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Abstract

One solves Markov moment and Mazur-Orlicz problems in concrete spaces of functions and respectively
operators. This is the main purpose of this review paper. To do this, one uses earlier results as well as recent
theorems on the subject. One characterizes the existence of a solution, or one gives sufficient conditions for it
does exist. Sometimes the uniqueness of the solution of some moment problems follows too. Spaces of
continuous, of integrable and respectively analytic functions are considered as domain space of the solution.
Usually, an order complete Banach lattice of self-adjoint operators (the bicommutant) is the target-space.
Results on the abstract Markov moment problem, the abstract version of Mazur-Orlicz theorem and appropriate
knowledge in functional analysis are applied. Basic elements of measure theory and Cauchy inequalities are used
as well.
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1 Introduction
We start by recalling the classical moment problem.Let A c R" (n € N,n > 1) be a closed subset,
0;@®) =t =t]' e =(t),...t,) €Aj = (i, .., j) €N )

On the other hand, being given a sequence (yj)jENn of real numbers, one considers the following problem: find
necessary and sufficient (or only sufficient) conditions on the elements of the sequence (y]-)jeNn for the existence
of a positive Borel measure y on A such that

f<p,-d/«t=y,-,j€N” @)

A

For each,j € N*, the number y; is called the moment of order j (with respect to the measure u). We say that
u is a solution for the moment problem (2). If n = 1, then one says that we have a one-dimensional moment
problem, while for n > 2 we have a multidimensional moment problem. Defining the linear form F, on the space
of P of polynomials by

E Z aip; | = Zajyj 3)

Jj€Jo j€Jo

where J, € N™ is an arbitrary finite subset, the moment problem can be reformulated as: find necessary and
sufficient conditions on the sequence of moments y;,j € N", for the existence of a linear extension F: X - R of

F,, where X is afunction space containing both polynomials and continuous compactly supported real functions
defined on 4, such that F to be a positive form on X (F(x) > 0,vx € X, :={x € X;x(t) > 0vt € 4}). If such a
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linear positive extension F of F, does exist, due to Riesz representation theorem, it can be represented by a
positive Borel measure p on A and obviously (2) holds true (cf. (3)). The connection with the analytic form of
nonnegative polynomials on A is obvious. For the one-dimensional case, see firstly [1], while the
multidimensional case has been treated in many other works, such as [1]-[19]. When an additional upper
constraint on the solution F is imposed, we have a Markov moment problem [9]-[16] (see Section 2 for abstract
versions). If the moment-numbers y;,j € N* are replaced by moments-operators U;,j € N*, we have an
operator-valued moment problem, etc. For the background related to this paper see [20]-[22]. For uniqueness
of the solutions of some moment problems we refer to [17], [23], [24], [25]. Connections of the moment problem
with some other fields (such as operator theory and polynomial approximation on unbounded subsets) are
pointed out in [5], [15]-[19], The rest of the paper is organized as follows. In Section 2, main results on the
abstract moment problem. and a statement related to Mazur-Orlicz theorem are recalled, in the ordered vector
spaces setting, according to [10]. Applications to concrete spaces are stated as well. Section 3 contains the
proofs (and implicitly the methods) used in justifying the results of section 2. Section 4 concludes the paper.

2 The results

The results of this section have been motivated in the Introduction. The order of the statements follows two
criteria: chronology and generality of the corresponding results. The proofs will be omitted. They can be partially
found by means of the references.

Theorem 2.1 (Haviland [8]). Let Ac R™ and L: P := R[t = (¢, ...,t,)] > R be a linear form. Then L is given by a

positive Borel measure yu on A (ie. L(p) = [ , padu for all p € P) if and only if L(p) > 0 for all nonnegative p onA
p@® =0,vteA=Llp) =0).

The next result of this section is a well-known extension result, sometimes called Lemma of the majorizing
subspace, for positive linear operators on subspaces in ordered vector spaces (X, X, ), for which the positive
cone X, is generating (X = X, — X, ).Recall that in such an ordered vector space X, a vector subspace S is called
a majorizing subspace if for any x € X, there exists s € Ssuch that x < s.

Theorem 2.2. Let X be an ordered vector space whose positive cone is generating, S € X a majorizing vector
subspace, Y an order complete vector lattice, F,:S — Y a linear positive operator. Then F, has a linear positive
extension F:X — Y at least.

