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Abstract 

A constrained optimization problem is solved, as an application of minimum principle for a sum of strictly 

concave continuous functions, subject to a linear constraint, firstly for finite sums of elementary such functions. 

The motivation of solving such problems is minimizing and evaluating the (unknown) mean of a random variable, 

in terms of the (known) mean of another related random variable. The corresponding result for infinite sums of 

such type of functions follows as a consequence, passing to the limit. Note that in our statements and proofs 

the condition ∑ 𝑝𝑗𝑗 = 1 on the positive numbers 𝑝𝑗 is not essential for the interesting part of the results. So, our 

work refers not only to means of random variables, but to more general weighted means. A related example is 

given. A corresponding result for special concave mappings taking values into an order-complete Banach lattice 

of self-adjoint operators is also proved. Namely, one finds a lower bound for a sum of special concave mappings 

with ranges in the above mention order-complete Banach lattice, under a suitable linear constraint. 
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1 Introduction 

Constrained optimization problems are basic in solving real-life problems, as discussed in [1]. Further results on 

this subject have been revealed recently in [2], [3]. The background of the present work is contained in some 

chapters of [4]-[8]. In a way, we continue our study started in [9]. For constraint optimization problems related 

to Markov moment problem see [10], [11]. Other aspects of optimization theory have been recently recalled in 

[12]. All these results concern mainly one dimensional valued objective functions. For optimization of vector 

valued mappings see [13], [14], where applications to real-life problems are pointed out. Finally, in [15], the 

geometric meaning of the maximum principle is used in order to generalize the notion of a convex function. 

Using Carathéodory’s theorem [5], it is known that the minimum of any continuous concave function on a 

compact convex finite dimensional subset is attained at an extreme point of that set. A similar result remains 

true for unbounded closed convex finite dimensional subsets 𝐴 having extreme points, and for concave 

continuous functions on 𝐴 which attain their minimum on 𝐴 at a point of 𝐴, as discussed in [6]. Applying such 

type results and other preliminaries, we solve a constrained optimization problem involving finite sums of special 

strictly concave elementary functions, subject to a linear constraint. The case of infinite sums is deduced as well. 

In the end of Section 2, a self-adjoint operator-valued case for special concave mappings and its particular case 

of symmetric matrix-valued mappings is discussed. The latter discrete case is closely related to computational 

problems. For the background related to the operator-valued case see [7], [8]. The rest of the paper is organized 

as follows. In Section 2 minimizing and evaluating finite and infinite sums of special elementary strictly concave 

mappings, under a liner constraint is discussed. In the end of this section, an operator-valued case is pointed 

out. In particular, one can deduce the corresponding result for concave mappings taking values in an order-
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complete Banach lattice of symmetric matrices with real entries. To apply such a result, specific computations 

involving positive definite symmetric matrices with real entries are useful. Section 3 presents detailed proofs for 

the above results and reveals the corresponding methods. Section 4 concludes the paper. 

2 Constrained minimization problems: results  

Lemma 2.1.  

The function 𝜑(𝑡) ≔ 𝑡(1 − 𝑒−1 𝑡⁄ ), 𝑡 > 0,  is strictly increasing and strictly concave on (0, ∞). 

Let 𝑋 be an arbitrary discrete random variable which takes a finite number of values 𝑥𝑗 ∈ ℝ+ with the 

corresponding probabilities 𝑝𝑗 > 0, 𝑗 = 1,2, … , 𝑛, (∑ 𝑝𝑗
𝑛
𝑗=1 = 1). Denote by 𝑚𝑛 the mean of the r. v. 𝑋: 𝑚𝑛 ≔

∑ 𝑝𝑗𝑥𝑗
𝑛
𝑗=1 . Consider now another random variable 𝑌, which takes the values 1 − 𝑒−𝑥𝑗 with the probabilities 𝑝𝑗 , 𝑗 =

1,2, … , 𝑛, where 𝑝𝑗 , 𝑗 = 1, … , 𝑛 are the probabilities involved in the random variable 𝑋. Note that we have assumed 

that all probabilities 𝑝𝑗 , 𝑗 = 1, … , 𝑛 are positive numbers. The next problem is to minimize the mean 

𝑀𝑛 ≔ ∑ 𝑝𝑗
𝑛
𝑗=1 (1 − 𝑒−𝑥𝑗) subject to ∑ 𝑝𝑗𝑥𝑗

𝑛
𝑗=1 ≔ 𝑚𝑛 = 𝑐𝑜𝑛𝑠𝑡. 

Theorem 2.1.  

