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Abstract 

This review paper starts by recalling two main results on abstract Markov moment problem. A corresponding 

application involving concrete spaces of functions is proved in detail. In the end, using polynomial 

approximation on special unbounded closed subsets, some multidimensional Markov moment problem on such 

subsets are recalled, without repeating the proofs. Our approximation results solve the difficulty arising from 

the fact that there exist positive polynomials on ℝ𝑛 , 𝑛 ≥ 2 which cannot be written as sums of squares of 

polynomials. However, the upper constraint of the solution is written in terms of products of quadratic forms. 

The solutions are operators having as codomain an order complete Banach lattice. The latter space might be a 

commutative algebra of self-adjoint operators. All solutions obtained in this paper are continuous, and thanks 

to the density of polynomials in the involved domain function spaces, their uniqueness follows too. Operator 

valued solutions for classical moment problem are pointed out. 
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1. Introduction  

We recall the classical formulation of the moment problem, under the terms of T. Stieltjes, given in 1894-1895 

(see the basic book of N.I. Akhiezer [1] for details): find the repartition of the positive mass on the nonnegative 

semi-axis, if the moments of arbitrary orders 𝑗 ( ,2,1,0=j ) are given. Precisely, in the Stieltjes moment problem, 

a sequence of real numbers 0)( jjy  is given and one looks for a nondecreasing real function )(t  ( 0t ), 

which verifies the moment conditions 




==
0

),2,1,0( jydt j
j   

This is a one dimensional moment problem, on an unbounded interval. Namely, is an interpolation problem with 

the constraint on the positivity of the measure dσ. The existence, the uniqueness and the construction of the 

solution   are studied. It is a classical moment problem, since the values 𝑦𝑗 , 𝑗 ∈ ℕ of the linear form defined by 

𝑑𝜎 on basic polynomials are prescribed. Passing to an example of the multidimensional real classical moment 

problem, let denote 

,N),,(,),,( 1
1

11
n

n
nj

n
j

nj jjjtttt ==   𝑡 = (𝑡1, … , 𝑡𝑛) ∈ ℝ+
𝑛 , 𝑛 ∈ ℕ, 𝑛 ≥ 2          (1) 

If a sequence (𝑦𝑗)
𝑗∈ℕ𝑛 is given, one studies the existence, uniqueness and construction of a linear positive form 

𝐹 defined on a function spaces containing polynomials, such that the moment conditions   

𝐹(𝜑𝑗) = 𝑦𝑗 , 𝑗 ∈ ℕ𝑛                                                                (2) 



MathLAB Journal Vol 5 (2020) ISSN: 2582-0389                                   http://www.purkh.com/index.php/mathlab 

83 

be accomplished. Usually, the positive linear form 𝐹 can be represented by means of a positive regular Borel 

measure on ℝ+
𝑛 . When un upper constraint on the solution 𝐹 is required too, we have a Markov moment 

problem. This requirement is formulated as 𝐹 being dominated by a convex functional, which might be a norm 

and its aim is to control the continuity and the norm of the solution. All these aspects motivate the study 

sketched in the next section, which is mainly devoted to the abstract moment problem. Clearly, the classical 

moment problem is an extension problem for linear functionals, from the subspace of polynomials to a function 

space which contains both polynomials as well as the continuous compactly supported real functions on ℝ+
𝑛 . 

From solutions linear functionals, many authors considered solutions linear operators. Of course, in this case the 

moments 𝑦𝑗 , 𝑗 ∈ ℕ𝑛 are elements of an ordered vector space 𝑌 (usually 𝑌 is an order complete Banach lattice).  

The order completeness is necessary in order to apply Hahn-Banach type results for operators defined on 

polynomials and having  𝑌 as codomain. Various aspects of the classical moment problem have been studied 

[1]-[9], [11]-[16], [18]-[23]. The paper [2] discusses connections of the moment problem with fixed point theory.  

