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 Abstract 

In this paper, The GARCH (1,1)  model is presented and some results for the existence and uniqueness outlined. 

Other extensions of the GARCH model including EGARCH, PARCH and TARCH models were presented. The daily 

stock price of Dangote Cement (Dangocem) was used to test the performance of the above named models with 

respect to some stylized facts of volatility of financial data: fat tail, volatility clustering, volatility persistence, 

mean reversion and leverage effect. The Akaike Information Criterion (AIC), Schwarz Information Criterion (SIC) 

and the Hannan-Quinn criterion (HQ) were used to rate the performance of the models. The results show that 

the return series are stationary. The summary statistics showed that the return series has a fat tail. From the Q-

Q plot, it was seen that the assumption of normality was spurious. The parameter estimation result showed that 

the volatility of the return series has the mean reversion property. News impact was asymmetric and there is the 

presence of leverage effect. It was also seen that the volatility process was driven more by negative innovation. 

Overall the GARCH(1,1) and the TARCH model outperform the other model. 

INTRODUCTION: 

Globally stock prices are known to be volatile. Investors are interested in getting accurate estimate of the market 

volatility. This is because volatility is related to profitability of the investment. It is also a known fact that volatility 

are not directly observable hence the need for models that captures the market volatility.  Various models have 

been developed to capture volatility. The most prominent being the model developed by Engle (1982) 1 the 

Autoregressive Conditional Heteroskedasticity (ARCH) and generalized by Bollerslev (1986) 2 the Generalized 

Autoregressive Conditional Heteroskedasticity (GARCH) model. There are some stylized facts about volatility of 

financial data readily found in the literatures: Financial data are observed to have excess kurtosis (fat tails) than 

a Gaussian distribution. 

It is also known that period of low volatility tend to follow a period of low volatility while a period of high 

volatility tends to follow a period of high volatility (volatility clustering). Even though volatility fluctuates highly, 

it always return to the mean value in the long run (mean reversion). 

Volatility has a long memory, that is, it dies down slowly (volatility persistence). It also has been established that 

bad news increases volatility while good news decreases volatility (leverage effect). 
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In this paper we seek to model the volatility of a stock listed on the Nigerian Stock Exchange (NSE). The goal is 

to determine how well the stock price return satisfy some of those stylized facts. 

Olowe (2009) 4 used E-GARCH-in-Mean model to investigate the relation between stock returns and volatility 

in Nigeria. Atoi (2014) 6 Used Nigeria All Share Index to estimates first order symmetric and asymmetric volatility 

models. The results suggest the presence of leverage effect meaning that volatility responds more to bad news 

than it does to equal magnitude of good news. Emenike and Aleke (2012) 3 examined the response of volatility 

to negative and positive news in the Nigerian stock market using daily closing prices of the Nigerian Stock 

Exchange (NSE) and found asymmetric effects without leverage effect in the NSE stock returns. Hepsag (2016)  

11 investigated the asymmetric impact of innovations on volatility and the relationship between the stock return 

and volatility dynamics in the case of Central and Eastern European (CEE) markets using the framework of 

asymmetric stochastic volatility models. They found weak evidence of asymmetry, a significant and high volatility 

persistence in the stock markets of the CEE region. Using EGARCH and TGARCH models, Elsayeda (2011) 5 

posited the existence of the leverage effect in the Egyptian stock market index. This they tested with daily EGX30 

index returns. Ahmed and Suliman (2011) 7 used different univariate GARCH models to estimate volatility in the 

daily returns of the Khartoum Stock Exchange (KSE) and found out that the conditional variance process is highly 

persistent (explosive process). Li (2007) 10  fitted the dynamics of daily stock price data of the Nordea Bank with 

data from the Nordic Exchange by a class of GARCH models to stock return series. Hojatallah and 

Ramanarayanan (2010) used the BSE 500 index of Mumbai stock exchange to evaluate the volatility of the Indian 

stock markets and its related stylized facts using ARCH models. The results suggest that the volatility in the 

Indian stock market exhibits the persistence of volatility and mean reverting behaviour. 

GARCH (1,1) process: 

Definition: A random process (𝜀𝑡) is called a GARCH (1,1) process if  

    𝑌𝑡 = 𝑋𝑡
΄𝜃 + 𝜖𝑡         (1) 

                                             𝜎𝑡
2 = 𝜔 + 𝛼𝜖𝑡−1

2 + 𝛽𝜎𝑡−1
2      (2) 

With  𝜔 > 0   𝛼 ≥ 0, 𝛽 ≥ 0. 

Equation (1) is the mean equation with an error term while equation (2) is the conditional variance expressed as 

a function of three terms: 𝜔 (a constant),  𝜖𝑡−1
2  (the ARCH term) representing news about volatility from the 

previous period, measured as the lag of the squared residual from the mean equation and 𝜎𝑡−1
2   (the GARCH 

term) is the last period’s forecast variance. 