Using the above notations and hypothesis, we have  

𝑚𝑛 ≥ 𝑀𝑛 = ∑ 𝑝𝑗(1 − 𝑒−𝑥𝑗)

𝑛

𝑗=1

≥ ( 𝑚𝑖𝑛
1≤𝑘≤𝑛

𝑝𝑘) (1 − 𝑒
− 

𝑚𝑛
𝑚𝑖𝑛

1≤𝑘≤𝑛
𝑝𝑘)                                (2.1) 

Equality occurs in the last inequality (2.1) if and only if 𝑥𝑗 = 0 for 𝑗 ≠ 𝑗𝑚 where 𝑝𝑗𝑚
= 𝑚𝑖𝑛

1≤𝑘≤𝑛
𝑝𝑘 , 𝑥𝑗𝑚

=

 
𝑚𝑛

𝑝𝑗𝑚

  , ∑ 𝑝𝑗𝑥𝑗
𝑛
𝑗=1 =  𝑚𝑛 = 𝑐𝑜𝑛𝑠𝑡. 

Observe that the index 𝑗𝑚 appearing above might be not unique (the minimum could be attained at several 

points). A similar result holds true when we replace the equality constraint ∑ 𝑝𝑗𝑥𝑗
𝑛
𝑗=1 = 𝑚𝑛 = 𝑐𝑜𝑛𝑠𝑡. by the 

inequality constraint ∑ 𝑝𝑗𝑥𝑗
𝑛
𝑗=1 ≥ 𝑚𝑛 = 𝑐𝑜𝑛𝑠𝑡. Observe also that the last inequality (2.1) holds true without using 

hypothesis ∑ 𝑝𝑗
𝑛
𝑗=1 = 1 (see the proof in Section 3). 

Theorem 2.2.  

With the above notations, the same last inequality (2.1) holds, subject to 𝑥𝑗 ≥ 0, 𝑝𝑗 > 0, 𝑗 = 1, … , 𝑛, ∑ 𝑝𝑗𝑥𝑗
𝑛
𝑗=1 ≥ 𝑚𝑛 

, and equality occurs in the same case as that of Theorem 2.1. 

The next result is similar to that of Theorem 2.1, where the numbers 𝑝𝑛 , 𝑛 ≥ 1, have not the significance of 

probabilities, because of: ∑ 𝑝𝑛
∞
𝑛=1 = ∞. 

Theorem 2.3.  

Assume that ∞ > 𝑠𝑢𝑝
𝑛≥1

𝑝𝑛 ≥ 𝑖𝑛𝑓

𝑛≥1

 𝑝𝑛 > 0, ∑ 𝑥𝑛𝑛≥1 < ∞, 𝑥𝑛 ≥ 0  ∀𝑛 ≥ 1, 𝑛 ∈ ℕ. The following inequalities hold true 

∞ > 𝑚 ≥ ∑ 𝑝𝑛

∞

𝑛=1

(1 − 𝑒−𝑥𝑛) ≥ (𝑖𝑛𝑓
𝑛≥1

𝑝𝑛) (1 − 𝑒
− 

𝑚
𝑖𝑛𝑓
𝑛≥1

𝑝𝑛
),                                 (2.2) 

where  
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𝑚 ≔ ∑ 𝑝𝑛𝑥𝑛

∞

𝑛=1

= 𝑐𝑜𝑛𝑠𝑡. 

Example 2.1.  

Denote  

𝑝𝑛 = 𝜀 +
1

𝑛
 , 𝑥𝑛 =

1

2
𝑛  , 𝑛 ∈ ℕ, 𝑛 ≥ 1, 

for some 𝜀 > 0. Then the last relation (2.2) can be written as 

∑ (𝜀 +
1

𝑛
)

∞

𝑛=1

(1 − 𝑒− 1 2
𝑛⁄ ) ≥ 𝜀 (1 − 𝑒𝑥𝑝 (−

𝑚

𝜀
))                                   (2. 2′) 

Here  

𝑚 ≔ ∑ (𝜀 +
1

𝑛
)

1

2
𝑛 = 𝜀 (∑

1

2
𝑛

∞

𝑛=1

) + (∑
𝑦𝑛

𝑛

∞

𝑛=1

) |𝑦=1 2⁄

∞

𝑛=1

= 

𝜀 + ∫ (∑ 𝑡𝑛−1

∞

𝑛=1

)

1 2⁄

0

𝑑𝑡 = 𝜀 − 𝑙𝑛(1 − 𝑡)|𝑡=1 2⁄ = 𝜀 + 𝑙𝑛(2) 

Thus the right hand side member of (2.2’) is 

𝜀 (1 − 𝑒𝑥𝑝 (−
𝜀 + 𝑙𝑛(2)

𝜀
)) = 𝜀 (1 −

1

𝑒
∙

1

2
1 𝜀⁄

) 

The conclusion is that (2.2’) one writes as  

∑ (𝜀 +
1

𝑛
)

∞

𝑛=1

(1 − 𝑒− 1 2
𝑛⁄ ) ≥ 𝜀 (1 −

1

𝑒
∙

1

2
1 𝜀⁄

) 

Remark 2.1. 

