.11) are corresponding one to one with solutions
of (4.10), therefore we integrate the hyperbolic system (4.11) instead of the equation (4.10).

For easy to work, suppose that F (ρ) = ρ(1− ρ). Then by using Lie method, we can prove that:

Theorem. The hyperbolic system (4.11) admits one parameter symmetry group G which generator by X1 = ∂t,
X2 = ∂x and X3 = exp(−t/ε2)∂jε .

Functional independent invariantes of X1 = ∂t are f(x) = ρε, h(x) = jε. Then the reduced system is the form:

hx/ε− f + f2 = 0, fx + h/ε = 0.

By solving the above system, we find invariant solutions of the system (4.11). The reduced system with respect to
X2 = ∂x is:

ft − f + f2 = 0, εht + h = 0.

Thus invariant solution is h(t) = c2 exp(−t/ε2), f(t) = 1/(1 + exp(−t)c1).
Finally, the reduced system for X3 = exp(−t/ε2)∂jε is:

ft − f + f2 = 0, fx = 0.

and invariant solution is f(t, x) = 1/(1 + exp(−t)c1).
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