Observe that if A ¢ R" is a closed subset, and S = P is the space of polynomial functions, then one can define
X as the vector (ordered) space of all real functions dominated in absolute value by a polynomial. Then P is a
majorizing subspace of X, while X contains P and the subspace of all continuous compactly supported functions
on A. Theorem 2.2 was proved or/and applied in [1], [2], [5], [15], [16] and in many other works. The next two
statements refer to the abstract Markov moment problem.

Theorem 2.3 (see [10)). Let X,Y,T:X =Y be as in Theorem 3.1.2,{Xj}jej c X, {yj}

c Y given families.
e given f

The following assertions are equivalent

(a) there exists a linear positive operator F: X —Y such that

F(xj)=yj Vield, F(<T(x), vVxeX;

(b) for any finite subset Jo = J and any {Aj}jc, =R, we have
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Z ﬂ’jxj <X= z ﬂ’]yj ST(X)

jedo jedo
A clearer sandwich-moment problem variant is the following one.

Theorem 2.4 (see [10) .Let X be an ordered vector space, Y an order complete vector lattice,
{X j }je = X, {y j }je 3 cY given families and F|,F, L(X,Y) two linear operators. The following statements are

equivalent

(a)there is a linear operator F e L(X,Y) such that
R(X)<F(x)<Fy(x)vxe X, Flxj)=y; vied;

(b)for any finite subset Jy — J and any {Aj }jeJo c R, we have

Z/’ijxj =y —yL YLy € X, |= Zﬂjyj' <Fow2)-Filyr)
jedo iedo

Finally, we recall the statement of Mazur-Orlicz Theorem.

Theorem 2.5. (see [10]). Let X be an ordered vector space, Y an order complete vector lattice, {xj}jej'{yj}je]
arbitrary families in X, respectively in Y and T:X —» Y a sublinear operator. The following statements are
equivalent

(a) 3F € L(X,Y) such that F(x;) > y;,¥j € ,F(x) > 0,vx € X,, F(x) < T(x),Vx € X;

(b) for any finite subset |, c J and any {/1]-}],61 c R, =0,Vj € ],, we have
0

z/ljijxeX:aZAjyjsT(x)

Jj€h J€ho

Comparing Theorem 2.5 with Theorem 2.3, observe that in the former a "half” of the moment interpolation
conditions from the latter appears at point (a), and consequently, the implication at (b) must be accomplished
only for nonnegative scalars 4; in case of the former Theorem 2.5. Recall that an important space which might

stand for Y in the above statements is given by the following construction [21]. Let H be a complex Hilbert space,
A the real vector space of all self-adjoint operators acting on H,A € A. Let

Yi={U€eAUA=AUL,Y =Y(A) ={V ey, UV =VU,VU €Y,}, 4)
Y,={Vey;<V(®,h>=>0,vh e H}

The space Y is an order complete Banach lattice (endowed with the operatorial norm) and a commutative (real)
Banach algebra, as discussed in [21].

For applications to concrete spaces, one first aim is to state a result on the existence of the solution of the
Markov moment problem on a semi-algebraic compact K. Let
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K={teR"; rj®)=0, j=1K,m}, r,K,r, eR[t K t,],

and assume that K is compact. Such a compact subset is called a semi - algebraic compact. Let Z denote the

set of all finite sums of elements p? and pzrjlyK’r-q ,where peR[t;,K,t,] and j;,K, jq €{LK ,m}. Note that

Z is a convex cone in R[t;,K ,t,] and itis closed with respectto multiplication-operation. We recall the real

variant of the main result on the moment problem of [4]. Using geometric form of Hahn-Banach principle, the
explicit representation of the positive polynomials on Kis deduced in [4] (see also [3]).

Theorem 2.6. ([4]) Let (Y j)jeNn be a multi-sequence of real number. The following statements are equivalent:

@) there exists a unique positive linear form Fon X =C(K) such that the moment conditions
Flpj)=yj, jeN"
are accomplished (where ¢; are the basic polynomials given by (1));

(b) for any finite subset J, c N", any {1j;i€do}rc=R, and any

Pq () =1y OK 1y © = Dt {i K g} = LK m},
keS

(where isl # iS2 for s; #s,,and S N" is a finite subset), we have
0< z AidjYivj, 0< Z/liﬂj(zakwﬂwj :
i,jedo i,jedo keS
Corollary 2.1. ([4]) If a polynomial function p is positive on K, then p € z .

