
The MathLAB Journal Vol 2 (2019)                                                     http://www.purkh.com/index.php/mathlab                          

161 

Markov moment problems and Mazur-Orlicz theorems in concrete spaces 

Octav Olteanu 

Department of Mathematics-Informatics, Politehnica University of Bucharest, Splaiul Independenței 313, 

060042 Bucharest, Romania 

olteanuoctav@yahoo.ie 

Abstract 

One solves Markov moment and Mazur-Orlicz problems in concrete spaces of functions and respectively 

operators. This is the main purpose of this review paper.  To do this, one uses earlier results as well as recent 

theorems on the subject. One characterizes the existence of a solution, or one gives sufficient conditions for it 

does exist. Sometimes the uniqueness of the solution of some moment problems follows too. Spaces of 

continuous, of integrable and respectively analytic functions are considered as domain space of the solution. 

Usually, an order complete Banach lattice of self-adjoint operators (the bicommutant) is the target-space. 

Results on the abstract Markov moment problem, the abstract version of Mazur-Orlicz theorem and appropriate 

knowledge in functional analysis are applied. Basic elements of measure theory and Cauchy inequalities are used 

as well. 
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1 Introduction 

We start by recalling the classical moment problem. Let 𝐴 ⊂ ℝ𝑛  (𝑛 ∈ ℕ, 𝑛 ≥ 1) be a closed subset, 

𝜑𝑗
(𝑡) = 𝑡𝑗 ≔ 𝑡1

𝑗1 ⋯ 𝑡𝑛
𝑗𝑛 , 𝑡 = (𝑡1,… , 𝑡𝑛

) ∈ 𝐴, 𝑗 = (𝑗1 , … , 𝑗𝑛
) ∈ ℕ𝑛                                      (1) 

On the other hand, being given a sequence (𝑦𝑗)
𝑗 ∈ℕ𝑛  of real numbers, one considers the following problem: find 

necessary and sufficient (or only sufficient) conditions on the elements of the sequence (𝑦𝑗 )
𝑗∈ℕ𝑛  for the existence 

of a positive Borel measure 𝜇 on 𝐴 such that 

∫ 𝜑𝑗

𝐴

𝑑𝜇 = 𝑦𝑗 , 𝑗 ∈ ℕ𝑛                                                                           (2) 

For each , 𝑗 ∈ ℕ𝑛 ,  the number 𝑦𝑗   is called the moment of order 𝑗 (with respect to the measure 𝜇). We say that 

𝜇 is a solution for the moment problem (2).  If 𝑛 = 1, then one says that we have a one-dimensional moment 

problem, while for 𝑛 ≥ 2 we have a multidimensional moment problem. Defining the linear form 𝐹0  on the space 

of 𝑃 of polynomials by  

𝐹0 (∑ 𝛼𝑗𝜑𝑗

𝑗∈𝐽0

) ≔ ∑ 𝛼𝑗 𝑦𝑗

𝑗∈𝐽0

                                                               (3)  

where 𝐽0 ⊂ ℕ𝑛  is an arbitrary finite subset, the moment problem can be reformulated as: find necessary and 

sufficient conditions on the sequence of moments 𝑦𝑗, 𝑗 ∈ ℕ𝑛 , for the existence of a linear extension 𝐹: 𝑋 → ℝ  of 

𝐹0 , where 𝑋 is a function space containing both polynomials and continuous compactly supported real functions  

defined on 𝐴, such that 𝐹 to be a positive form on 𝑋 (𝐹(𝑥) ≥ 0, ∀𝑥 ∈ 𝑋+ ≔ {𝑥 ∈ 𝑋; 𝑥(𝑡) ≥ 0 ∀𝑡 ∈ 𝐴}). If such a 
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linear positive extension 𝐹  of 𝐹0  does exist, due to Riesz representation theorem, it can be represented by a 

positive Borel measure 𝜇 on 𝐴 and obviously (2) holds true (cf. (3)). The connection with the analytic form of 

nonnegative polynomials on 𝐴  is obvious. For the one-dimensional case, see firstly [1], while the 

multidimensional case has been treated in many other works, such as [1]-[19]. When an additional upper 

constraint on the solution 𝐹 is imposed, we have a Markov moment problem [9]-[16] (see Section 2 for abstract 

versions). If the moment-numbers 𝑦𝑗 , 𝑗 ∈ ℕ𝑛  are replaced by moments-operators 𝑈𝑗 , 𝑗 ∈ ℕ𝑛 , we have an 

operator-valued moment problem, etc. For the background related to this paper see [20]-[22]. For uniqueness  

of the solutions of some moment problems we refer to [17], [23], [24], [25].  Connections of the moment problem 

with some other fields (such as operator theory and polynomial approximation on unbounded subsets) are 

pointed out in [5], [15]-[19], The rest of the paper is organized as follows. In Section 2, main results on the 

abstract moment problem. and a statement related to Mazur-Orlicz theorem are recalled, in the ordered vector 

spaces setting, according to [10]. Applications to concrete spaces are stated as well. Section 3 contains the 

proofs (and implicitly the methods) used in justifying the results of section 2.  Section 4 concludes the paper. 

2 The results  

The results of this section have been motivated in the Introduction. The order of the statements follows two 

criteria: chronology and generality of the corresponding results. The proofs will be omitted. They can be partially 

found by means of the references.  