From programming viewpoint related to Theorem 2.1, finding the minimum and minimum point(s) for 

∑ 𝑝𝑗
𝑛
𝑗=1 (1 − 𝑒−𝑥𝑗) subject to ∑ 𝑝𝑗𝑥𝑗

𝑛
𝑗=1 ≔ 𝑚𝑛 = 𝑐𝑜𝑛𝑠𝑡. it is sufficient to determine 𝑚𝑖𝑛

1≤𝑘≤𝑛
𝑝𝑘 (see also the proof 

Theorem 2.1 in section 3). In  case of Theorem 2.3, to determine minimum of the function  

∑ 𝑝𝑛

∞

𝑛=1

(1 − 𝑒−𝑥𝑛) 𝑠. 𝑡. ∑ 𝑝𝑛𝑥𝑛

∞

𝑛=1

= 𝑐𝑜𝑛𝑠𝑡. 

we should find (or estimate) 𝑖𝑛𝑓
𝑛≥1

𝑝𝑛 = 𝑖𝑛𝑓𝑞𝑛, where 𝑞𝑛 ≔ 𝑚𝑖𝑛
1≤𝑘≤𝑛

𝑝𝑘 , 𝑛 ∈ ℕ, 𝑛 ≥ 1. Contrary to the case of the 

sequence (𝑝𝑛)𝑛≥1, the sequence (𝑞𝑛)𝑛≥1 is nonincreasing 

Let 𝐻 be an arbitrary complex or real Hilbert space and 𝒜 the real vector space of all self-adjoint operators 

acting on 𝐻. Recall that the natural order relation on the space 𝒜 is defined by 

𝑈 ≤ 𝑉 ⇔< 𝑈(ℎ), ℎ >≤< 𝑉(ℎ), ℎ >   ∀ℎ ∈ 𝐻, 𝑈, 𝑉 ∈ 𝒜 
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Observe that the operation of multiplication of elements of 𝒜 is not commutative. Also, for arbitrary 𝑈, 𝑉 ∈ 𝒜, 

the elements 𝑖𝑛𝑓{𝑈, 𝑉}, 𝑠𝑢𝑝{𝑈, 𝑉} do not exist (𝒜 is not a vector lattice). Also, the space 𝒜 is not an order-

complete (Dedekind complete) vector lattice. Therefore, one uses the following construction [8]. 

Theorem 2.4.  

Let 𝐻, 𝒜 be as above, 𝑈 ∈ 𝒜, 𝑌1 = 𝑌1(𝑈) ≔ {𝑊 ∈ 𝒜; 𝑊𝑈 = 𝑈𝑊}, 𝑌 = 𝑌(𝑈) ≔ {𝑉 ∈ 𝑌1; 𝑉𝑊 = 𝑊𝑉   ∀𝑊 ∈ 𝑌1}.  

Then 𝑌 is a commutative (real) Banach algebra and an order-complete Banach lattice. 

The next result is devoted to an assertion similar to that of Theorem 2.3, but for concave mappings taking values 

into a commutative real algebra and an order-complete Banach lattice of self-adjoint operators pointed out in 

Theorem 2.4.   

Theorem 2.5.  

Let 𝑈 be a self-adjoint operator acting on a complex or real Hilbert space 𝐻, with the spectrum 𝜎(𝑈) ⊂ (0, ∞).  In 

the space 𝑌 = 𝑌(𝑈) defined in Theorem 2.4, consider a sequence (𝑇𝑛)𝑛≥1, such that the spectrums 𝜎(𝑇𝑛) ⊂ [𝑎, 𝑏] ⊂

(0, ∞) for all 𝑛 ∈ ℕ, 𝑛 ≥ 1. Let (𝑥𝑛)𝑛≥1 be an arbitrary sequence of nonnegative real numbers such that ∑ 𝑥𝑛
∞
𝑛=1 =

1. Then the following inequality holds 

𝑏𝑈 ≥ ∑ 𝑇𝑛

∞

𝑛=1

(𝐼 − 𝑒𝑥𝑝(−𝑥𝑛𝑈)) ≥ ( inf
𝑛≥1

𝑇𝑛) (𝐼 − 𝑒𝑥𝑝(−𝑈)) 

Corollary 2.1.  

Under the hypothesis and using the notations of Theorem 2.5, the following inequality holds  

∑ 𝑇𝑛

∞

𝑛=1

(𝐼 − 𝑒𝑥𝑝(−𝑥𝑛𝑈)) ≥ 𝑎(1 − 𝑒−𝜔)𝐼, 

where  𝜔 ≔ 𝑖𝑛𝑓(𝜎(𝑈)) = inf
‖ℎ‖=1

< 𝑈(ℎ), ℎ >  > 0,  and  𝐼: 𝐻 → 𝐻 is the identity operator. 