On the other side, as it is well-known, for natural 𝑛 ≥ 2 there exist positive polynomials on ℝ𝑛 which cannot be 

expressed as a sum of squares of polynomials. Because the form of positive polynomials on an unbounded 

closed subset of ℝ𝑛 , 𝑛 ≥ 2 is not known, the multidimensional classical moment problem on such a subset is 

much more difficult than that of the one-dimensional case. Many of the published papers deal with the moment 

problem for semi-algebraic compact subsets of ℝ𝑛.  The form of positive polynomials on such compacts is 

known (cf. [3], [21], [22]).  Markov moment problem was studied in [5], [8], [9], [11]-[16], [18], [19], [20] and many 

other papers. Connection of the moment problem with operator theory has been pointed out in [2], [8], [21], 

[22] and other articles/monographs. General results in functional analysis applied along this work, including 

extension of linear operators with two constraints, can be found in [1], [10], [11]. See [4], [6], [23] and the 

references there for the uniqueness of a solution . A construction of a solution is proposed in [8]. The main 

purpose of this paper is to find necessary and sufficient (or only sufficient) conditions for the existence of the 

solutions of Markov moment problems in concrete spaces. The uniqueness of the solution follows too, thanks 

to continuity of the solution, also using the density of polynomials in the domain-space. In some cases, solving 

such problems requires polynomial approximation of nonnegative compactly supported continuous functions, 

in 𝐿1 spaces associated to moment determinate measures. Studying such problems is the second aim of this 

work. In [17], polynomial approximation on unbounded subsets of ℝ𝑛 is applied to characterize invariance of 

the unit ball of some 𝐿1 spaces. The rest of the paper is organized as follows. Section 2 is devoted to recalling 

some methods used along this paper. In Section 3, the abstract moment problem and related remarks are 

recalled. Section 4 refers to concrete Markov moment problems and related polynomial approximation on 

unbounded subsets. The multidimensional Markov moment problem is pointed out. Section 5 concludes the 

paper.  

2. Methods 

The basic used methods in the sequel are  

1) Extension of linear operators with two constraints. 

2) Measure theory results. 

3) Polynomial approximation on unbounded subsets. 

3. Results and Discussion: on the abstract moment problem 

Theorem 3.1. ([11])  

Let X be a preordered vector space with its positive cone +X , Y an order complete vector lattice, YXT →:  a 

convex operator. Xx Jjj }{ , Yy Jjj }{  given  families. The following assertions are equivalent 

(a) there exists a linear positive operator YXF →:  such that 
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XxxTxFJjyxF jj = )()(,)(  

(b) for any finite subset JJ 0  and any RJjj  0
}{ , we have 

)(

00

xTyxx jj

Jj

jj

Jj

 




 

A clearer sandwich-moment problem variant is the following one. 

Theorem 3.2. ([11])  

Let JjjJjj yxYX  }{,}{,,  be as in Theorem 3.1 and ),(, 21 YXLFF   two linear operators. The following 

statements are equivalent 

(a)there exists a linear operator ),( YXLF   such that
 

JjyxFXxxFxFxF jj = + ,)(,),()()( 21 ; 

(b)for any finite subset JJ 0  and any RJjj  0
}{ , we have 

)()(,, 1122
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The next theorem of this section is an earlier extension result, called Lemma of the majorizing subspace, for 

positive linear operators on subspaces in ordered vector spaces (X, X+), for which the positive cone X+ is 

generating (X = X+ − X+). Recall that in such an ordered vector space X, a vector subspace S is called a 

majorizing subspace if for any x ∈ X, there exists s ∈ S such that x ≤ s. 

Theorem 3.3.  

 Let 𝑋 be an ordered vector space whose positive cone is generating, 𝑆 ⊂ 𝑋 a majorizing vector subspace, 𝑌 an 

order complete vector lattice, 𝐹0: 𝑆 → 𝑌 a linear positive operator. Then 𝐹0 has a linear positive extension 𝐹: 𝑋 → 𝑌 

at least. 