Using the form of positive polynomials on semi-algebraic compacts given by Corollary 2.1, we proved the
following applications to the Markov moment problem for operators. Let Y be an order-complete Banach lattice.
Let F, e L, (C(K),Y) be a linear positive operator (note that any such operator is also bounded). Finally, let

(yj)jeNn be a sequence in Y.

Theorem 2.7. ([12]) The following statements are equivalent

(@) there exists a unique linear bounded operator F € B(C(K),Y) such that
Flej)=yj, ieN", 0<F(@)<F(p). Vpe(CK), [F|<|F]

(b) for any finite subset Jy N", any {/11- ;i €Jo}< R, and any polynomial Py written above, we

have
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0< > Aidjyirj < O AidjFa(pij)
i,jedo i,jelo

0< Zﬂilj[ZakynjmJS Zﬂiij[zak':z((ﬂnhk)}-
i,jedg keS i,jedo keS

Next, we consider the “non-compact case”, which can be solved by solving “countable many compact cases”. Let

B be a Borel subsetin R" such that B = YKm , where K., cR" is a compact subset Yme Z. Assume that a
meZ
positive regular Borel measure v on B is given, such that

V(Kpy I Ky ) =0 if mp=mp
Theorem 2.8. ([12]) Let {yj; ] e N"}< R\{0}. The following statements are equivalent
@) there exists a Borel function h on B such that
L th)dv =y;, jeN", 0<h@)<l v-ae.in B;

(b) forany me Z, there exists a Borel function hy on K, and &, €R such that

ij thyOdvn =emyj, JeN", meZ Y ey =1,

meZ
where v, (B) :=v(B) for any Borel subset Bc K,,, meZ.
In the next theorem X will be the space of all absolutely convergent power series in the closed disk {| z|< b},
0 .
p(2)=) ajz), |z]<b, X, ={peX;ajeR, VjeZ,}
j=0

Let H be a Hilbert space, A a self - adjoint operator acting on H, and Y =Y (A) the order complete vector lattice

and commutative Banach algebra of self-adjoint operators defined by (4). We denote ¢ (2)=2),|z|<b,
j €Z, In the next theorems, the notion of a resolvent appears naturally during the proofs. This result gives a

sufficient condition for the existence a unique solution.

Theorem 2.9. Let b >1, X,Y {p;}; be as above. Let
BeY, o(B)c<(0,b), {Bj}jeZ+ cY, &>0.

Assume that

0<Bj<Bl+el, Vjez, .
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Then there exists a unique linear bounded positive operator F e L, (X,Y), such that

- 1g)- b b
Flpj)=BjVieZ,, IF(¢)|S||¢II[(I—blB)l+s I}:||F||< o

b-1 ~ b—||B]|

Our next goalis to consider some Markov moment problems in terms of nonnegative sequences with respect
to an interval. We recall this well-known notion.

Definition 2.1. A sequence (un)cr’]o:0 in an ordered vector space Y is called nonnegative with respect to the

interval | R if forany neZ_ , we have
/7.0 +ﬂlt+K +/1ntn >0Vtel :>)¢0U0 +Z,lu1 +K +inun >0 inY

It is clear that for compact intervals and for Y =R, this condition is necessary and sufficient for the existence
of a unique positive solution of the moment problem associated to the moments y;=uj eR, jeZ, . The

continuity with respect to the sup — norm is also obvious. But no information concerning dominating L' norm
for the solution holds. Such information would be useful for integral representation of the extension of the
solution to the space Ll(l) (see the next results).

Theorem 2.10. Let b € (0,0). Consider the following statements:

(@) there exists a unique h e L*([0,b]) such that
. b i -
0<h@)<1 ie, jo thhdt=y;, vjez, ;

(b) the sequence
& yo.2y1,K ,nyp_1,K)
is nonnegative with respect to [0,b].
Then (b) = (a).

