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Abstract

We solve the Dirac equation for the quadratic exponential-type potential plus Eckart potential, including
a Coulomb-like tensor potential with arbitrary spin-orbit coupling quantum number k. In the framework
of the spin and pseudospin (pspin) symmetry, we obtain the energy eigenvalue equation and the
corresponding eigenfunctions in closed form by using the Nikiforov—Uvarov method. Also Special cases
of the potential are been considered, and their energy eigen values as well as their corresponding eigen
functions are obtained for both relativistic and non-relativistic scope.

Keywords: Dirac equation, Quadratic exponential-type potential, Eckart potential, spin and pseudospin
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1. Introduction

To investigate the mobility of spin ¥ particles in the relativistic approach, Diract equation is solved to
obtain full information concerning the difficulties in high energy and nuclear physics.! Recently some
authors have studied the spin symmetry and pseudospin symmetry with the Dirac equation for some
typical diatomic molecular potentials such as the Harmonic oscillator potential,>1° Coulomb potential,?
Woods-Saxon potential,1*1* Morse potential, 141’ Eckart potential,'®1° ring-shaped nonspherical harmonic
oscillator,®® Poschl-Teller potential,??> three-parameter potential function as a diatomic molecule
model,?® Yukawa potential.?-*Diatomic potential are very significant in describing the intermolecular
interactions and the atomic pair correlations in quantum Mechanics. The pseudospin symmetry is a
concept applied in nuclear physics to describe the observed degeneracies of some shell-model orbitals.30
321t was shown recently that this symmetry arises from a symmetry of the Dirac Hamiltonian. 333> The
Dirac Hamiltonian with external scalar, S(r), and vector, V(r), potentials is invariant for two limits, V-S =
constant and V+S = constant. The first one is called the spin symmetry and has applications to the
spectrum of mesons and the spectrum of antinucleon,3® the second limit leads to pseudospin symmetry.
This symmetry refers to quasi-degeneracy of the nucleon doublets which can be characterized with
quantum numbers (= £.i = £+1/2) and/. Where n, |, j are the single nucleon radial, orbital and total angular
momentum quantum numbers, respectively. This doublet structure can be expressed in terms of a
pseudo-orbital angular momentum ¢ = € + 1- and a pseudospin § = 1/2. Exact pseudospin
symmetrymeans the degeneracy of the doublets with quantum numbers / = € # 5. 1 Different
techniques have been employed in the solution, some of which include supersymmetry (SUSY),’
Nikiforov—Uvarov (NU),?® asymptotic iteration method(AIM),3°43 factorization and path integral, %6 shape
invariance.*#® In this work, our aim is to solve the Dirac equation for Quadratic exponential-type potential
plus Eckart potential (QEPE) potential in the presence of spin and pspin symmetries and by including a
Coulomb-like tensor potential using the Nikiforov-Uvarov method.

The QEPE potential takes the following form:

V(r)=D [ae

2°(T+be°(T+C e—O(T' e—O(T'
|~ AT =+ B (1a)

—e—XT) (1—e—%7)2

Thus eq. (1a) can be further expressed as

:
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—D(T+Ce—2°(1" e—O(T e—O(T

]—A +B (1b)

(1_e—o(r) (1_e—tx‘r)2

a+be
V(T) =D [ (1—e—%T)2
where o is the range of the potential, D, 4, B are potential depths and a,b,c are adjustable parameters.
This potential is known as an analytical potential model and is used for the vibrational energy of diatomic
molecules.

This paper is organized as follows. In section 2, we briefly introduce the Dirac equation with scalar and
vector potentials with arbitrary spin—orbit coupling quantum number k including tensor interaction under
spin and pspin symmetry limits. The Nikiforov—Uvarov (NU) method is presented in section3.The energy
eigenvalue equations and corresponding eigenfunctions are obtained in section 4. In section 5, we
discussed some special cases of the potential. Finally, our conclusion is given in section 6.