Remark 2.2.  

In the very particular case when 𝐻 = ℝ𝑝/ℝ, 𝑝 ∈ ℕ, 𝑝 ≥ 2, a positive invertible self-adjoint operator 𝑈 acting on 

𝐻 can be represented by a positive definite symmetric matrix with real entries (which will be denoted by 𝑀𝑈). In 

this case, if 𝜆1, … , 𝜆𝑝 are the (not necessarily distinct) proper values of the matrix 𝑀𝑈, we have  

𝜎(𝑈) = {𝜆1, … , 𝜆𝑝}, 𝜔 ≔ 𝑖𝑛𝑓(𝜎(𝑈)) = min
1≤𝑗≤𝑝

𝜆𝑗 > 0, ‖𝑈‖ = 𝑠𝑢𝑝(𝜎(𝑈)) = max
1≤𝑗≤𝑝

𝜆𝑗 

In this case, verifying the hypothesis and writing the conclusion of Theorem 2.5 and of its Corollary 2.1 involve 

computational operations. This is the simplest (discrete) finite dimensional case of Theorem 2.5 (and Corollary 

2.1). Hence the latter result may be formulated in terms of (positive definite) commuting symmetric matrixes 

and their spectrums. 

3 Proofs and related methods 

Proof of Lemma 2.1. Let 𝜑: (0, ∞) → (0, ∞), 𝜑(𝑡) ≔ 𝑡(1 − 𝑒−1 𝑡⁄ ), 𝑡 > 0. Then the following computational results 

hold true 

𝜑′(𝑡) = 1 − 𝑒−1 𝑡⁄ + 𝑡 (−𝑒−1 𝑡⁄
1

𝑡2
) = 1 − 𝑒−1 𝑡⁄ −

1

𝑡
𝑒−1 𝑡⁄ , 
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𝜑′′(𝑡) = −𝑒−1 𝑡⁄
1

𝑡2
+

1

𝑡2
𝑒−1 𝑡⁄ −

1

𝑡
𝑒−1 𝑡⁄

1

𝑡2
= −

1

𝑡3
𝑒−1 𝑡⁄ < 0  ∀𝑡 > 0 

Thus 𝜑 is strictly concave on (0, ∞), or, equivalently, the first derivative 𝜑′ is strictly decreasing on the same 

interval. Therefore, it results 

𝜑′(𝑡) > 𝜑′(∞) ≔ lim
𝑥→∞

𝜑′(𝑥) = lim
𝑥→∞

(1 − 𝑒−1 𝑥⁄ −
1

𝑥
𝑒−1 𝑥⁄ ) = 1 − 1 − 0 = 0  ∀𝑡 ∈ (0, ∞) 

Hence 𝜑 is also strictly increasing on (0, ∞). This concludes the proof.                       □ 

Proof of Theorem 2.1. The first inequality (2.1) is almost obvious. Indeed, using the elementary relation 𝑒𝑢 ≥

1 + 𝑢  ∀𝑢 ∈ ℝ we get 𝑒−𝑥𝑗 ≥ 1 − 𝑥𝑗 ⇔ 1 − 𝑒−𝑥𝑗 ≤ 𝑥𝑗 , 𝑗 ∈ {1, … , 𝑛} ⇒ 

∑ 𝑝𝑗(1 − 𝑒−𝑥𝑗)

𝑛

𝑗=1

≤ ∑ 𝑝𝑗𝑥𝑗

𝑛

𝑗=1

= 𝑚𝑛 

To prove the last inequality (2.1), according to notations and hypothesis, we have to minimize 

𝑀𝑛(𝑥) = 𝑀𝑛(𝑥1, … , 𝑥𝑛) ≔ ∑ 𝑝𝑗(1 − 𝑒−𝑥𝑗)

𝑛

𝑗=1

 

subject to  

𝑥𝑗 ≥ 0, ∑ 𝑝𝑗𝑥𝑗
𝑛
𝑗=1 = 𝑚𝑛 = 𝑐𝑜𝑛𝑠𝑡., 

where 𝑝𝑗 > 0, 𝑗 = 1,2, … , 𝑛, ∑ 𝑝𝑗
𝑛
𝑗=1 = 1. Obviously, the function 𝑀𝑛  is strictly concave on the simplex defined by 

the constraints on 𝑥𝑗 , 𝑝𝑗 , 𝑗 = 1, … 𝑛, as a sum of strictly concave functions. Denote by 𝐾𝑛−1 the 𝑛 − 1 dimensional 

simplex 

𝐾𝑛−1 ≔ {𝑥 = (𝑥1, … , 𝑥𝑛) ∈ ℝ𝑛;  𝑥𝑗 ≥ 0,   ∑ 𝑝𝑗𝑥𝑗

𝑛

𝑗=1

= 𝑚𝑛 = 𝑐𝑜𝑛𝑠𝑡. } 

It is easy to show that the set 𝐸𝑥(𝐾𝑛−1) of all extreme points of 𝐾𝑛−1 is given by 