Theorem 2.1 (Haviland [8]). Let 𝐴 ⊂ ℝ𝑛  and 𝐿: 𝑃 ≔ ℝ[𝑡 = (𝑡1, … , 𝑡𝑛
)] → ℝ  be a linear form. Then 𝐿 is given by a 

positive Borel measure 𝜇 on 𝐴 ( i.e. 𝐿(𝑝) = ∫ 𝑝𝑑𝜇𝐴  for all 𝑝 ∈ 𝑃) if and only if 𝐿(𝑝) ≥ 0 for all nonnegative  𝑝 on 𝐴 

(𝑝(𝑡) ≥ 0, ∀𝑡 ∈ 𝐴 ⇒ 𝐿(𝑝) ≥ 0 ). 

The next result of this section is a well-known extension result, sometimes called Lemma of the majorizing 

subspace, for positive linear operators on subspaces in ordered vector spaces (𝑋 , 𝑋+
), for which the positive 

cone 𝑋+ is generating (𝑋 = 𝑋+ − 𝑋+ ). Recall that in such an ordered vector space 𝑋, a vector subspace 𝑆 is called 

a majorizing subspace if for any 𝑥 ∈ 𝑋, there exists 𝑠 ∈ 𝑆 such that 𝑥 ≤ 𝑠. 

Theorem 2.2. Let 𝑋 be an ordered vector space whose positive cone is generating, 𝑆 ⊂ 𝑋  a majorizing vector 

subspace, 𝑌 an order complete vector lattice, 𝐹0 : 𝑆 → 𝑌  a linear positive operator. Then 𝐹0  has a linear positive 

extension 𝐹: 𝑋 → 𝑌 at least. 

Observe that if 𝐴 ⊂ ℝ𝑛  is a closed subset, and  𝑆 = 𝑃 is the space of polynomial functions, then one can define 

𝑋 as the vector (ordered) space of all real functions dominated in absolute value by a polynomial. Then 𝑃 is a 

majorizing subspace of 𝑋, while 𝑋 contains 𝑃 and the subspace of all continuous compactly supported functions  

on 𝐴. Theorem 2.2 was proved or/and applied in [1], [2], [5], [15], [16] and in many other works. The next two 

statements refer to the abstract Markov moment problem. 

Theorem 2.3 (see [10]). Let YXTYX :,,  be as in Theorem 3.1.2, ,}{ Xx Jjj    {𝑦𝑗 }
𝑗∈𝐽

⊂ 𝑌 given families. 

The following assertions are equivalent 

(a) there exists a linear positive operator YXF :  such that 

XxxTxFJjyxF jj  ,)()(,)( ; 

(b) for any finite subset JJ 0  and any RJjj  0
}{ , we have 
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00

xTyxx jj

Jj

jj

Jj

 


  

A clearer sandwich-moment problem variant is the following one. 

Theorem 2.4 (see [10) .Let X  be an ordered vector space, Y  an order complete vector lattice, 

    YyXx
JjjJjj 


,  given families and  YXLFF ,, 21   two linear operators. The following statements are 

equivalent 

(a)there is a linear operator  YXLF ,  such that 

        ;,21 JjyxFXxxFxFxF jj    

(b)for any finite subset JJ 0  and any   ,
0

R
Jjj 


  we have 

   .,, 1122

00

2112  FFyXx

Jj

jj

Jj

jj 
















 


  

 Finally, we recall the statement of Mazur-Orlicz Theorem.  

Theorem 2.5. (see [10]). Let 𝑿   be an ordered vector space, 𝒀 an order complete vector lattice,  {𝒙𝒋}𝒋∈𝑱
,{𝒚𝒋 }

𝒋∈𝑱
 

arbitrary families in 𝑿, respectively in 𝒀 and 𝑻: 𝑿 → 𝒀  a sublinear operator. The following statements are 

equivalent 

(a) ∃𝐹 ∈ 𝐿(𝑋, 𝑌) such that 𝐹(𝑥𝑗) ≥ 𝑦𝑗 , ∀𝑗 ∈ 𝐽, 𝐹(𝑥) ≥ 0, ∀𝑥 ∈ 𝑋+ ,  𝐹(𝑥) ≤ 𝑇(𝑥) , ∀𝑥 ∈ 𝑋; 

 

(b) for any finite subset 𝐽0 ⊂ 𝐽 and any {𝜆𝑗}
𝑗∈𝐽0

⊂ ℝ, 𝜆𝑗 ≥ 0, ∀𝑗 ∈ 𝐽0, we have 

∑ 𝜆𝑗

𝑗∈𝐽0

𝑥𝑗 ≤ 𝑥 ∈ 𝑋 ⇒ ∑ 𝜆𝑗

𝑗∈𝐽0

𝑦𝑗 ≤ 𝑇(𝑥)  

Comparing Theorem 2.5 with Theorem 2.3, observe that in the former a “half” of the moment interpolation 

conditions from the latter appears at point (a), and consequently, the implication at (b) must be accomplished 

only for nonnegative scalars 𝜆𝑗 in case of the former Theorem 2.5. Recall that an important space which might 

stand for 𝑌 in the above statements is given by the following construction [21]. Let 𝐻 be a complex Hilbert space, 

𝒜 the real vector space of all self-adjoint operators acting on 𝐻, 𝐴 ∈ 𝒜. Let  

𝑌1 ≔ {𝑈 ∈ 𝒜; 𝑈𝐴 = 𝐴𝑈}, 𝑌 = 𝑌(𝐴) ≔ {𝑉 ∈ 𝑌1;𝑈𝑉 = 𝑉𝑈, ∀𝑈 ∈ 𝑌1
},                                      (4) 

𝑌+ ≔ {𝑉 ∈ 𝑌;  < 𝑉(ℎ), ℎ > ≥ 0, ∀ℎ ∈ 𝐻} 

The space 𝑌 is an order complete Banach lattice (endowed with the operatorial norm) and a commutative (real) 

Banach algebra, as discussed in [21].  