Remark 3.1. In the statements of theorems 3.1, 3.2 the basic implication is (b)⇒(a), while the converse is obvious. 

Similarly, theorem 3.3 gives a sufficient condition for the existence of a positive extension. For application of this 

last general result to the classical moment problem, one can take the space 𝑋 of all continuous functions on ℝ+
𝑛 , 

whose modulus is dominated by a polynomial, 𝑆 the subspace of polynomials, 𝐹0: 𝑆 → 𝑌, 𝐹0(∑ 𝛼𝑗𝑗∈𝐽0
𝑡𝑗) =

∑ 𝛼𝑗𝑦𝑗𝑗∈𝐽0
, 𝑡𝑗 = 𝑡1

𝑗1 ⋯ 𝑡𝑛
𝑗𝑛 , 𝑡 = 𝑡 = (𝑡1, … , 𝑡𝑛) ∈ ℝ+

𝑛 , 𝐽0 ⊂ ℕ𝑛 , 𝛼𝑗 ∈ ℝ, 𝑗 ∈ 𝐽0 where 𝐽0 is a finite subset. If 𝐹0 is a (linear) 

positive operator, then, according to theorem 3.3, it has a positive (linear) extension to the whole space 𝑋. 

Usually, the space 𝑋 is dense in a classical Banach lattice of integrable functions on a subset of ℝ+
𝑛 . Note that in 

theorem 3.3 no upper bound for the extension 𝐹 is required. Obviously, 𝐹 verifies the interpolation moment 

conditions (2), thanks to the definition of 𝐹0. 

4. Main Text  

4.1. Solving Markov moment problems in concrete spaces 



MathLAB Journal Vol 5 (2020) ISSN: 2582-0389                                   http://www.purkh.com/index.php/mathlab 

85 

The next result gives a sufficient, as well as a necessary condition for the existence of a solution for a Markov 

moment problem (see [8]).  

Theorem 4.1. Let  𝑇 be a measurable space, 𝜈 a positive 𝜎 −finite measure on 𝑇, 𝑋 ≔ 𝐿1,𝜈(𝑇)endowed with the 

natural ordering and norm ‖∙‖1 . Let {𝑥𝑗; 𝑗 ∈ 𝐽} ⊂ 𝑋, {𝑦𝑗; 𝑗 ∈ 𝐽} ⊂ ℝ, where 𝐽 is an arbitrary set of indexes. Consider 

the following statements 

(a) there exists ℎ ∈ 𝐿∞,𝜈(𝑇), such that −1 ≤ ℎ(𝑡) ≤ 1 a. e. in 𝑇 and ∫ 𝑥𝑗𝑇
(𝑡)ℎ(𝑡)𝑑𝜈 = 𝑦𝑗   ∀𝑗 ∈ 𝐽; 

(b) for any finite subset 𝐽0 ⊂ 𝐽 and any {𝜆𝑗; 𝑗 ∈ 𝐽0} ⊂ ℝ, the following inequality holds 

∑ 𝜆𝑖𝜆𝑗

𝑖,𝑗∈𝐽0

𝑦𝑖𝑦𝑗 ≤ ∑ 𝜆𝑖𝜆𝑗

𝑖,𝑗∈𝐽0

∫ 𝑥𝑖

𝑇

(𝑡)𝑑𝜈 ∫ 𝑥𝑗

𝑇

(𝑡)𝑑𝜈 

(c) for any finite subset 𝐽0 ⊂ 𝐽 and any {𝜆𝑗; 𝑗 ∈ 𝐽0} ⊂ ℝ, the following relation holds 

  

∑ 𝜆𝑖𝜆𝑗

𝑖,𝑗∈𝐽0

𝑦𝑖𝑦𝑗 ≤ ∑ |𝜆𝑖||𝜆𝑗| ∫|𝑥𝑖(𝑡)|

𝑇𝑖,𝑗∈𝐽0

𝑑𝜈 ∫|𝑥𝑗(𝑡)|

𝑇

𝑑𝜈 

Then (b)⇒(a)⇒(c) 