𝐸𝑥(𝐾𝑛−1) = {𝑒1, … , 𝑒𝑛}, 

𝑒1 = (
𝑚𝑛

𝑝1

, 0, … ,0) , … , 𝑒𝑛 = (0, … ,0,
𝑚𝑛

𝑝𝑛

) 

Thanks to minimum principle for concave functions, for any 𝑥 ∈ 𝐾𝑛−1, we have 

𝑀𝑛(𝑥) ≥ 𝑚𝑖𝑛{𝑀𝑛(𝑒1), … , 𝑀𝑛(𝑒𝑛)} = 

min
1≤𝑗≤𝑛

𝑝𝑗 (1 − 𝑒− 𝑚𝑛 𝑝𝑗⁄ ) = 𝑚𝑛 min
1≤𝑗≤𝑛

𝑝𝑗

𝑚𝑛

(1 − 𝑒− 𝑚𝑛 𝑝𝑗⁄ ) = 𝑚𝑛 min
1≤𝑗≤𝑛

𝜑 (
𝑝𝑗

𝑚𝑛

), 

because of 𝑀𝑛(𝑒𝑗) = 𝑝𝑗(1 − 𝑒− 𝑚𝑛 𝑝𝑗⁄ ) = 𝑚𝑛𝜑 (
𝑝𝑗

𝑚𝑛
) , 𝑗 = 1, … , 𝑛. Here 𝜑 is the function from Lemma 2.1. On the 

other hand, by increasing monotony of 𝜑, we obviously have 

𝑝𝑗

𝑚𝑛

≥
min

1≤𝑘≤𝑛
𝑝𝑘

𝑚𝑛

 , 𝑗 = 1, … , 𝑛 ⇒ min
1≤𝑗≤𝑛

𝜑 (
𝑝𝑗

𝑚𝑛

) = 𝜑 (
min

1≤𝑘≤𝑛
𝑝𝑘

𝑚𝑛

) 
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From the last relations, it results 

𝑀𝑛(𝑥) ≥ 𝑚𝑛𝜑 (
min

1≤𝑘≤𝑛
𝑝𝑘

𝑚𝑛

) = ( min
1≤𝑘≤𝑛

𝑝𝑘) (1 − 𝑒
− 

𝑚𝑛
𝑚𝑖𝑛

1≤𝑘≤𝑛
𝑝𝑘), 

as claimed. Moreover, we have  

𝑀𝑛(𝑒𝑗𝑚
) = 𝑚𝑛𝜑 (

𝑝𝑗𝑚

𝑚𝑛

) = 𝑚𝑖𝑛{𝑀𝑛(𝑒1), … , 𝑀𝑛(𝑒𝑛)} = inf
𝑥∈𝐾𝑛−1

𝑀𝑛(𝑥)                                    

if and only if 𝑝𝑗𝑚
= 𝑚𝑖𝑛

1≤𝑘≤𝑛
𝑝𝑘 , according to Lemma 2.1. Namely, 𝜑 is increasing, so its minimum value on the finite 

subset {
𝑝1

𝑚𝑛
, … ,

𝑝𝑛

𝑚𝑛
}  is attained at the smallest element of this set, which is 

𝑝𝑗𝑚

𝑚𝑛
. On the other hand, from minimum 

principle for concave continuous functions, it results, as we have seen, that inf
𝑥∈𝐾𝑛−1

𝑀𝑛(𝑥) =

𝑚𝑖𝑛{𝑀𝑛(𝑒1), … , 𝑀𝑛(𝑒𝑛)}. Note also that  𝑀𝑛 is strictly concave, as a finite sum of such functions. Application of 

Carathéodory’s and Jensen’s inequalities, having in mind when equality occurs, lead to the fact that any 

minimum point of 𝑀𝑛 over 𝐾𝑛−1 must be an extreme point of this simplex. This concludes the proof.         □                                                                                                         

Proof of Theorem 2.2.   In this case the constraints 𝑥𝑗 ≥ 0, 𝑗 = 1, … , 𝑛, ∑ 𝑝𝑗𝑥𝑗
𝑛
𝑗=1 ≥ 𝑚𝑛 define a closed convex 

unbounded subset 𝐶 of ℝ𝑛 .   The idea of the proof is to reduce the problem to that in Theorem 2.1, by writing 