The next result is an application of Theorem 2.5 (Mazur-Orlicz) to the space X of all absolutely convergent power
series inthe disc | z|< r, with real coefficients, continuous up to the boundary. The order relation is given by the

coefficients: we write

Z A2 m Z a2 <Ay <7y, VYneN)

neN neN
Denote ¢,(z)=2z", neN, |z|<r. Let Y be the space defined by (4), (B,,),cn aSequence in Y,and U €Y, .

Theorem 2.11. The following statements are equivalent

(a) there exists a linear positive operator F € L, (X,Y) such that
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Flpn) 2By, neN, [F(p)[< ) lay[U", Vo= ayp,eX;
neN neN

(b) the following relations hold
B,<U", neN;
Theorem 2.12. Let AeY,, ||A||l<b, b>1, ¢>0. Consider the following statements:

@) there exists a linear positive operator F e L, (X,Y) such that
Flei)=Uj, ieN, F@)<bbl-A Iy, +ap (1), weX
(b) the following inequalities holds:
Uj<Altel, jeN;
() there exists a linear positive operator F e L, (X,Y) such that

Flpj)2Uj, jeN, F@)<Y Irml-A"+ely|(), =) rapneX.
neN neN

Then (c) < (b) = (a).

In the sequel, we go further with Mazur-Orlicz theorem in spaces Lﬁ,l < p < oo. The first preliminary result is
an abstract version.

Theorem 2.13. Let X be a Banach lattice, Y an order complete Banach lattice, {¢ j} cY,G alinear

jes © X*’{yf}je/
positive bounded operator from X into Y, a a positive number. The following statements are equivalent

(@) there exists a linear positive bounded operator F € B, (X,Y), such that
Flo;)) =y, vj€),F&) <aGxD),vx e X, IFIl < allGll;
)  y<aGe)vjel.

Corollary 2.2. Let M be a measure space, i a positive measure on M, (M) < o0, X = Lz M), 1<p<o,g=0an

element of L} (M), where q € (1,] is the conjugate of p (1/p +1/q = 1), a a positive number. Let {o j}j o {yj}j o
be as in Theorem 2.2, where Y = R. The following statements are equivalent

(a) there exists h € LZ(M), 0<h<agae,J, ho;du = y;,Vj € J;

b)y; <aly gp;duvj€].

Corollary 2.3. Let consider the measure space M =R',n€{1,2..}, endowed with the measure du=
exp(— Z}‘:lpj tj)dtl--- dt,,p; > 0,Vj € {1,..,n}, a a positive number. The following statements are equivalent

(a) there exists h € L;?(R%), fM ht'dp>y; VjEN, 0<h<aae,
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Jiln! . . ,
(b) i s apfl’fll,..p?'nﬂ V) = Gy s jn) € N
n

1

Theorem 2.14. let X = Lﬁ M), 1<p,u=0,ulM) < oo, {(pj}je] c X, {yj} /€ R,a > 0,a € R, q the conjugate of

je
p. Consider the following statements

(a) there exists h € (LZ (M)) such that
+

1/
fmp,-duz;zj,v;'e],f hpdu < allyll, (u() " vyex;
M M

(b) we have y; < al, @;duVje€E ].

Then (b)=(a).

The following theorem represents an application of the general result stated in Theorem 2.5 to some other
concrete spaces X,Y. Let H be an arbitrary Hilbert space, n €N, n>1, 4,, ..., A, positive commuting self -
adjoint operators acting on H, (Bf)jeNn a sequence in Y, where Y = Y(4,, ..., 4,) is defined by

v,={U€AM);UA = AU, j=1,..,n},Y ={V €Y;UV =VU,VU €Y}, 5)
Y,={Vey, <V(W,h>=>0,vh e H}

Here A(H) is the real vector space of all self — adjoint operators. One can prove that Y is an order complete
Banach lattice with respect to the usual structures induced by those defined on the real space of self — adjoint
operators (see [21], p. 303 - 305]), and a commutative real Banach algebra. Notice that the propertiesof Y =
Y(Al, ...,An), where 4, ..., A,, are as mentioned above can be proved in a similar way to those of a Y (4), where
A is a self — adjoint operator. Actually, one repeats the proofs from [21], but for several commuting self — adjoint
operators. Denote by ¢;j€N" the basic polynomials ¢;(t, ..., t,) =t]' - t]"j = Gy, .,jp) EN ¢ =
(ty, ., ty) € Z,, X:=C(Z,), (where X, is the joint spectrum associated to A4 = (4,,4,,..,4,)) and by
E,:Bor(Z,) — A(H) the corresponding joint spectral measure.