2. The Dirac equation with tensor coupling potential

The Dirac equation for fermionic massive spin-1/2 particles moving in the field of an attractive scalar
potential S(r), a repulsivevectorpotential V(r) andatensorpotentialU(r) (in units h = ¢ = 1) is

[@-B+B(M+5®)—ipd- UMY = [E - VIO IY@E). @)

where E is the relativistic binding energy of the system,p = —i¥ is the three-dimensional momentum
operator and M is the mass of the fermionic particle. @ and B are the 4x4 usual Dirac matrices given by

=G o) =0 ) ®
where [ is the 2x2 unitary matrix and & are three-vector spin matrices
/0 1 0 —i /1 0
a=(] o) =0 3) s=( - @

The eigenvalues of the spin—-orbit coupling operator are k = (j + ;) >0 and k= — (j + i) <0 for
unaligned spinj =1 — % and aligned spinj =1+ % respectively. The set (H? K, J?,],) can be taken as the

complete set of conservative quantities with J being the total angular momentum operator and K =
(6.L + 1) is the spin-orbit where L is the orbital angular momentum of the spherical nucleons that
commutes with the Dirac Hamiltonian. Thus, the spinor wave functions can be classified according to their
angular momentum j, the spin—orbit quantum number k and the radial quantum number n. Hence, they
can be written as follows:

©)

r

fn,K(F)) 1 <Fn.x(r) inn(&«)))

lp”"‘(r)=<gn,x(f’) TG (™) V(8,0

where f, () is the upper (large) component andg, . (#) is the lower (small) component of the Dirac
spinors. 1@5,1(9,@ and inn(e,q;) are spin and pspin spherical harmonics, respectively, and m is the
projection of the angular momentum on the z — axis. Substituting equation (5) into equation (2) and
making use of the following relations

.

-A)(6-B)=A-B+ié-(AxB), (6a)

Qu

Yo
Qu

(&-ﬁ):&f(f-ﬁﬂﬂ), (6b)

r

13



To Physics Journal Vol 3 (2019) ISSN: 2581-7396 http://www.purkh.com/index.php/tophy

together with the properties
(6 L)Y (6,9) = (c = DY (6, 9),
(- ) n(6,9) = —(ic = 1)Y3,(6, ), (7)
(G- MY} (0,9) = =Y}, (8,9),
(@ )Y (8,9) = =Y (6, 9),

one obtains two coupled differential equations whose solutions are the upper and lower radial wave
functions F, ,(r) and G, ,(r) as

( + - U(T)) nx(r) - (M + Emc - A(T)) an(r) (8a)
(;_r —--+ U(T‘)) TLK(r) = (M EnK + 2(7")) Fn,x(r)r (8b)
where
A(r) =V(r)—=5(), (9a)
X(r)=V()+S), (9b)

After eliminating F,,(r) and G,,(r) in equations (8), we obtain the following two Schrodinger-like
differential equations for the upper and lower radial spinor components:

2 +1 r dam

=L 2 ) - O V20| R ) + s (5 4+ 5 U) R () =1M + B
A(‘I"))(M - Enlc + E(r))]Fn,K(r) (10)

2 1 . d=(r)

=L ZU @) + - V20| G () + 55 (5 = S U®) G () =[M + Epe —
AN — By + 2] G 1), an

respectively, where k(k — 1) = I({ + 1) and k(k + 1) = I(l + 1).
The quantum number k is related to the quantum numbers for spin symmetry [ and pspin symmetry [ as

o1
.(_(l +1)=- (] + ;) (51/2,p3/2,etc)
j=1l+ %, aligned spin (k < 0),

. 1
+l = + (] + ;) (pl/Z' d3/2, etC)
j=1- %, unaligned spin (k > 0),

K = (12)

and the quasidegenerate doublet structure can be expressed in terms of a pspin angular momentum § =
1/2 and pseudo-orbital angular momentum 1, which is defined as

14
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.( == (j + %) (51/2'273/2: etc)

j=1- 2 aligned spin (k < 0),
= 2 ' (13)

where k = +1,+£2,.... For example, (1s; /,, 0d3,,) and (Ops,, Ofs,,) can be considered as pspin doublets

2.1. Spin symmetry limit

dg(:) = 0 or A(r) = C; =constant, with X(r) taking as the QEPE potential eq.