For applications to concrete spaces, one first aim is to state a result on the existence of the solution of the 

Markov moment problem on a semi-algebraic compact K. Let  
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],,[R,,},,,1,0)(;R{ 11 nmj
n ttrrmjtrtK   , 

and assume that K is compact. Such a compact subset is called a semi - algebraic compact. Let  denote the 

set of all finite sums of elements 2p  and 
qjj rrp ,,1

2
 , where ],,[R 1 nttp   and },,1{,,1 mjj q   . Note that 

 is a convex cone in ],,[R 1 ntt   and it is closed with respect to multiplication-operation. We recall the real 

variant of the main result on the moment problem of [4]. Using geometric form of Hahn-Banach principle, the  

explicit representation of the positive polynomials on K is deduced in [4] (see also [3]). 

Theorem 2.6. ([4]) Let njjy
N

)(


 be a multi-sequence of real number. The following statements are equivalent: 

(a)  there exists a unique positive linear form F on )(KCX   such that the moment conditions 

jj yF )(  , 
nj N  

are accomplished (where j  are the basic polynomials given by (1)); 

(b)  for any finite subset  𝐽0 ⊂ ℕ𝑛 ,   any R};{ 0  Jjj , and any 

},,1{},,{,)()()( 11
miittrtrtp q

Sk

k
kqiiq   



 , 

(where 
21 ss ii    for 21 ss  , and 

nS N  is a finite subset), we have 














 









 Sk

kjik

Jji

jijiji

Jji

yy 

0,0,

0,0  . 

Corollary 2.1. ([4]) If a polynomial function p is positive on K, then .p  

Using the form of positive polynomials on semi-algebraic compacts given by Corollary 2.1, we proved the 

following applications to the Markov moment problem for operators. Let Y be an order-complete Banach lattice.  

Let )),((2 YKCLF   be a linear positive operator (note that any such operator is also bounded). Finally, let 

njjy
N

)(


 be a sequence in Y. 

Theorem 2.7. ([12]) The following statements are equivalent 

(a)  there exists a unique linear bounded operator )),(( YKCBF   such that 

22 ,))((),()(0,,)( FFKCFFNjyF n
jj    

(b)  for any finite subset 
nJ N0  , any R};{ 0  Jjj  , and any polynomial qp  written above, we 

have  
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)(0 2

0,0,

jiji

Jji

jiji

Jji

Fy 







    

 




























 









 Sk

kjik

Jji

ji

Sk

kjik

Jji

ji Fy  2

0,0,

0  . 

Next, we consider the “non-compact case”, which can be solved by solving “countable many compact cases”. Let  

𝐵  be a Borel subset in nR  such that 
Zm

mKB



 , where n
mK R  is a compact subset Zm . Assume that a 

positive regular Borel measure   on  𝐵  is given, such that 

2121
if0)( mmKK mm   

Theorem 2.8. ([12]) Let }0{\R}N;{  n
j jy . The following statements are equivalent 

(a)  there exists a Borel function h on 𝐵 such that  

 1)(0,N,)(  thjydtht n
j

j

S
- a.e. in 𝐵; 

(b)  for any Zm , there exists a Borel  function mh  on mK  and Rm  such that 

1,Z,N,)(

Z

 


m

m

n
jmmm

j

mK
mjydtht  , 

where )(:)( BBm    for any Borel subset mKB  , Zm . 

In the next theorem X will be the space of all absolutely convergent power series in the closed disk },|{| bz   

};{,||,)(

0







 ZjRXXbzzz j
j

j

j



 

Let H be a Hilbert space, A a self - adjoint operator acting on H, and )(AYY   the order complete vector lattice 

and commutative Banach algebra of self-adjoint operators defined by (4). We denote 
j

j zz )( , bz || , 

Zj .In the next theorems, the notion of a resolvent appears naturally during the proofs. This result gives a 

sufficient condition for the existence a unique solution. 

 Theorem 2.9. Let 1b , jjYX }{,,   be as above. Let 

0,}{),,0()(, 
  YBbBYB Zjj . 

Assume that  

 ZjIBB j
j ,0   . 
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Then there exists a unique linear bounded positive operator ),( YXLF  , such that 

1| || |
| || |

1
)(| || ||)(|,)( 11
















 


b

b

Bb

b
FI

b

b
BbIFZjBF jj   

Our next goal is to consider some Markov moment problems in terms of nonnegative sequences with respect 

to an interval. We recall this well-known notion. 

Definition 2.1. A sequence 

0)( nnu  in an ordered vector space Y is called nonnegative with respect to the 

interval RI   if  for any Zn  , we have 

00 110010  nn
n

n uuuIttt    in Y  

It is clear that for compact intervals and for RY  , this condition is necessary and  sufficient for the existence 

of a unique positive solution of the moment problem associated to the moments Ruy jj  , Zj  . The 

continuity with respect to the sup – norm is also obvious. But no information concerning dominating 1L  norm 

for the solution holds. Such information would be useful for integral representation of the extension of the 

solution to the space )(1 IL  (see the next results). 

Theorem 2.10. Let ),0( b . Consider the following statements: 

(a) there exists a unique ]),0([ bLh   such that 

1)(0  th  i.e., j
j

b
ydttht  )(

0
,    Zj  ; 

(b)  the sequence 

),,,2,,1( 110  nnyyy   

is nonnegative with respect to ].,0[ b  

Then (b)   (a). 

The next result is an application of Theorem 2.5 (Mazur-Orlicz) to the space X of all absolutely convergent power 

series in the disc rz || , with real coefficients, continuous up to the boundary. The order relation is given by the 

coefficients: we write 

)N,(

NN




nzz nn
n

n

n

n
n

n

   

Denote n
n zz )( , Nn , rz || .  Let Y be the space defined by (4), N)( nnB  a sequence in 𝑌, and YU .  