Proof. (b)⇒(a). We apply Theorem 3.2 (b)⇒(a). Namely, if  

∑ 𝜆𝑗𝑥𝑗 = 𝑔2

𝑛

𝑗=0

−  𝑔1, 𝑔1, 𝑔2 ∈ 𝑋+ = {𝑔 ∈ 𝑋; 𝑔(𝑡) ≥ 0   𝑎. 𝑒. 𝑖𝑛 𝑇}, 

then  

−𝑔1 ≤ ∑ 𝜆𝑗𝑥𝑗 ≤ 𝑔2

𝑛

𝑗=0

⇒ − ∫ 𝑔1(𝑡)𝑑𝜈

𝑇

≤ ∑ 𝜆𝑗 ∫ 𝑥𝑗

𝑇

𝑛

𝑗=0

(𝑡)𝑑𝜈 ≤ ∫ 𝑔2(𝑡)𝑑𝜈

𝑇

⇒ 

|∑ 𝜆𝑗 ∫ 𝑥𝑗

𝑇

𝑛

𝑗=0

(𝑡)𝑑𝜈| ≤ ∫ 𝑔2(𝑡)𝑑𝜈

𝑇

+ ∫ 𝑔1(𝑡)𝑑𝜈

𝑇

= 

∫ 𝑔2(𝑡)𝑑𝜈

𝑇

− (− ∫ 𝑔1(𝑡)𝑑𝜈

𝑇

) = 𝐹2(𝑔2) − 𝐹1(𝑔1), 𝐹2(𝜑) ≔ ∫ 𝜑(𝑡)𝑑𝜈

𝑇

, 𝐹1 ≔ −𝐹2 

On the other side, condition from (b) can be written as  

(∑ 𝜆𝑗𝑦𝑗

𝑛

𝑗=0

)

2

≤ (∑ 𝜆𝑗 ∫ 𝑥𝑗

𝑇

𝑛

𝑗=0

(𝑡)𝑑𝜈)

2

⇔ |∑ 𝜆𝑗𝑦𝑗

𝑛

𝑗=0

| ≤ |∑ 𝜆𝑗 ∫ 𝑥𝑗

𝑇

𝑛

𝑗=0

(𝑡)𝑑𝜈| 

The above relations yield 

∑ 𝜆𝑗𝑥𝑗 = 𝑔2

𝑛

𝑗=0

− 𝑔1, 𝑔1, 𝑔2 ∈ 𝑋+ ⇒ ∑ 𝜆𝑗𝑦𝑗 ≤ |∑ 𝜆𝑗𝑦𝑗

𝑛

𝑗=0

| ≤

𝑛

𝑗=0
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|∑ 𝜆𝑗 ∫ 𝑥𝑗

𝑇

𝑛

𝑗=0

(𝑡)𝑑𝜈| ≤ 𝐹2(𝑔2) − 𝐹1(𝑔1), 𝐹2(𝜑) ≔ ∫ 𝜑(𝑡)𝑑𝜈

𝑇

, 𝐹1 ≔ −𝐹2 

Thus the implication of point (b) in Theorem 2.2 holds true, and, the implication (b)⇒(a) of the latter theorem 

leads to the existence of a linear operator 𝐹: 𝑋 → ℝ such that 𝐹(𝑥𝑗) = 𝑦𝑗 , 𝑗 ∈ 𝐽, 

− ∫ 𝑔(𝑡)𝑑𝜈

𝑇

≤ 𝐹(𝑔) ≤ ∫ 𝑔(𝑡)𝑑𝜈

𝑇

⇔ |𝐹(𝑔)| ≤ ∫ 𝑔(𝑡)𝑑𝜈

𝑇

= ‖𝑔‖1  ∀𝑔 ∈ 𝑋+ 

For an arbitrary function 𝜑 ∈ 𝑋, it results 

|𝐹(𝜑)| ≤ |𝐹(𝜑+)| + |𝐹(𝜑−)| ≤ ∫ 𝜑+(𝑡)𝑑𝜈 + ∫ 𝜑−(𝑡)𝑑𝜈 = ∫ |𝜑(𝑡)|𝑑𝜈 = ‖𝜑‖1

𝑇𝑇𝑇

 