𝐶 = ⋃ {𝑥 = (𝑥1, … , 𝑥𝑛) ∈ ℝ+
𝑛 ; ∑ 𝑝𝑗𝑥𝑗

𝑛

𝑗=1

= 𝑚𝑛 + 𝜌 }

𝜌≥0

= ⋃ 𝐾𝑛−1,𝜌

𝜌≥0

, 

where 𝐾𝑛−1,𝜌 ≔ {𝑥 = (𝑥1, … , 𝑥𝑛) ∈ ℝ+
𝑛 ; ∑ 𝑝𝑗𝑥𝑗

𝑛
𝑗=1 = 𝑚𝑛 + 𝜌 } is a convex compact simplex of the type used in the 

proof of Theorem 2.1. Applying the latter theorem, one obtains  

inf
𝑥∈𝐾𝑛−1,𝜌

𝑀𝑛 (𝑥) = ( 𝑚𝑖𝑛
1≤𝑘≤𝑛

𝑝𝑘) (1 − 𝑒
− 

𝑚𝑛+𝜌
𝑚𝑖𝑛

1≤𝑘≤𝑛
𝑝𝑘), 

where  

𝑀𝑛(𝑥) = 𝑀𝑛(𝑥1, … , 𝑥𝑛) ≔ ∑ 𝑝𝑗(1 − 𝑒−𝑥𝑗)

𝑛

𝑗=1

 

It results 

inf
𝑥∈𝐶

𝑀𝑛 (𝑥) = inf
𝜌≥0

inf
𝑥∈𝐾𝑛−1,𝜌

𝑀𝑛 (𝑥) = inf
𝜌≥0

( 𝑚𝑖𝑛
1≤𝑘≤𝑛

𝑝𝑘) (1 − 𝑒
− 

𝑚𝑛+𝜌
𝑚𝑖𝑛

1≤𝑘≤𝑛
𝑝𝑘) = 

( 𝑚𝑖𝑛
1≤𝑘≤𝑛

𝑝𝑘) (1 − 𝑒
− 

𝑚𝑛
𝑚𝑖𝑛

1≤𝑘≤𝑛
𝑝𝑘) 

This concludes the proof.                                                                                                 □ 

Proof of Theorem 2.3. The first inequalities (2.2) are similar to the first inequalities (2.1). Indeed, we have 

∑ 𝑝𝑛

∞

𝑛=1

(1 − 𝑒−𝑥𝑛) ≤ ∑ 𝑝𝑛𝑥𝑛 ≔ 𝑚 ≤ (𝑠𝑢𝑝
𝑛≥1

𝑝𝑛)

∞

𝑛=1

(∑ 𝑥𝑛

𝑛≥1

) < ∞ 
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To prove the last inequality (2.2), consider an increasing sequence (𝑚𝑛)𝑛≥1 converging to 𝑚 and for each 𝑛 let 

𝐾𝑛−1 be the 𝑛 − 1 dimensional simplex defined in the proof of Theorem 2.1. According to the last inequality of 

the latter theorem one has 

inf
𝑥∈𝐾𝑛−1

𝑀𝑛(𝑥) = ( 𝑚𝑖𝑛
1≤𝑘≤𝑛

𝑝𝑘) (1 − 𝑒
− 

𝑚𝑛
𝑚𝑖𝑛

1≤𝑘≤𝑛
𝑝𝑘) 

Now the proof of Theorem 2.3 follows passing to the limit. Namely, it results: 

𝑥𝑛 ≥ 0, 𝑛 ≥ 1, ∑ 𝑝𝑛𝑥𝑛

∞

𝑛=1

= 𝑚 ⇒ 

∑ 𝑝𝑛

∞

𝑛=1

(1 − 𝑒−𝑥𝑛) = lim
𝑛→∞

∑ 𝑝𝑗

𝑛

𝑗=1

(1 − 𝑒− 𝑥𝑗) ≥ 

lim
𝑛→∞

( 𝑚𝑖𝑛
1≤𝑗≤𝑛

𝑝𝑗) (1 − 𝑒
− 

𝑚𝑛
𝑚𝑖𝑛

1≤𝑘≤𝑛
𝑝𝑘) = ( lim

𝑛→∞
( 𝑚𝑖𝑛

1≤𝑗≤𝑛
𝑝𝑗)) (1 − 𝑒

−𝑙𝑖𝑚𝑛
𝑚𝑛

𝑚𝑖𝑛
1≤𝑗≤𝑛

𝑝𝑗
) = 

(𝑖𝑛𝑓
𝑛≥1

𝑝𝑛) (1 − 𝑒
− 

𝑚
𝑖𝑛𝑓
𝑛≥1

𝑝𝑛
) 

This concludes the proof.                                                                                                        □         

Remark 3.1.   From the preceding proof we see that  ∑ 𝑝𝑛
∞
𝑛=1 (1 − 𝑒−𝑥𝑛) is minimized by a product of two 

sequences   (of positive numbers), one of which is decreasing, while the other one is increasing with 𝑛.     It 

follows that such type results are not trivial. 