Theorem 2.11. The following statements are equivalent 

(a)  there exists a linear positive operator ),( YXLF   such that 
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XaUaFnBF nn

n

n
n

n

nn  




NN

,|||)(|,N,)( ; 

(b)  the following relations hold 

N,  nUB n
n ; 

Theorem 2.12. Let YA , bA | || | , 1b , 0 . Consider the following statements: 

(a)  there exists a linear positive operator ),( YXLF   such that 

XIAIbbFjUF jj  
  ),(| || |)()(,N,)( 1

 

(b)  the following inequalities holds: 

N,  jIAU j
j  ; 

(c) there exists a linear positive operator ),( YXLF 
 
 such that 

XIAFjUF nn

n

n
n

n

jj  




NN

),(||||)(,N,)( . 

Then (c)  (b)   (a). 

In the sequel, we go further with Mazur-Orlicz theorem in spaces  𝐿𝜇
𝑝

,1 ≤ 𝑝 < ∞. The first preliminary result is 

an abstract version.  

Theorem 2.13. Let 𝑋 be a Banach lattice, 𝑌 an order complete Banach lattice, {𝜑𝑗}
𝑗∈𝐽

⊂ 𝑋+ , {𝑦𝑗 }
𝑗 ∈𝐽

⊂ 𝑌, 𝐺 a linear  

positive bounded operator from 𝑋 into 𝑌, 𝛼 a positive number. The following statements are equivalent 

(a) there exists a linear positive bounded operator 𝐹 ∈ 𝐵+
(𝑋, 𝑌), such that 

𝐹(𝜑𝑗) ≥ 𝑦𝑗, ∀𝑗 ∈ 𝐽, 𝐹(𝑥) ≤ 𝛼𝐺(|𝑥|), ∀𝑥 ∈ 𝑋, ‖𝐹‖ ≤ 𝛼‖𝐺‖; 

(b) 𝑦𝑗 ≤ 𝛼𝐺(𝜑𝑗), ∀𝑗 ∈ 𝐽. 

Corollary 2.2. Let 𝑀 be a measure space, 𝜇 a positive measure on 𝑀, 𝜇(𝑀) < ∞, 𝑋 = 𝐿𝜇
𝑝 (𝑀), 1 ≤ 𝑝 < ∞, 𝑔 ≥ 0 an 

element of 𝐿𝜇
𝑞(𝑀) , where 𝑞 ∈ (1, ∞] is the conjugate of 𝑝 (1 𝑝⁄ + 1 𝑞 = 1⁄ ), 𝛼 a positive number. Let {𝜑𝑗}

𝑗 ∈𝐽
, {𝑦𝑗}

𝑗 ∈𝐽
 

be as in Theorem 2.2, where 𝑌 = ℝ.  The following statements are equivalent 

(a) there exists  ℎ ∈ 𝐿𝜇
𝑞(𝑀), 0 ≤ ℎ ≤ 𝛼𝑔 a.e., ∫ ℎ𝜑𝑗𝑑𝜇𝑀 ≥ 𝑦𝑗 , ∀𝑗 ∈ 𝐽; 

(b)𝑦𝑗 ≤ 𝛼 ∫ 𝑔𝜑𝑗𝑑𝜇, ∀𝑗 ∈ 𝐽𝑀 . 

Corollary 2.3. Let consider the measure space 𝑀 = ℝ+
𝑛 , 𝑛 ∈ {1,2 … },   endowed with the measure 𝑑𝜇 =

𝑒𝑥𝑝(− ∑ 𝑝𝑗 𝑡𝑗
𝑛
𝑗 =1 )𝑑 𝑡1 ⋯ 𝑑𝑡𝑛 , 𝑝𝑗 > 0, ∀𝑗 ∈ {1, … , 𝑛}, 𝛼  a positive number. The following statements are equivalent 

(a) there exists ℎ ∈ 𝐿𝜇
∞(ℝ+

𝑛 ), ∫ ℎ𝑡𝑗 𝑑𝜇 ≥ 𝑦𝑗ℝ+
𝑛 , ∀𝑗 ∈ ℕ𝑛 , 0 ≤ ℎ ≤ 𝛼  a.e.; 
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(b) 𝑦𝑗 ≤ 𝛼
𝐽1 !⋯𝐽𝑛 !

𝑝1
𝑗1+1

⋯𝑝𝑛
𝑗𝑛+1  , ∀𝑗 = (𝑗1, … , 𝑗𝑛

) ∈ ℕ𝑛 . 

Theorem 2.14. Let 𝑋 = 𝐿𝜇
𝑝 (𝑀), 1 < 𝑝, 𝜇 ≥ 0, 𝜇(𝑀) < ∞, {𝜑𝑗}

𝑗 ∈𝐽
⊂ 𝑋, {𝑦𝑗 }

𝑗 ∈𝐽
⊂ ℝ, 𝛼 > 0, 𝛼 ∈ ℝ, 𝑞 the conjugate of 

𝑝. Consider the following statements 

(a) there exists  ℎ ∈ (𝐿𝜇
𝑞 (𝑀) )

+
 such that  

∫ ℎ𝜑𝑗𝑑𝜇 ≥ 𝑦𝑗

𝑀

, ∀𝑗 ∈ 𝐽, ∫ ℎ𝜓𝑑𝜇 ≤ 𝛼‖𝜓‖
𝑝 (𝜇(𝑀) )

1 𝑞⁄
, ∀

𝑀

𝜓 ∈ 𝑋; 

(b) we have 𝑦𝑗 ≤ 𝛼 ∫ 𝜑𝑗𝑀 𝑑𝜇, ∀𝑗 ∈ 𝐽. 