(1b) and the coulomb-like tensor potential. i.e

In the spin symmetry limit,

a+be =T +ce—2%T e T =T
2(7") - V(T') =D [ (1-e~%T)2 ] - (1—e~%T) (1_e—ocr)2" (14)
_ _H . ZaZpe?
V)=~ H="2=r2R, (15)

where R, = 7.78 fm is the Coulomb radius, and Z, and Z, denote the charges of the projectile a and the
target nuclei b, respectively[]. Under this symmetry, equation (10) is recast in the simple form

[d2 _ k@+1) 2kH _H _ I:_Zz] Fn,x(r):[)/ (D [a+be-°<r+ce-2°<r] _4 (1e—ocr +B =T ) N 'BZ] Fn‘x(r)

dr? r2 r2 r2 (1—e~%T)2 —e~xT) (1—e=%7)2

(16a)

where k = land k = —1—1fork < 0 and k > 0, respectively. Also, y = (M + E,, — C,) and p? =
(M - En;c)(M + EnK - Cs) . (16b)

2.2. Pseudospin symmetry limit

Ginocchio[] showed that there is a connection between pspin symmetry and near equality of the time
component of a vector potential and the scalar potential, V() = —S(r). After that, Meng et al [, ]

derived that if &0
dr

Here, we are taking A(r) as the QEPE potential eq. (1) and the tensor potential as the Coulomb-like
potential. thus, equation (11) is recast in the simple form

= 0 or X(r) = Cps =constant, then pspin symmetry is exact in the Dirac equation.

[ﬁ s r% B 1:_22] Gn ()= [’7 (D [a+b(i_-j—t<cr§;m] -4 (::—ZT) +5 (1—6;( Tr)z) th 2] G (1)
(17a)

where k = —land k = [+ 1 fork < 0and k > 0, respectively. Also, 7 = (E,, — M — Cps) and f? =
(M + Ep)(M — Epye + Cps) - (17b)

to obtain the analytic solution, we use an approximation for the centrifugal term as []

1_ o (18)

rz (1- e—ar)2

Finally, for the solutions to equations (16) and (17) with the above approximation, we will employ the
NU method, which is briefly introduced in the following section

15
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3. The Nikiforov-Uvarov method

The NU method is based on the solutions of a generalized second order linear differential equation with
special orthogonal functions. The hypergeometric NU method has shown its power in calculating the
exact energy levels of all bound states for some solvable quantum systems.

7 (s)

W (s) + 2w r(s) + T2 (5) = 0 (19)

o (s) o2(s)

Where o(s) and a(s) are polynomials at most second degree and 7'(s) is first degree polynomials. The
parametric generalization of the N-U method is given by the generalized hypergeometric-type equation

P(s) + ﬂl["(s) +

s(1-c38)

[—€:5% + €5 —€3]W(s) =0 (20)

1

s2(1- c35)?