Theorem 2.15. The following statements are equivalent

(@) there exists a linear bounded positive operator F € B, (X,Y) such that

F(p;) = B;,j eN*, Fp) < flgol dE,, Vo € X, |IFIl < 1;

Za
(b) By < A= Al AR V) = Gy, ) €N

Remark. If in Theorem 2.15 one additionally assumes that ll4, 1l < 1,k = 1,2, ...,n, then for any self - adjoint
operators satisfying (b) one has

n

Z B; < 1_[(1 — A7

jENI k=1

Going back to the multidimensional Markov moment problem, here is a last application of Theorem 2.3. The
space Y is defined by (4). The space X consists in all absolutely convergent power series in the closed unit closed

polydisc
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D, = {z = (zq, .. ,2,); |Zp| <1,pef] ...,n}},

with real coefficients. The positive cone of X consists in all such power series having all nonnegative coefficients.
The norm on X is defined by

lall, = sup{lh(2)|;z € D,},h € X.
As we have mentioned above, one denotes by h; the basic polynomials
h,(z) = Zfl ---Z:",k = (ky,..,k,) EN",z € D,.

Let 4,,..., 4, be positive operators in Y, such that ||Ap|| <1,vp€efl,..,n},a> 0areal number and {B,};c\n a
multi- indexed sequence in'Y.

Theorem 2.16. Assume that 0 < B, < a A'l‘1 Afl" forall k = (ky, ..., k,) € N™. Then there exists a unique linear
bounded positive operator F € B, (X,Y) such that

n n
Fy) =Bk e N Fl) < allgll, | [1-2,) g exliFl<a] [(1-lla,l)”
p=1 p=1

3 Proofs and related methods

Proof of Theorem 2.9. The following implications hold true

lolk .
Z ﬂj(pjﬁ(p: Z aj(DjDﬂjSajSlale joo’ jelg=>
j<Jo iz, b
D> aiBi< Y AjBI4e D<ol D bTIBl4e| D b7 |1 |=
j€do j€do,+ ieZy ieZy

=||¢||{(| —b—ls)—1+g-%|}=ﬁ(¢), peX.

Here ], € Z, is a finite subset and a(B) is the spectrum of B.In the preceding relations the Cauchy inequalities
for the function @ have been used. Application of Theorem 2.3 leads to the existence of a linear positive
operator F from X to Y, satisfying the moment condition, such that F <T on X. Now the conclusion follows
easily, by using the monotony of the norm on Y:

2
IF <l —b By L [+e. 0 <q B NBIE po o B b b
b_1 b p2 b-1 b-[|B||  b-1

This concludes the proof. o

Proof of Theorem 2.10. We have:
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Y At 0@ -e6) epp e X, X =L'(0b)=
j=0

t2 tn+1
lot+/11?+K + A5

b
— <[ p2(0)dr = Fo(2) - Faloy)

b t2 tn+1
(F, =0), Vte[o,b]:»jo ppdt ot~ 1y = —K ~ 4y

>0 Vvtel0,b]l=
n+1

b 2y, (n+1)y, ”
_[0 (Pz(f)df—ﬂOYO—/llT—K —1nﬁ203§ 2iYj < Falp2) — Fi(en).

Application of Theorem 2.4, (b) = (a), leads to the existence of a linear functional Fon X = Ll([O, b]) such

that

. b
FOg)=Y), JeZ, 0=R@<F@<F(@=[ od vpeX, .

Using the representation of a linear positive functional on L}, there exists

hel”(0,b]), 0<h, F((p)zj;’go.hdt, Vo e LX([0,b]) .

From the last equality written for @ =7 g, B —[0,b] being a Borel subset, we infer (via measure theory) that

b .
h<lae., Iotjh(t)dt:F(xj)zyj, Viez, .

This concludes the proof.