Then (b)⇒(a). 

The following theorem represents an application of the general result stated in Theorem 2.5 to some other 

concrete spaces 𝑋, 𝑌.  Let 𝐻  be an arbitrary Hilbert space, 𝑛 ∈ ℕ,  𝑛 ≥ 1,  𝐴1 , … , 𝐴𝑛  positive commuting self -  

adjoint operators acting on 𝐻, (𝐵𝑗)
𝑗 ∈ℕ𝑛  a sequence in 𝑌, where 𝑌 = 𝑌(𝐴1 , … , 𝐴𝑛

)  is defined by 

𝑌1 ≔ {𝑈 ∈ 𝒜(𝐻) ; 𝑈𝐴𝑗 = 𝐴𝑗 𝑈, 𝑗 = 1, … , 𝑛}, 𝑌 ≔ {𝑉 ∈ 𝑌1; 𝑈𝑉 = 𝑉𝑈, ∀𝑈 ∈ 𝑌1
},                           (5) 

 𝑌+ = {𝑉 ∈ 𝑌;  < 𝑉(ℎ) , ℎ > ≥ 0, ∀ℎ ∈ 𝐻}  

Here 𝒜(𝐻)  is the real vector space of all self – adjoint operators. One can prove that 𝑌 is an order complete 

Banach lattice with respect to the usual structures induced by those defined on the real space of self – adjoint 

operators (see [21], p. 303 - 305]), and a commutative real Banach algebra. Notice that the properties of 𝑌 =

𝑌(𝐴1, … , 𝐴𝑛
), where 𝐴1 , … , 𝐴𝑛  are as mentioned above can be proved in a similar way to those of a 𝑌(𝐴), where 

𝐴 is a self – adjoint operator. Actually, one repeats the proofs from [21], but for several commuting self – adjoint 

operators. Denote by 𝜑𝑗, 𝑗 ∈ ℕ𝑛  the basic polynomials 𝜑𝑗
(𝑡1, … , 𝑡𝑛

) = 𝑡1
𝑗1 ⋯ 𝑡𝑛

𝑗𝑛 , 𝑗 = (𝑗1 , … , 𝑗𝑛
) ∈ ℕ𝑛 , 𝑡 =

(𝑡1,… , 𝑡𝑛
) ∈ 𝛴𝐴 , 𝑋: = 𝐶(𝛴𝐴

),  (where 𝛴𝐴  is the joint spectrum associated to  𝐴 = (𝐴1, 𝐴2 , … , 𝐴𝑛
))   and by 

𝐸𝐴 : 𝐵𝑜𝑟(𝛴𝐴
) → 𝒜(𝐻)  the corresponding joint spectral measure.  

Theorem 2.15. The following statements are equivalent 

(a) there exists a linear bounded positive operator 𝐹 ∈ 𝐵+
(𝑋, 𝑌) such that  

𝐹(𝜑𝑗) ≥ 𝐵𝑗, 𝑗 ∈ ℕ𝑛 , 𝐹(𝜑) ≤ ∫ |𝜑|

𝛴𝐴

𝑑𝐸𝐴 , ∀𝜑 ∈ 𝑋, ‖𝐹‖ ≤ 1; 

(b) 𝐵𝑗 ≤ 𝐴𝑗 ≔ 𝐴1
𝑗1 ⋯ 𝐴𝑛

𝑗𝑛 ,∀𝑗 = (𝑗1 , … ,𝑗𝑛
) ∈ ℕ𝑛 . 

Remark.  If in Theorem 2.15 one additionally assumes that ‖𝐴𝑘
‖ < 1, 𝑘 = 1,2, … , 𝑛, then for any self - adjoint 

operators satisfying (b) one has 

∑ 𝐵𝑗

𝑗∈ℕ𝑛

≤ ∏(𝐼 − 𝐴𝑘
)−1.

𝑛

𝑘=1

 

Going back to the multidimensional Markov moment problem, here is a last application of Theorem 2.3. The 

space 𝑌 is defined by (4). The space 𝑋 consists in all absolutely convergent power series in the closed unit closed 

polydisc  



The MathLAB Journal Vol 2 (2019)                                                     http://www.purkh.com/index.php/mathlab                          

169 

𝐷1 = {𝑧 = (𝑧1,… ,𝑧𝑛
);  |𝑧𝑝 | ≤ 1, 𝑝 ∈ {1, … , 𝑛}}, 

with real coefficients. The positive cone of 𝑋 consists in all such power series having all nonnegative coefficients. 

The norm on 𝑋 is defined by  

‖ℎ‖
∞ = 𝑠𝑢𝑝 {|ℎ(𝑧)|; 𝑧 ∈ 𝐷1

}, ℎ ∈ 𝑋. 

As we have mentioned above, one denotes by ℎ𝑘  the basic polynomials  

ℎ𝑘
(𝑧) = 𝑧1

𝑘1 ⋯ 𝑧𝑛
𝑘𝑛 , 𝑘 = (𝑘1 , … , 𝑘𝑛

) ∈ ℕ𝑛 , 𝑧 ∈ 𝐷1. 

Let 𝐴1 ,… , 𝐴𝑛 be positive operators in 𝑌, such that ‖𝐴𝑝 ‖ < 1, ∀𝑝 ∈ {1, … , 𝑛}, 𝑎 > 0 a real number and {𝐵𝑘
}

𝑘∈ℕ𝑛  a 

multi- indexed sequence in 𝑌. 