Thus  ‖𝐹‖ ≤ 1, so that 𝐹 is continuous (and linear) on 𝐿1,𝜈(𝑇). Hence, there exists ℎ ∈ 𝐿∞,𝜈(𝑇), ‖ℎ‖∞ ≤ 1 (i. e. 

−1 ≤ ℎ(𝑡) ≤ 1 a. e. in 𝑇), and  

𝑦𝑗 = 𝐹(𝑥𝑗) = ∫ ℎ(𝑡)𝑥𝑗

𝑇

(𝑡)𝑑𝜈, 𝑗 ∈ 𝐽 

The proof of (b)⇒(a) is complete. The implication (a)⇒(c) is obvious. Indeed,  

|𝑦𝑗| = |∫ ℎ(𝑡)𝑥𝑗

𝑇

(𝑡)𝑑𝜈| ≤ ∫|ℎ(𝑡)|

𝑇

 |𝑥𝑗(𝑡)|𝑑𝜈 ≤ ∫|𝑥𝑗(𝑡)|𝑑𝜈

𝑇

 , 𝑗 ∈ 𝐽 

The conclusion follows. This completes the proof.                                                                    □ 

4.2.  Polynomial approximation on unbounded subsets and the multidimensional Markov moment 

problem 

In this section we recall some known results on the subject, without giving their proofs. The interested Reader 

can find the details in the corresponding references. The idea of the proofs of Theorems 4.2.1, 4.2.3 4.2.4, 4.2.5 

and of the Corollary 4.2.1 was to apply Theorem 3.3 and the approximation results from lemmas stated in the 

sequel. 

Lemma 4.2.1.  

Let +→ R),0[:
 
be a continuous function, such that +

→
Rt

t
)(lim   exists. Then there is a decreasing sequence 

llh )(  in the linear hull of the functions 

0,N),(exp)( −= tkkttk , 

such that ℎ𝑙(𝑡) > 𝜓(𝑡), 0t , Nl , 𝑙𝑖𝑚ℎ𝑙 = 𝜓 uniformly on ),0[  . There exists a sequence of polynomial functions 

(𝑝𝑙)𝑙∈ℕ,,𝑝𝑙 ≥ ℎ𝑙 > 𝜓, 𝑙𝑖𝑚 𝑝𝑙 = 𝜓, uniformly on compact subsets of [0, ∞). 

Lemma 4.2.2.  
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Let   be a M-determinate positive regular measure on ),0[  , with finite moments of all natural orders. If 

llp )~(,  are as in Lemma 4.2.1, then there exists a subsequence mlmp )~( , such that →mlp~  in )),0([,1 L  

and uniformly on compact subsets. In particular, it follows that the positive cone +P  of positive polynomials is 

dense in the positive cone +))),0([( ,1L  of )).,0([,1 L  

Lemma 4.2.3.  ([9], [12], [14], [15], [16], [19], [20]) 

Let 
nRA  be an unbounded closed subset, and   an M-determinate positive regular Borel measure on A, with 

finite moments of all natural orders. Then for any + ))(0( ACx , there exists a sequence mmp )( , +Pmp , xmp 

, xmp →  in )(,1 AL  . In particular, we have 

 dtxdtp
A

m
A

)()(lim  = , 

+P
 
is dense in (𝐿1,𝜈(𝐴))

+
, and P is dense in 𝐿1,𝜈(𝐴). 