Thus eqgn. (2) can be solved by comparing it with equation (3) and the following polynomials are obtained
T(s) = (c; —38),0(5) =s(1 —c35),0(5) = —€,5% + €,5 — €3 (21)

The parameters obtainable from equation (4) serve as important tools to finding the energy eigenvalue
and eigenfunctions. They satisfy the following sets of equation respectively

cn- (2n+ 1)cs + (2n + 1)(\/0_9 + C3\/C_8) +n(n—1)c3 + ¢y + 2c3¢c5 + 2,/cgcg = 0 (22)
(c;— c3)n+cn?-2n+ Des + 2n + 1)(\/c_9 + c3\/c_8) + ¢y + 2c3c5 + 2,/cgcg = 0 (23)

While the wave function is given as

e, _C13 _q611_ _
W, (s) = Ny S€12(1 — cz5) % es pn(c“’ g~ c10 1)(1 — 2035) (24)

Where

1 _ 1 _ 2 _ _ 2
Cy = ;(1 =€) C5 = ;(Cz — 23),C = C5° + €1, C7 = 2C4C5 - €3, Cg = €4~ + €3,

Cog = C3¢; + C3%cg+ Cq, Cro = €1 + 204+ 2, Jcg, c11 = ¢ — 2¢5 + 2(\/5+ C3\/a)
Ci12 = C4+ 4JCg, €13 =C5 — (\/c_9 + c3\/c_8) (25)
and PB,is the orthogonal polynomials.

4. Solutions to the Dirac equation

We will now solve the Dirac equation with the QEPE potential and tensor potential by using the NU
method.

4.1. The spin symmetric case

To obtain the solution to equation (16), by using the transformation s = e~*", we rewrite it as follows:

d?Fp (s) (1=5) dFpc(s) 1 y B2
d"S'; progny ’;z + a2 [—11,c(r),C -1)— ;(Da + Dbs + Dcs? — As(1 —s) + Bs) — = 1-

52| Fu(s) = 0, (26)

16
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Eq. (26) is further simplified as

A2 Fne(s) | (1=5) dFnxe(s) 1 |_ By Y2y (B _Ypi¥a_ ¥ _(B L r
ds? s(1-s) ds s2(1-5)2 (az t a? De + a? A)S T (az a? B+ a? A a? Db) S a? + a? Da +
77;((77;( - 1))] Fn,x(s) =0, (27)

where n,, = k + H + 1, Comparing eq. (27) with eq. (20), we obtain

2

=1, 61=%+%DC+%A
2 2

=1 =24 -Xp+La-Lpp 28)
ﬁZ

;=1 €= +%Da+nk(n,C -1

a?

and from eq. (25), we further obtain

c, =0, csz—%,

c6=%+i—i+%Dc+%A, c7=—(2a£22—%3+%A—%Db),

Cg =i—§+%Da+nK(nK—1), Co = (nx—§)2+%D(a+b+c)+%B,

Ci0 = 1+2\/i—2+%Da+nK(nK—1),

c1p =2+2<\/(nk—%)2+%D(a+b+c)+%B+J§—2+%Da+n,€(nk—1)>, (29)

= &+ Lpa+ —1
C12_ a2 a2 a TIKZ(TIK_’ )l

1 1\2 B2
€13 :_§_<\[(n"_§) +%D(a+b+c)+%3+\/;+%Da+n,€(nx—1))

In addition, the energy eigenvalue equation can be obtained by using eq. (23) as follows:

2
1 1\2 B2 ﬂz
<n+5+\/(n,C _E) +LD(@+b+c)+5B +J§+%Da+n,€(n,€— 1)) =5 +5Dc+ A
(30)
By substituting the explicit forms of y and 2 after equation (16) into equation (30), one can readily

obtain the closed form for the energy formula.

c

= (M = En)(M + Ene = C)) + 25 (M + Epye — C) + 5 (M + Epy = Cy) (31)

2

On the other hand, to find the corresponding wave functions, referring to equation (29) and eq. (24), we
obtain the upper component of the Dirac spinor from eq. 24 as

17
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B2 v B
Fn,x(s) = Bn’,cs\[m(1 B

ﬁZ 1\2
S)%+\/(nk—%)2+%0(a+b+c)+%3Pn(z\lp+%Da+ﬂk(ﬂk—1). ZJ(UK_E) +%D(a+b+c)+%3>(1 ~25) (32)

where B, , is the normalization constant. The lower component of the Dirac spinor can be calculated
from equation (8a)

Gy (r) = m( +5 - UU)) Eoe(r) 33)
where E,,, # —M + C; .