Theorem 2.16.  Assume that 0 ≤ 𝐵𝑘 ≤ 𝑎 𝐴1
𝑘1 ⋯ 𝐴𝑛

𝑘𝑛  for all 𝑘 = (𝑘1, … , 𝑘𝑛
) ∈ ℕ𝑛 . Then there exists a unique linear 

bounded positive operator 𝐹 ∈ 𝐵+
(𝑋, 𝑌) such that  

𝐹(ℎ𝑘
) = 𝐵𝑘 , 𝑘 ∈ ℕ𝑛 , 𝐹(𝜑) ≤ 𝑎‖𝜑‖

∞ ∏(𝐼 − 𝐴𝑝 )
−1

, 𝜑 ∈ 𝑋, ‖𝐹‖ ≤

𝑛

𝑝=1

𝑎 ∏(1 − ‖𝐴𝑝 ‖)
−1

𝑛

𝑝=1

 

3 Proofs and related methods 

Proof of Theorem 2.9. The following implications hold true 
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Here 𝐽0 ⊂ ℤ+  is a finite subset and 𝜎(𝐵) is the spectrum of 𝐵. In the preceding relations the Cauchy inequalities  

for the function   have been used. Application of Theorem 2.3 leads to the existence of a linear positive 

operator F from X to Y, satisfying the moment condition, such that TF   on X. Now the conclusion follows 

easily, by using the monotony of the norm on Y: 
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This concludes the proof.                                                                                                            □      

          

Proof of Theorem 2.10. We have:  
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Application of Theorem 2.4, (b)   (a), leads to the existence of a linear functional F on ]),0([1 bLX   such 

that 

   XdtFFFZjyxF
b

jj  ,:)()()(0,,)(
0

21  . 

Using the representation of a linear positive functional on 
1L , there exists 

]),0([,)(,0]),,0([ 1

0
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b
 

  . 

From the last equality written for B , ],0[ bB   being a Borel subset, we infer (via measure theory) that 

  ZjyxFdtthteah jj
j

b
,)()(.,.1

0
 . 

This concludes the proof.                                                                                                             □ 

Proof of Theorem 2.11. (b)   (a). One applies theorem 2.5 to N,  jx jj  . If 
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  , 

then the hypothesis and the above relations yield: 
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Notice that the definition of the order relation on the space X implies 
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Hence, the assertions from (b), Theorem 2.5 are accomplished and the conclusion follows from a direct 

application of the latter theorem. On the other hand, (a)   (b) is almost obvious, since )( nn FB   for all 

Nn  lead to  

N,)(|)(|)(  nUTFFB n
nnnn  . 

This concludes the proof.                                                                                                                           □  

Proof of Theorem 2.12. In order to prove that (b)   (a), we apply the implication (b)   (a) of Theorem 2.5. 

Verifying the conditions (b) of the latter theorem, and using Cauchy’s inequalities, one deduces:  

N,0,0,
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Now the first conclusion follows via Theorem 1.5. On the other hand, the implication (c)    (b) is almost obvious, 

since 

N,)()(  jIAIAFU j
j

j
j

j  . 

It remains to prove the converse implication, that is (b)   (c). To this end, we apply (b)   (a) of Theorem 2.5 

once more. The following implications hold true 
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Application of Theorem 2.5 yields the existence of a linear operator F with the properties mentioned at point (c). 

This concludes the proof.                                                                                                                          □ 

  

Proof of Theorem 2.13. (a)⇒(b) is obvious, because of 𝑦𝑗 ≤ 𝐹(𝜑𝑗) ≤ 𝛼𝐺(|𝜑𝑗|) = 𝛼𝐺(𝜑𝑗),∀𝑗 ∈ 𝐽.  For the 

converse, we apply Theorem 2.5, (b)⇒(a). Let 𝐽0 ⊂ 𝐽 be a finite subset, {𝜆𝑗}
𝑗∈𝐽0

⊂ ℝ+ , 𝑥 ∈ 𝑋, such that ∑ 𝜆𝑗𝑗 ∈𝐽0
𝜑𝑗 ≤

𝑥. Then using (b) and the fact that the scalars 𝜆𝑗 are nonnegative, as well as the positivity of 𝐺, we derive 
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∑ 𝜆𝑗𝑦𝑗 ≤ α 
𝑗∈𝐽0

∑ 𝜆𝑗𝐺(𝜑𝑗) = 𝛼𝐺 (∑ 𝜆𝑗𝜑𝑗

𝑗∈𝐽0

)

𝑗∈𝐽0

≤ 𝛼𝐺(𝑥) ≤ 𝛼𝐺(|𝑥|) ≔ 𝑇(𝑥) . 

Application of Theorem 2.5 leads to the existence of a linear positive operator 𝐹 from 𝑋 into 𝑌 such that  

𝐹(𝜑𝑗) ≥ 𝑦𝑗 , ∀𝑗 ∈ 𝐽, 𝐹(𝑥) ≤ 𝛼𝐺(|𝑥|), ∀𝑥 ∈ 𝑋.  

From the last relation, also using the fact that the norms on 𝑋 and 𝑌 are solid (|𝑢| ≤ |𝑣| ⇒ ‖𝑢‖ ≤ ‖𝑣‖), we 

deduce  

|𝐹(𝑥) | ≤ 𝛼𝐺(|𝑥|) ⇒ ‖𝐹(𝑥) ‖ ≤ 𝛼‖𝐺‖‖|𝑥|‖ = 𝛼‖𝐺‖‖𝑥‖, ∀𝑥 ∈ 𝑋. 