Proof of Theorem 2.11. (b) = (a). One applies theorem 2.5 to Xj=@j, jeN. If

Zﬂw;—st angn (= aneRy, neN, 4;<a;, jelg),
jedo neN

then the hypothesis and the above relations yield:

AjBj<AjUl<a; Ul jeN=

D ABi< Y aj Ul < @ U= e, |U" =

jedo jedo neN neN
v W) =Tw), T@=, lan|U"=T(-p), v=) awp,eX
neN neN

Notice that the definition of the order relation on the space X implies

D anenl=lw =D lan|on.

neN neN
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Hence, the assertions from (b), Theorem 2.5 are accomplished and the conclusion follows from a direct
application of the latter theorem. On the other hand, (a) = (b) is almost obvious, since B, <F(g,) for all

ne N leadto
Bn < F(pn) <IF(on) I<T(pn)=U", neN.

This concludes the proof. m

Proof of Theorem 2.12. In order to prove that (b) = (a), we apply the implication (b) = (a) of Theorem 2.5.
Verifying the conditions (b) of the latter theorem, and using Cauchy's inequalities, one deduces:

Z Aj9j S(//:Z n®n, Aj 20, UjSAJ+g‘I:>;/n20, vheN,
jedo neN

- Aj
ljﬁﬂg_”l//j”l jedo= D AU slvil X e 2L v 1S
jedo iedo igdo

n -1
[Z A—n]-||w||+sw(1)-l=[l—5j Iy 11+ w1 =
neN b b
bbl - A) Iy [[+ ey @1 =bbl = A) |y [[+ep (1) =T(y), weX.

Now the first conclusion follows via Theorem 1.5. On the other hand, the implication (c¢) = (b) is almost obvious,
since

Ul <F(pj) <Al +epj()=Al+el, jeN,

It remains to prove the converse implication, that is (b) = (c). To this end, we apply (b) = (a) of Theorem 2.5
once more. The following implications hold true

Z Ai@j T“//:Z YnPn, Aj€R., jelg=
i€do neN

/IJUJSﬂJAJﬁ-Sﬂ,“S}/JAJ-i—S}/Jl, j€J0:>

PRI UEDY ynAn+g[Z %]-l <

jedo neN neN
DIl AT+ ly () =ly [(A+elw (1) =T )
neN

Application of Theorem 2.5 yields the existence of a linear operator F with the properties mentioned at point (c).
This concludes the proof. m

Proof of Theorem 2.13. (a)=(b) is obvious, because of y; <F(¢;) <aG(|;|) = aG(e;),vj €. For the
converse, we apply Theorem 2.5, (b)=(a). Let J, c J be a finite subset, {/1]-}],6] c R,,x € X, such that Z,-E,O Aig; <
0

x. Then using (b) and the fact that the scalars 4; are nonnegative, as well as the positivity of G, we derive
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Z Ay s a Z 46(p;) = aG Z 2;9; | a6 < aG(xD) =TC).

J€Jo J€Jo J€Jo
Application of Theorem 2.5 leads to the existence of a linear positive operator F from X into Y such that
F(o;) 2 y;,Vj € ,F() < aG(x]),vx € X.

From the last relation, also using the fact that the norms on X and Y are solid (lul < lvl = [lull < llvll), we
deduce

IFOI | <aGUxD = IFG I < allGlllx!ll = allcllxll, vx € X.

It follows that [IFIl < allGIl. This concludes the proof. o

Proof of Corollary 2.2. One applies Theorem 2.13 for GO = fM gydu,p X, Y =R, as well as the
representation of linear positive continuous functionals on L? spaces by means of nonnegative elements from
L9 spaces. In order to prove (b)=(a), from the preceding results it follows that there exists h € (Lﬂ(M))Jrsuch

that fM ho;du = y;,vj € ] and

fhll)dﬂ < a'f gydu

M M

for all nonnegative functions i € LZ (M). Now we choose 1 = yz, where B is an arbitrary measurable subset of
M. Then the last relation can be rewritten as

f(h—ag)duSO

for all such subsets B. A straightforward application of Theorem 1.40 [22], leads to h — ag < 0 a.e. in M. Since
(@)=(b) is obvious, this concludes the proof. O

Proof of Corollary 2.3. One applies Corollary2.2to p = 1,q = ,g =1 a.e. The notation t/ is the multi-index
notation t/ = tJ*--- t)". The conclusion follows via Fubini ‘s theorem and Gamma function properties. o