Lemma 4.2.4. ([14], [19]) 

Let n = 21  be a product of n  𝑀 − determinate positive regular Borel measures on ℝ+ = [0, ∞) , 

with finite moments of all natural orders. Then we can approximate any nonnegative continuous compactly 

supported function in )(: ,1
nRLX +=   by means of sums of tensor products nppp  21 , 𝑝𝑗  positive 

polynomial on the real nonnegative semi axis, in variable 𝑡𝑗 ∈ [0, ∞), 𝑗 = 1, … , 𝑛. 

Recall that a determinate (M−determinate) measure is uniquely determinate by its moments, or, equivalently, 

by its values on polynomials. The following statement holds for any closed unbounded subset 𝐴 ⊂ ℝ𝑛 , hence 

does not depend on the form of positive polynomials on 𝐴.  We denote by 𝜑𝑗 , 𝜑𝑗(𝑡) ≔ 𝑡1

𝑗1 ⋯ 𝑡𝑛
𝑗𝑛 , 𝑗 = (𝑗1, … , 𝑗𝑛) ∈

ℕ𝑛, 𝑡 = (𝑡1, … , 𝑡𝑛) ∈ 𝐴. 

Theorem 4.2.1.  

 Let 𝐴 be a closed unbounded subset of  ℝ𝑛,  𝑌 an order complete Banach lattice,  (𝑦𝑗)
𝑗∈ℕ𝑛  a given sequence in 𝑌, 

𝜈 a positive regular 𝑀 −determinate Borel measure on 𝐴, with finite moments of all orders. Let 𝐹2 ∈ 𝐵(𝐿1,𝜈(𝐴), 𝑌) 

be a linear positive bounded operator from 𝐿1,𝜈(𝐴) to 𝑌. The following statements are equivalent 

(a)there exists a unique linear operator 𝐹 ∈ 𝐵( 𝐿1,𝜈(𝐴), 𝑌) such that 𝐹(𝜑𝑗) = 𝑦𝑗 , 𝑗 ∈ ℕ𝑛 , 𝐹 isbetween 0 and 𝐹2 on 

the positive cone of 𝐿1,𝜈(𝐴), and ‖𝐹‖ ≤ ‖𝐹2‖; 

(b) for any finite subset 𝐽0 ⊂ ℕ𝑛 , and any {𝑎𝑗}
𝑗∈𝐽0

⊂ ℝ, we have 

∑ 𝑎𝑗𝑗∈𝐽0
𝜑𝑗 ≥ 0 on 𝐴 ⇨  0 ≤ ∑ 𝑎𝑗𝑦𝑗𝑗∈𝐽0

≤ ∑ 𝑎𝑗𝑗∈𝐽0
𝐹2(𝜑𝑗) 

We go on by recalling a result on the form of non-negative polynomials in a strip [7], which leads to a simple 

solution for the related Markov moment problem. 

Theorem 4.2.2.    

Suppose that 𝑝(𝑡1, 𝑡2) ∈ ℝ[𝑡1, 𝑡2] is non – negative on the strip 𝐴 = [0,1] × ℝ.  Then  𝑝(𝑡1, 𝑡2) is expressible as 

𝑝(𝑡1, 𝑡2) = 𝜎(𝑡1, 𝑡2) + 𝜏(𝑡1, 𝑡2)𝑡1(1 − 𝑡1), 
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where 𝜎(𝑡1, 𝑡2), 𝜏(𝑡1, 𝑡2) are sums of squares in ℝ[𝑡1, 𝑡2]. 

Let 𝐴 = [0,1] × ℝ, 𝜈 a positive 𝑀 − determinate regular Borel measure on 𝐴, with finite moments of all orders, 

𝑋: = 𝐿1,𝜈(𝐴), 𝜑𝑗(𝑡1, 𝑡2) ≔ 𝑡1

𝑗1𝑡2

𝑗2 , 𝑗 = (𝑗1, 𝑗2) ∈ ℕ2, (𝑡1, 𝑡2) ∈ 𝐴. Let 𝑌 be on order complete Banach lattice, (𝑦𝑗)
𝑗∈ℕ2 a 

sequence of given elements in 𝑌.  

Theorem 4.2.3.  