It follows that ‖𝐹‖ ≤ 𝛼‖𝐺‖. This concludes the proof.                                                                         □  

Proof of Corollary 2.2.  One applies Theorem 2.13 for 𝐺(𝜓) = ∫ 𝑔𝑀 𝜓𝑑𝜇, 𝜓 ∈ 𝑋 , 𝑌 = ℝ, as well as the 

representation of linear positive continuous functionals on 𝐿𝑝  spaces by means of nonnegative elements from 

𝐿𝑞 spaces. In order to prove (b)⇒(a), from the preceding results it follows that there exists ℎ ∈ (𝐿𝜇
𝑞(𝑀))

+
such 

that ∫ ℎ𝜑𝑗𝑀 𝑑𝜇 ≥ 𝑦𝑗 , ∀𝑗 ∈ 𝐽 and  

∫ ℎ𝜓𝑑𝜇 ≤ 𝛼 ∫ 𝑔𝜓𝑑𝜇

𝑀𝑀

 

for all nonnegative functions 𝜓 ∈ 𝐿𝜇
𝑝 (𝑀). Now we choose 𝜓 = 𝜒𝐵 , where 𝐵 is an arbitrary measurable subset of 

𝑀.  Then the last relation can be rewritten as 

∫(ℎ − 𝛼𝑔)

𝐵

𝑑𝜇 ≤ 0 

for all such subsets 𝐵. A straightforward application of Theorem 1.40 [22], leads to ℎ − 𝛼𝑔 ≤ 0 a.e. in 𝑀. Since 

(a)⇒(b) is obvious, this concludes the proof.                                                                                       □                     

Proof of Corollary 2.3.  One applies Corollary 2.2 to 𝑝 = 1, 𝑞 = ∞, 𝑔 = 1 a.e.  The notation 𝑡𝑗  is the multi–index 

notation 𝑡𝑗 = 𝑡1
𝑗1 ⋯ 𝑡𝑛

𝑗𝑛 . The conclusion follows via Fubini ’s theorem and Gamma function properties. □               

Proof of Theorem 2.14.  Let 𝐽0 ⊂ 𝐽 be a finite subset, {𝜆𝑗}
𝑗∈𝐽0

⊂ ℝ+ . Hölder inequality and using also (b), lead 

to the following implications  

∑ 𝜆𝑗𝜑𝑗 ≤ 𝜓 ⇒ ∫ (∑ 𝜆𝑗𝜑𝑗

𝑗∈𝐽0

) 𝑑𝜇 ≤ ∫ 𝜓𝑑𝜇 ≤ ‖𝜓‖
𝑝 (𝜇(𝑀) )

1 𝑞⁄

𝑀𝑀𝑗∈𝐽0

⇒ 

∑ 𝜆𝑗𝑦𝑗

𝑗∈𝐽0

≤ 𝛼 ∫ (∑ 𝜆𝑗𝜑𝑗

𝑗∈𝐽0

)𝑑𝜇 ≤ 𝛼

𝑀

‖𝜓‖
𝑝 (𝜇(𝑀))

1 𝑞⁄
≔ 𝑇(𝜓) . 

 

Application of Theorem 2.1 and measure theory arguments, as discussed in [22, theorem 6.16, p. 122-124], yield 

the existence of ℎ ∈ 𝐿𝜇
𝑞 (𝑀)  such that  
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𝐹(𝜑𝑗) = ∫ ℎ𝜑𝑗𝑑𝜇 ≥ 𝑦𝑗

𝑀

, ∀𝑗 ∈ 𝐽, 𝐹(𝜓) = ∫ ℎ𝜓𝑑𝜇 ≤ 𝛼‖𝜓‖
𝑝 (𝜇(𝑀))

1 𝑞⁄
,

𝑀

 𝜓 ∈ 𝑋. 

Moreover, since 𝐹(𝜓) ≥ 0, ∀𝜓 ∈ 𝑋+ , we have  

∫ ℎ𝜓𝑑𝜇 ≥ 0, ∀𝜓 ∈ 𝑋+ .

𝑀

 

Taking 𝜓 = 𝜒𝐵 , where 𝐵 ⊂ 𝑀 is a measurable set such that 𝜇(𝐵) > 0, one obtains  

∫ ℎ𝑑𝜇 ≥ 0

𝐵

 

for all such subsets 𝐵. Application of theorem 1.40 [22] leads to ℎ ≥ 0 𝜇 − 𝑎. 𝑒. From the previous relations we 

also derive that ‖ℎ‖
𝑞 ≤ 𝛼(𝜇(𝑀))

1 𝑞⁄
. This concludes the proof.                                                                 □ 

Proof of Theorem 2.15. The implication (a)⇒(b) is obvious: 

𝐵𝑗 ≤ 𝐹(𝜑𝑗) ≤ ∫ |𝜑𝑗|𝑑𝐸(𝐴1,…,𝐴𝑛)

𝛴𝐴

= ∫ 𝜑𝑗𝑑𝐸(𝐴1,…,𝐴𝑛)

𝛴𝐴

= 𝐴1
𝑗1 ⋯ 𝐴𝑛

𝑗𝑛 , 

 𝑗 ∈ ℕ𝑛  (we have used the positivity of the operators 𝐴𝑘  which leads to |𝜑𝑗| = 𝜑𝑗 on 𝛴𝐴). For the converse, one 

applies Theorem 2.1, (b)⇒(a), where ℕ𝑛  stands for 𝐽, 𝜑𝑗 stands for 𝑥𝑗 and 𝐵𝑗 stands for 𝑦𝑗 , ∀𝑗 ∈ ℕ𝑛 .  Let 𝐽0 and 

{𝜆𝑗}
𝑗∈𝐽0

be as mentioned at point (b) of Theorem 2.5. The following implications hold:  

∑ 𝜆𝑗𝜑𝑗

𝑗∈𝐽0

≤ 𝜑 ∈ 𝑋 ⇒ ∑ 𝜆𝑗

𝑗∈𝐽0

∫ 𝜑𝑗𝑑𝐸𝐴

𝛴𝐴

= ∑ 𝜆𝑗

𝑗∈𝐽0

𝐴1
𝑗1 ⋯ 𝐴𝑛

𝑗𝑛 ≤ ∫ 𝜑𝑑 𝐸𝐴

𝛴𝐴

≤ ∫ |𝜑|

𝛴𝐴

𝑑𝐸𝐴 ≔ 𝑇(𝜑) . 