4.2. The pseudospin symmetric case

To avoid repetition in the solution of equation (17), we follow the same procedures explained in section
4.1and hence obtain the following energy eigenvalue equation:

2
1 A 14 B: ., ¥ B>, 7
<n+5+\/(AK—E) +;D(a+b+c)+;B+\/;+PDa+AK(AK—1)) = t5Dc+— 24y
(34)

By substituting the explicit forms of 7 and [Bafter equation (17b) into equation (34), one can readily
obtain the closed form for the energy formula as

(n +14 \/(AK - %)2 + 2822 (B — M = Cpg) + 2 (Enc — M — Cp) +
2

\/a—lz((M + Enid(M = By + Cps) ) + 25 (Enie = M = Cp) + (e — 1)) = = (M + Ep)(M = Epe +

Cps)) + %(Enk -M- CpS) + %(Emc -M- Cps) (35)

and the corresponding wave functions for the upper Dirac spinor as

(T) _ s / —+ 2Da+AK(AK—1)(1
n;c n;c

— —
S)E+\/(AK_E)2+?D(a+b+C)+%BPn<2\/%+?Da+AK(AK—1),2J(AK—%) +%D(a+b+c)+%3)(1 _25) (36)

were A, = k + H and B, is the normalization constant. Finally, the Upper-spinor component of the
Dirac equation can be obtained via equation (8b) as

Foe(r) = (5 =24 U@)) Guur) (37)

(M- EnK+Cps)
where E, # M + Cp; .
DISCUSSIONS

In this section, we are going to study some special cases of the energy eigenvalues given by Egs. (31)
and (35) for the spin and pseudospin symmetries, respectively.Case 1. If one sets C; =0,C,s =0, 4 =
B =0in eqg. (31) and eq. (35), we obtain the energy equation of quadratic exponential-type potential
for spin and pseudospin symmetric Dirac theory respectively,

18
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2

(n +i4 J (nK - _) + 2D (M + Ep) + J ((M = En)(M + En)) + 25 (M + Ene) +0e(c — 1))

;((M En;c)(M + Emc)) + (M + Emc)

38)
and
2
<n w2 (= 2) 2 (g )+ [ (O 4 B ) (M = B)) + 25 (B = M) + aglne — 1))
%((M'i'Enx)(M_Emc)) +ﬁ nk _M)
39)

Case 2:If one sets C; = 0,C,s = 0, D = 0 in eq. (31) and eq. (35), we obtain the energy equation of Eckart
potential for spin and pseudospin symmetric Dirac theory respectively,

2

(Tl + E + \/(TI;« - l)2 + %(M + Enk) + \/% ((M - Emc)(M + Enk)) + UK(TIK - 1)> = %((M - Emc)(M +
En)) + 25 (M + Epy) (40)

and

2

(n +%+ \/(AK _%)2 +%(Enx - M) + \/%((M + Emc)(M - Emc)) + AK(AK - 1)> = %((M + Enrc)(M -

Emc)) + %(Emc - M) (41)

Case 3:If one sets C; = 0,C,s =0,B=0,D =0, in eq. (31) and eq. (35), we obtain the energy equation
of Hulthen potential for spin and pseudospin symmetric Dirac theory respectively,

2
(n + 7+ \[%((M - Emc)(M + En;c)) + rhc(rhc - 1)) = é((M Emc)(M + Enx)) + (M + En;c)

(42)

and

n AK 2 (M EnK)(M Emc) AK(AK 1) 2 (M ETlK)(M ETLK) nrc M)
( \/a ( ) ) a ( )

Case4:If A=B=0,a = 1,b =-2(1+68),c =1 +6)?and § =e*"e — 1, Eq. (1b) reduces to
the generalized Morse potential

(44)