Let 𝐹2 ∈ 𝐵+(𝑋, 𝑌) be a linear bounded positive operator from 𝑋 to 𝑌. The following statements are equivalent 

(a) there exists a unique bounded linear operator ,: YXF →  such that 

( ) ,, 2= jyF jj  

F  is between zero and 2F  on the positive cone of ;, 2FFX 
 

(b) for any finite subset 𝐽0⊂ℕ2, and any  {𝜆𝑗; 𝑗 ∈ 𝐽0} ⊂ ℝ, we have 

0 ≤ ∑ 𝜆𝑖𝜆𝑗

𝑖,𝑗∈𝐽0

𝑦𝑖+𝑗 ≤ ∑ 𝜆𝑖𝜆𝑗

𝑖,𝑗∈𝐽0

𝐹2(𝜑𝑖+𝑗); 

0 ≤ ∑ 𝜆𝑖𝜆𝑗

𝑖,𝑗∈𝐽0

(𝑦𝑖1+𝑗1+1,𝑖2+𝑗2
− 𝑦𝑖1+𝑗1+2,𝑖2+𝑗2

) ≤ 

∑ 𝜆𝑖𝜆𝑗

𝑖,𝑗∈𝐽0

(𝐹2(𝜑𝑖1+𝑗1+1,𝑖2+𝑗2
− 𝜑𝑖1+𝑗1+2,𝑖2+𝑗2

)) , 𝑖 = (𝑖1, 𝑖2), 𝑗 = (𝑗1, 𝑗2) ∈ 𝐽0 

Theorem 4.2.4.  

 Le t 𝑋  be as in Lemma 4.2.4, njjy
N

)(


  be a sequence in 𝑌, where 𝑌 is an order complete Banach lattice, 

𝐹2 ∈ 𝐵+(𝑋, 𝑌).  The following statements are equivalent 

(a) there exists a unique (bounded) linear operator ),( YXBF   such that, 𝐹(𝜑𝑗) = 𝑦𝑗 , 𝑗 ∈ ℕ𝑛 ,, F  is between  

zero and 2F  on the positive cone of X, |||||||| 2FF  ; 

 (b) for any finite subset nJ N0   and any R};{ 0  Jjj , we have 

;R0)(

00

+



+



  Yytt jj

Jj

n
jj

Jj

  

for any finite subsets NkJ , nk ,,1 =  and any R
kJkjkj
}{ , nk ,,1 = , the following relations hold 
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Let ,21 n =  where j , nj ,,1=  are positive Borel regular M-determinate measures on R, with 

finite moments of all natural orders. Let 

n
n

n
n

nj
n

j
nj Rttjjjtttt == ),,(,N),,(,),,( 11

1
11  . 

Obviously, a statement similar to that of Lemma 4.2.4 holds true when we replace ℝ+
𝑛  by ℝ𝑛. In the latter case, 

the polynomials 𝑝𝑗 , 𝑗 = 1, … , 𝑛 are nonnegative on the whole real axis, so that they are sums of squares. Applying 

such an approximation result and Theorem 3.3, one obtains the following theorem.
 

Theorem 4.2.5.  

Let 𝜈 be as above, )(,1
nRLX = , Y an order complete Banach lattice, and njjy

N
)(


 a multi-indexed sequence 

in 𝑌. Let YXF →:2  be a positive linear bounded operator. The following statements are equivalent 

(a) there exists a unique bounded linear operator YXF →: , such that
n

jj jyF N,)( = , F is between 

zero and 2F  on the positive cone of X, |||||||| 2FF  ; 

(b) for any finite subset nJ N0  , and any R};{ 0 Jjj , we have  

,R0)(

00

+



  Yytt

Jj

jj
n

jj

Jj

  

for any finite subsets NkJ , nk ,,1=  and any 

nkR
kJkjkj

,,1,}{ = , 

the following relations hold 
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In what follows we solve an operator valued one dimensional classical Markov moment problem.  