The positivity of the spectral measure 𝑑𝐸𝐴   has been used. On the other hand, the hypothesis (b), the fact that 

the scalars 𝜆𝑗 are nonnegative and the preceding evaluation yield 

𝜆𝑗𝐵𝑗 ≤ 𝜆𝑗𝐴𝑗 , ∀𝑗 ⇒ ∑ 𝜆𝑗

𝑗∈𝐽0

𝐵𝑗 ≤ ∑ 𝜆𝑗

𝑗∈𝐽0

𝐴𝑗 = ∑ 𝜆𝑗

𝑗∈𝐽0

𝐴1
𝑗1 ⋯ 𝐴𝑛

𝑗𝑛 ≤ 𝑇(𝜑), 

where 𝑇(𝜑) was defined above. Thus, the implication at (b) Theorem 2.5 is accomplished. Application of the 

latter theorem leads to the existence of a “feasible solution” 𝐹 having the property mentioned at point (a) of the 

present theorem. The last property is a consequence of the preceding one, using the fact that the norm on 𝑌 is 

solid. This concludes the proof.                                                                                                                                

Proof of Theorem 2.16. We apply Theorem 2.3 (b)⇒(a), to 𝑥𝑗 = ℎ𝑗 , 𝑦𝑗 = 𝐵𝑗, 𝑗 ∈ 𝐽 ≔ ℕ𝑛 . To this end, we verify 

the implication mentioned at point (b) of the latter theorem. Cauchy’s inequalities lead to 

∑ 𝜆𝑗ℎ𝑗 ≤ 𝜑 = ∑ 𝛽𝑘ℎ𝑘

𝑘∈ℕ𝑛𝑗∈𝐽0

⇒ 𝜆𝑗 ≤ 𝛽𝑗 ≤ |𝛽𝑗| ≤
‖𝜑‖

∞

(1 − 𝜀)𝑗1+⋯+𝑗𝑛
  

for all positive 𝜀 < 𝑚𝑖𝑛 {1 − ‖𝐴𝑝 ‖; 𝑝 ∈ {1, … 𝑛}} and all 𝑗 ∈ 𝐽0. Making 𝜀 ↓ 0, we get 𝜆𝑗 ≤ ‖𝜑‖
∞, ∀𝑗 ∈ 𝐽0. Now 

application of the relations verified by the operators 𝐵𝑗, 𝑗 ∈ 𝐽0 yields 
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𝜆𝑗𝐵𝑗 ≤ ‖𝜑‖
∞𝐵𝑗 ≤ 𝑎‖𝜑‖

∞𝐴1
𝑗1 ⋯ 𝐴𝑛

𝑗𝑛 , 𝑗 ∈ 𝐽0 ⇒ 

∑ 𝜆𝑗𝐵𝑗

𝑗∈𝐽0

≤ 𝑎‖𝜑‖
∞ ∑ 𝐴1

𝑗1 ⋯ 𝐴𝑛
𝑗𝑛 ≤

𝑗∈𝐽0

𝑎‖𝜑‖
∞ ( ∑ 𝐴1

𝑘1

𝑘1 ∈ℕ

) ⋯ ( ∑ 𝐴𝑛
𝑘𝑛

𝑘𝑛∈ℕ

) = 

𝑎‖𝜑‖
∞ ∏(𝐼 − 𝐴𝑝 )

−1
𝑛

𝑝=1

=: 𝑇(𝜑).  

Thus, the implication (b) from Theorem 2.3 is verified. Application of the latter theorem, leads to the existence 

of a linear positive operator 𝐹: 𝑋 → 𝑌, such that the interpolation conditions  

𝐹(ℎ𝑘
) = 𝐵𝑘, 𝑘 ∈ ℕ𝑛  

are verified and 𝐹(𝜑) ≤ 𝑇(𝜑) = 𝑎‖𝜑‖
∞

∏ (𝐼 − 𝐴𝑝 )
−1

𝑛
𝑝=1  for all 𝜑 in 𝑋. In particular, the last relations yield 

‖𝐹‖ ≤ 𝑎 ∏ ‖ ∑ 𝐴𝑝
𝑚

∞

𝑚=0

‖

𝑛

𝑝=1

≤ 𝑎 ∏ ( ∑ ‖𝐴𝑝 ‖
𝑚

∞

𝑚=0

)

𝑛

𝑝=1

= 𝑎 ∏(1 − ‖𝐴𝑝 ‖)
−1

𝑛

𝑝=1

. 

The uniqueness of the solution follows from its continuity, also using the density of polynomials in the space 

𝑋.  This concludes the proof.                                                                                                                  □                             

4 Conclusions 

We have recalled earlier and mainly actual results on the subject, as well as their relationship. Necessary and 

sufficient (or only sufficient) conditions for the existence of a solution are formulated and proved. This is the 

purpose of this review article. In the case of Markov moment problems, sometimes the uniqueness of the 

solution follows from the proof of its existence. The recently published results are presented accompanied by 

their proofs. The technical methods of proving such theorems are: the extension results for linear operators, 

Cauchy inequalities for complex analytic functions, operator inequalities, measure theory arguments, earlier 

related results. A relationship between these fields is implicitly illustrated. 
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