Proof of Theorem 2.5. Using the elementary inequality 𝑒𝑟 ≥ 1 + 𝑟  for all 𝑟 ∈ ℝ, we infer that for any natural 

number 𝑛 ≥ 1 the following relations hold 

𝑒−𝑥𝑛𝑢 ≥ 1 − 𝑥𝑛𝑢 ⇔ 0 ≤ 1 − 𝑒−𝑥𝑛𝑢 ≤ 𝑥𝑛𝑢, ∀𝑢 ∈ 𝜎(𝑈) ⇒ 𝐼 − 𝑒−𝑥𝑛𝑈 ≤ 𝑥𝑛𝑈 

On the other hand, conditions 𝜎(𝑇𝑛) ⊂ [𝑎, 𝑏] ⊂ (0, ∞) leads to 0 < 𝑇𝑛 ≤ 𝑏𝐼, 𝑛 ∈ ℕ, 𝑛 ≥ 1.  It results 

∑ 𝑇𝑛(𝐼 − 𝑒𝑥𝑝(−𝑥𝑛𝑈)) ≤ (∑ 𝑥𝑛𝑇𝑛

∞

𝑛=1

) 𝑈 ≤ 𝑏𝐼 (∑ 𝑥𝑛

∞

𝑛=1

) 𝑈 = 𝑏𝑈 ∈ 𝑌+

∞

𝑛=1

 

This proves the first inequality in the statement. Let fix a natural number 𝑛 ≥ 1 and for an arbitrary 𝑢 ∈ 𝜎(𝑈) and 

𝑗 ∈ {1, … , 𝑛} define  

𝜑𝑢.𝑗(𝑥) = 𝜑𝑢,𝑗(𝑥1, … , 𝑥𝑛) ≔ 1 − 𝑒−𝑢𝑥𝑗 ,  

𝑥 ∈ 𝐾𝑛−1 ≔ {𝑥 ∈ ℝ𝑛;  𝑥𝑗 ≥ 0, 𝑗 = 1, … , 𝑛, ∑ 𝑥𝑗 = 𝑚𝑛

𝑛

𝑗=1

} 

where 𝑚𝑛 ↑ 1, 𝑛 ↑ ∞. Obviously, 𝜑𝑢.𝑗 is concave as a function of 𝑥 = (𝑥1, … , 𝑥𝑛), 𝑗 ∈ {1, … , 𝑛}, so that for any 𝜆 ∈

[0,1], 𝑢 ∈ 𝜎(𝑈), we have  

𝜑𝑢.𝑗((1 − 𝜆)𝑥 + 𝜆𝑦) = 1 − 𝑒−𝑢((1−𝜆))𝑥𝑗+𝜆𝑦𝑗) ≥ (1 − 𝜆)𝜑𝑢.𝑗(𝑥) + 𝜆𝜑𝑢.𝑗(𝑦) = 

(1 − 𝜆)(1 − 𝑒−𝑢𝑥𝑗) + 𝜆(1 − 𝑒−𝑢𝑦𝑗), 𝑢 ∈ 𝜎(𝑈) ⇒ 



Mathlab Journal Vol 4 (2019) ISSN: 2582-0389                                    http://www.purkh.com/index.php/mathlab 

 84 

𝐼 − 𝑒−((1−𝜆))𝑥𝑗+𝜆𝑦𝑗)𝑈 ≥ (1 − 𝜆)(1 − 𝑒−𝑈𝑥𝑗) + 𝜆(1 − 𝑒−𝑈𝑦𝑗), 𝑗 ∈ {1, … , 𝑛} 

Since 𝑇𝑗 are positive (commuting) operators in 𝑌, it follows that 𝑥 → 𝑇𝑗(𝐼 − 𝑒−𝑥𝑗𝑈) is concave on the 𝑛 − 1- 

dimensional simplex 𝐾𝑛−1 ⊂ ℝ𝑛. Here we take as 𝑝𝑗 from theorems 2.1, 2.3,  𝑝𝑗 = 1, 𝑗 ≥ 1 ⇒  ∑ 𝑝𝑗
𝑛
𝑗=1 = 𝑛 ≠ 1. One 

can see that condition ∑ 𝑝𝑗
𝑛
𝑗=1 = 1 is not used in the last inequality (2.1) (see the proof of Theorem 2.1). On the 

other side, the finite sum of concave operators is concave. According to the minimum principle for concave 

mappings (based on Carathéodory’s theorem) and Jensen’s inequality (discrete form), it results  