Proof of Theorem 2.14. L[et ]/, c J be a finite subset, {/1].}],6] c R, .Ho6lder inequality and using also (b), lead
0

to the following implications

le% s¥= f Z Aip; |dp < fwdu < ||¢||,[,(u(1v1))”‘Z =
M

Jj€Jo M \J€b

j€Jo M \J€h

Application of Theorem 2.1 and measure theory arguments, as discussed in [22, theorem 6.16, p. 122-124], yield
the existence of h € L7 (M) such that
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1/q

F(op;) = fh(pjdu>yj,vj €LFQ) = f hpdp < allyll, (u()

Moreover, since F(y) = 0,vy € X,, we have

f hpdu > 0,V € X,.

Taking ¥ = xz, Where B c M is a measurable set such that u(B) > 0, one obtains

fhduZO

for all such subsets B. Application of theorem 1.40 [22] leads to h = 0 u — a.e. From the previous relations we

/
also derive that llAll, < a(u(M))1 ? This concludes the proof. o

Proof of Theorem 2.15. The implication (a)=(b) is obvious:

Za Za

j € N™ (we have used the positivity of the operators 4, which leads to |<p]-| = ¢; on X,). For the converse, one
applies Theorem 2.1, (b)=(a), where N" stands for J, ¢; stands for x;and B; stands fory;, vj € N". Let ], and
{Aj}jE] be as mentioned at point (b) of Theorem 2.5. The following implications hold:

0

Z/l(p]<(pEX=>Z fq;JdEA_ZAA“ Alm < f<pdEAst<p|dEA:=T(<p).

j€lo J€l 34 j€lo Za

The positivity of the spectral measure dE, has been used. On the other hand, the hypothesis (b), the fact that
the scalars 4; are nonnegative and the preceding evaluation yield

j€Jo Jj€h j€Jo

where T (@) was defined above. Thus, the implication at (b) Theorem 2.5 is accomplished. Application of the
latter theorem leads to the existence of a “feasible solution” F having the property mentioned at point (a) of the
present theorem. The last property is a consequence of the preceding one, using the fact that the norm on Y is
solid. This concludes the proof.

Proof of Theorem 2.16. We apply Theorem 2.3 (b)=(a), to x; = h;,y; = B;,j € ] := N". To this end, we verify
the implication mentioned at point (b) of the latter theorem. Cauchy’s inequalities lead to

llell,,
2/1, hyj<¢= Z ﬁkhk:)’ljsﬁjgwilgm

Jj€Jo keN?

for all positive ¢ < min {1 - ”Ap”;p ef1,.. n}}and all j € Jo. Making ¢ L 0, we get A; < llgll,, ¥j € J,. Now
application of the relations verified by the operators B;, j € J, yields
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2;B; < llpll,B; < allpll,Alt Al j € ]y =

Y uB<allpll, Y Al al <allgll, | Y )| YAl | =

j€lo j€Jo ki EN knEN
n
-1
allgl, | [ -4,)7 =16,
p=1

Thus, the implication (b) from Theorem 2.3 is verified. Application of the latter theorem, leads to the existence
of a linear positive operator F: X — Y, such that the interpolation conditions

F(hy) = By, k € N"

. -1 . . . .
are verified and F(p) <T(p) =allll, [T2_,(1—4,) forall ¢ in X. In particular, the last relations yield
2.4
m=0

The uniqueness of the solution follows from its continuity, also using the density of polynomials in the space
X. This concludes the proof. o

n

IFll < a]_[

p=1

n

<[] (2a") =] a1

p=1 p

4 Conclusions

We have recalled earlier and mainly actual results on the subject, as well as their relationship. Necessary and
sufficient (or only sufficient) conditions for the existence of a solution are formulated and proved. This is the
purpose of this review article. In the case of Markov moment problems, sometimes the uniqueness of the
solution follows from the proof of its existence. The recently published results are presented accompanied by
their proofs. The technical methods of proving such theorems are: the extension results for linear operators,
Cauchy inequalities for complex analytic functions, operator inequalities, measure theory arguments, earlier
related results. A relationship between these fields is implicitly illustrated.
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