V() = D[

1—2(1+6)e‘°‘r+e—2°‘r]
(1_e—o(r)2

from eq. (31) and eq. (35), if Cs = 0, C,s = 0, we obtain the energy equation generalized Morse potential
for spin and pseudospin symmetric Dirac theory respectively

(Tl +%+\/(nx _1)2 +l;_622(M + Emc) + \/%((M - Emc)(M + Emc)) +%(M + Emc) + TIK(TIK - 1)) =

2
D(1+6)

= (M = B ) (M + En)) + (M + Eno)

(45)
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and

2
(n +2+ \/(AK - %) + 28 (B — M) +J ((M + End(M = Ep)) + 5 (B = M) + A — 1))
L (M + End (M = En) + 252 (5, — M)

(46)

Case 5: Let us now discuss the relativistic limit of the energy eigenvalues and wavefunctions of our
solutions. If we take C; = 0,H = 0,k — | and put S(r) = V(r) = Z(r), the nonrelativistic limit of energy

equation 31 and wave function (32) under the following appropriate transformations M + E,,. — ;—’2‘

and M — E,,, » —E,; becomes

P 200+ D)+ 255 2a+b) -2+ 2k (n24nt] )+(2n+1)\/ 1+3) +25‘;’2(a+b+c)+;erf?2 _mpa_ gy
nl — 2u 1 uB aZh?
(2n+1)+2 ("'E) +u2h2(a+b+c)+u2h2
(47)
and the associated wave functions F,,.(s) = R,,(s) are
-1)
Rna(5) = Noys"2(1 =)V (1 - 29), (48)
where U = 2\/2;1’;1 + 2R+ +1)and V = zJ(z +§) 2o (a+b+c)+ > (49)

Case 6: If one A = B = 0 in eq. (47), we obtain the energy equation of quadratic exponential-type
potential in the non-relativistic limit

2
a2h? 21(1+ 1)+ th(2a+b)+(n +n+= )+(2n+1)\/ l+ +2;:2(a+b+c) 2uDa

Ey =—

— 1+ (50)

a?h?

2u (2""'1)"'2\}( +E) +u2h2(a+b+c)

Case 7: If D = 0in eq. (47), we obtain the energy equation of the Eckart potential in the non-relativistic
limit

2uA | 2uB 2 2uB

a2n? | |20+ D=2+ 25 (n24ne 3+ (2n1) [ (143) +25 I+ 1) (51)

2n+1)+2 (l 1) +2£fz

Case 8: If B =0,D = 0in eq. (47), we obtain the energy equation of the Hulthen potential in the non-
relativistic limit

252 ) |2W+ D)5 + + +(2 +1)/ l+
E, = — %" (n+ntg)+(an — 0+ (52)

2u @n+1)+2 /(l+5)

Case 15:If A=B=0,a = 1,b =-2(1+8),c =1 +6)?and § = e*" — 1, Eq. (1b) reduces to the
generalized Morse potential

V(r):D[

1—2(1+6)e‘°‘r+e‘2°‘r]
(l_e—O(T)Z

(53)
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from eq. (47) , we obtain the energy equation of generalized Morse potential

2
2uD8 1 1\2  2uD62
_ a?n? Zl(Hl)_aZhZ+("2+n+5)+(2n+1) (l+5) +=Znz 2uD
Ey=- 2 1\2 2uD82 T anz [+1) e (4
K (2n+1)+2\/(l+5) +s
Conclusion

In the present paper, we solved the Analytic spin and pseudospin solutions to the Dirac equation for the
Quadratic exponential-type potential plus Eckart potential and Coulomb-like tensor interaction. We have
applied the approximation on the spin—orbit coupling term and the Coulomb potential. We used this
scheme to obtain approximate analytical expressions for energies and eigenfunctions of the Coulomb
potential for arbitrary spin—orbit quantum number k in the presence of spin symmetry, which is different
from previous works
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