 

Let 𝐻 be an arbitrary complex or real Hilbert space and 𝒜 the real order vector space of all self-adjoint operators 

acting on 𝐻. The positive cone of 𝒜 consists in all operators 𝑈 ∈ 𝒜, having the property: < 𝑈(ℎ), ℎ > ≥ 0  ∀ℎ ∈

𝐻. Let 𝐴 ∈ 𝒜. Define 

𝑌1 ≔ {𝑉 ∈ 𝒜; 𝑉𝐴 = 𝐴𝑉}, 𝑌 = 𝑌(𝐴) ≔ {𝑈 ∈ 𝑌1; 𝑈𝑉 = 𝑉𝑈  ∀𝑉 ∈ 𝑌1},                              (3) 

 𝑌+ = {𝑈 ∈ 𝑌; < 𝑈(ℎ), ℎ > ≥ 0 ∀ℎ ∈ 𝐻}                                                               

 As it is well-known 𝑌(𝐴) is an order complete Banach lattice. Let 𝑋 = 𝐶ℝ(𝜎(𝐴)), where 𝜎(𝐴) ⊂ [0, ∞) is the 

spectrum of the fixed positive self-adjoint operator 𝐴 acting on a complex (or real) Hilbert space 𝐻. Consider 

the space 𝑌(𝐴) defined by (3).The following corollary of the above results holds, thanks to the form of non-

negative polynomials on [0, ∞) [1]. 
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Corollary 4.2.1.  

Let 𝐴, 𝑋, 𝑌 = 𝑌(𝐴) be as above, (𝑈𝑛)𝑛≥0 be a sequence of operators in 𝑌.  The following statements are equivalent 

(a) there exists a unique linear bounded operator 𝐹: 𝑋 → 𝑌 such that the moment interpolation conditions 

𝐹(𝜑𝑛) = 𝑈𝑛 , 𝑛 ∈ ℕ are verified and 0 ≤ 𝐹(𝜓) ≤ 𝜓(𝐴), ∀𝜓 ∈ 𝑋+, ‖𝐹‖ ≤ 1; 

(b) for any finite subset 𝐽0 ⊂ ℕ and any {𝜆𝑗; 𝑗 ∈ 𝐽0} ⊂ ℝ, the following implication holds true 

∑ 𝜆𝑗𝑡𝑗 ≥ 0

𝑗∈𝐽0

, ∀𝑡 ∈ 𝜎(𝐴) ⇒ 0 ≤ ∑ 𝜆𝑗𝑈𝑗

𝑗∈𝐽0

≤ ∑ 𝜆𝑗

𝑗∈𝐽0

𝐴𝑗; 

(c) for any finite subset 𝐽0 ⊂ ℕ and any {𝜆𝑗; 𝑗 ∈ 𝐽0} ⊂ ℝ, the following relations hold 

0 ≤ ∑ 𝜆𝑖

𝑖,𝑗∈𝐽0

𝜆𝑗𝑈𝑖+𝑗+𝑘 ≤ ∑ 𝜆𝑖

𝑖,𝑗∈𝐽0

𝜆𝑗𝐴𝑖+𝑗+𝑘 , 𝑘 ∈ {0,1} 

5. Conclusions 

We hope that the results stated along this review paper are in accordance with the aims claimed in the Abstract 

and in the Introduction. Only one result is proved (in Section 4), because of its importance in illustrating the first 

aim of thhe paper: application of constrained extension theorems for linear operators to the Markov moment 

problem in a space of integrable functions. The other results of subsection 4.2 recall the importance of 

polynomial approximation on unbounded subsets in solving Markov moment problems in terms of quadratic 

forms.  This is the second aim of this work. Here the proofs have been omitted, since the Reader can find them 

in recently published articles. Both purposes are actual and illustrate the relationship between different areas in 

functional analysis, having as common target solving existence (and sometimes uniqueness) of the solutions of 

Markov moment problem. The latter problem has old roots and modern solutions, according to the References.  
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