∑ 𝑇𝑗

𝑛

𝑗=1

(𝐼 − 𝑒−𝑥𝑗𝑈) ≥ inf
1≤𝑘≤𝑛

(∑ 𝑇𝑗

𝑛

𝑗=1

(𝐼 − 𝑒−𝑥𝑗𝑈)) (𝑒𝑘) = inf
1≤𝑘≤𝑛

𝑇𝑘(𝐼 − 𝑒−𝑚𝑛𝑈) = 

(𝐼 − 𝑒−𝑚𝑛𝑈) ( inf
1≤𝑘≤𝑛

𝑇𝑘) 

where  𝐸𝑥(𝐾𝑛−1) = {𝑒1, … , 𝑒𝑛} = {(𝑚𝑛, 0 … ,0), … . , (0, … . ,0, 𝑚𝑛} is the set of all extreme points of 𝐾𝑛−1 . On the 

other side, 

‖(𝐼 − 𝑒−𝑚𝑛𝑈) − (𝐼 − 𝑒−𝑈)‖ = 𝑠𝑢𝑝
𝑢∈𝜎(𝑈)

|𝑒−𝑢 − 𝑒−𝑚𝑛𝑢| ≤ 

𝑠𝑢𝑝
𝑢∈𝜎(𝑈)

|𝑒−𝜏𝑢(1 − 𝑚𝑛)𝑢| ≤ (1 − 𝑚𝑛)‖𝑈‖ → 0, 𝑛 → ∞, 

where 𝜏 is between 𝑚𝑛 and 1. Thus  

𝑚𝑛 ↑ 1 ⇒ lim
𝑛

(𝐼 − 𝑒−𝑚𝑛𝑈) = 𝐼 − 𝑒−𝑈                                                 

(here the convergence holds with respect to operatorial norm on 𝑌 and is uniform with respect to 𝑢 ∈ 𝜎(𝑈)). To 

conclude the proof, we pass to the limit, using the last equality from above and elementary theorems on self-

adjoint operators [7], [8] (such as pointwise convergence of the sequence ( inf
1≤𝑘≤𝑛

𝑇𝑘)
𝑛≥1

 (see [7 ] and Theorem 

2.4 from above)). It results 

∑ 𝑇𝑛

∞

𝑛=1

(𝐼 − 𝑒𝑥𝑝(−𝑥𝑛𝑈)) = lim
𝑛→∞

∑ 𝑇𝑗

𝑛

𝑗=1

(𝐼 − 𝑒−𝑥𝑗𝑈) ≥ 

lim
𝑛→∞

(𝐼 − 𝑒−𝑚𝑛𝑈) ( inf
1≤𝑘≤𝑛

𝑇𝑘) = (𝐼 − 𝑒−𝑈) ( inf
𝑛≥1

𝑇𝑛) 

The convergence is pointwise. This concludes the proof.                                        □       

Proof of Corollary 2.1.    Since 𝜔 ≔ 𝑖𝑛𝑓(𝜎(𝑈)),  for all 𝑢 ∈ 𝜎(𝑈) we have 1 − 𝑒−𝑢 ≥ 1 − 𝑒−𝜔.       Integrating 

with respect to the (positive) spectral measure 𝑑𝐸𝑈 ,  on the spectrum  𝜎(𝑈),  it results 

𝐼 − 𝑒𝑥𝑝(−𝑈) = ∫ (1 − 𝑒−𝑢)𝑑𝐸𝑈 ≥ (1 − 𝑒−𝜔)

𝜎(𝑈)

∫ 𝑑𝐸𝑈 = (1 − 𝑒−𝜔)𝐼

𝜎(𝑈)

 

On the other hand, the hypothesis 𝜎(𝑇𝑛) ⊂ [𝑎, 𝑏] ⊂ (0, ∞) for all 𝑛 ∈ ℕ, 𝑛 ≥ 1 leads to 

𝑇𝑛 ≥ 𝑎𝐼  ∀𝑛 ≥ 1, 𝑛 ∈ ℕ ⇒ inf
𝑛≥1

𝑇𝑛 ≥ 𝑎𝐼   

Thus  (𝐼 − 𝑒−𝑈) ( inf
𝑛≥1

𝑇𝑛) ≥ (1 − 𝑒−𝜔)𝑎𝐼. The conclusion follows thanks to Theorem 2.5.                    □    
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4 Conclusions 

Section 2 is devoted to constrained optimization (or finding lower bounds) of finite and infinite sums of concave 

elementary transcendent functions. An example related to Theorem 2.3 is sketched. In the end, an operator-

valued mapping constrained minimization problem is solved (Theorem 2.5). The first aim of the paper is to 

minimize and evaluate the unknown mean of a random variable, in terms of the given (known) mean of a related 

random variable. Most of the results can be completed by adding the corresponding programming and 

computational methods. Numerical methods and examples related to Corollary 2.1 could illustrate the 

applicability of Theorem 2.5. Such results are closely related to computing the greatest and the smallest 

eigenvalue of a positive definite symmetric matrix with real entries. 
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