Recursively substituting for the lagged variance on the right-hand side of equation (2), the conditional variance 

as a weighted average of all the lagged squared residuals 

                                            𝜎𝑡
2 =

𝜔

(1−𝛽)
+ 𝛼 ∑ 𝛽𝑗−1𝜖𝑡−𝑗

2∞
𝑗=1         (3) 

The error in the squared returns is given by 𝑢𝑡 = 𝜖𝑡
2 − 𝜎𝑡

2. Substituting for the variances in the variance equation 

and rearranging terms we can write our model in terms of the errors 

   𝜖𝑡
2 = 𝜔 + (𝛼 + 𝛽)𝜖𝑡−1

2 + 𝑢𝑡 + 𝛽𝑢𝑡−1  (4) 

Thus, the squared errors follow a heteroskedastic ARMA (1,1) process. The autoregressive root which governs 

the persistence of volatility shocks is the sum of 𝛼 + 𝛽. If the root is very close to unity, the shocks die out slowly. 
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Conditions for the existence of stationary solution for the GARCH (1,1) process 

Definitions: 

i. A process is a non-anticipative solution if it is a measurable function of the variable 𝜀𝑡−𝑠, 𝑆 ≥ 0. This 

implies that 𝜎𝑡 is independent of the 𝜎- field generated by {𝜀𝑡+ℎ, ℎ > 0}. 

 ii.  A stochastic process 𝑦𝑡 is stationary if its first and second moments exists and are time invariant 

that is; 

a. E(𝑦𝑡) = 𝜇 ∀ 𝑡 

b. E[(𝑦𝑡 − 𝜇)(𝑦𝑡−ℎ − 𝜇)′] = Γ𝑦(ℎ) = Γ𝑦(−ℎ) ∀ 𝑡  and h = 0,1,2, …   

Stationarity of the process guarantees that the solution converges and is well defined. 

THEOREM 1  18  

 Given the GARCH (1,1) 

 𝑦𝑡 = 𝜎𝑡𝜀𝑡        (5) 

 𝜎𝑡
2 = 𝜔 + 𝛼1𝑦𝑡−1

2 + 𝛽𝜎𝑡−1  
2       (6) 

With 𝛼 ≥ 0, 𝛼 ≥ 0, 𝛽 ≥ 0 . 

If we define 𝑎(𝓍) = 𝛼𝓍2 + 𝛽 and 

    −∞ ≤ 𝑔 ≔ 𝐸𝑙𝑜𝑔{𝛼𝜀𝑡
2 + 𝛽} < 0.   (6a)) 

Then the infinite sum   

    ℎ𝑡 = {1 + ∑ 𝑎(𝜀𝑡−1) ⋯ 𝑎(𝜀𝑡−𝑖)
∞
𝑖−1 }𝜔  (6b) 

converges almost surely (𝑎. 𝑠 ) and the process (𝜀�̂�) defined by (𝜀�̂�) = √ℎ𝑡𝜀𝑡  is the unique strictly stationary 

solution of (6) 

Proof 

For 𝓍 > 0,  let log +
𝓍

= 𝑚𝑎𝓍(log 𝓍 , 0) . It is clear that the coefficient 𝑔 = 𝐸 log[𝑎(𝜀𝑡)] 𝜖 [−∞, +∞)  because   

𝐸𝐿𝑜𝑔+{𝑎(𝜀𝑡)} ≤ 𝐸𝑎(𝜀𝑡) = 𝛼 + 𝛽 

Iterating  (6) 

 𝜎𝑡
2 = 𝛼0 +  𝑎(𝜀𝑡−1)𝜎𝑡−1

2  

       = 𝜔[1 + ∑ 𝑎(𝜀𝑡−1)𝑁
𝑛−1 𝑎(𝜀𝑡−2) ⋯ 𝑎(𝜀𝑡−𝑛)] + 𝑎(𝜀𝑡−1) ⋯ 𝑎(𝜀𝑡−𝑁−1)  𝜎𝑡−𝑁−1

2  

       = ℎ𝑡(𝑁) + 𝑎(𝜀𝑡−1) ⋯ 𝑎(𝜀𝑡−𝑁−1)𝜎𝑡−𝑁−1
2          (7a)  
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Where 𝑁 − 1 ≥ 0. Since the summands are nonnegative, the limit process  

ℎ𝑡 = lim
𝑁→∞

ℎ𝑡(𝑁) exist in ℝ+ = [0, ∞). Letting N go to infinity in    ℎ𝑡(𝑁) = 𝜔 + 𝑎(𝜀𝑡−1)ℎ𝑡−1(𝑁 − 1), we get   ℎ𝑡 =

𝜔 + 𝑎(𝜀𝑡−1)ℎ𝑡−1 

 We now show that ℎ𝑡   is almost surely finite if and only if 𝑔 < 0.  

 Suppose 𝑔 < 0 we will get the Cauchy rule for series with nonnegative terms we have ; 

   [𝑎(𝜀𝑡−1) ⋯ 𝑎(𝜀𝑡−𝑛)]
1

𝑛⁄ = 𝑒𝑥𝑝 [
1

𝑛
∑ log{𝑎(𝜀𝑡−1)}𝑛

𝑖=1 ] → 𝑒𝑔 a.s. (7b) 

  As 𝑛 → ∞, by the application of strong law of large numbers to the iid sequence (log{𝑎(𝜀𝑡−1)}). The series 

defined in (6b) thus converge almost surely in ℝ, by the application of the Cauchy rule and the limit process (ℎ𝑡) 

takes positive real values. It follows that process (𝑦𝑡) defined by 

  𝑦𝑡 = √ℎ𝑡𝜀𝑡 = {𝛼0 + ∑ 𝑎(𝜀𝑡−1) ⋯ 𝑎(𝜀𝑡−1)𝛼0
∞
𝑖=1 }

1
2⁄ 𝜂𝑡  (7c) 

Is strictly stationary and ergodic. Moreover 𝑦𝑡 is a nonanticipative solution of (6). 

 For uniqueness, we let −𝑦𝑡 = 𝜎𝑡𝜀𝑡 be another strictly stationary solution. By (7a) we have  

  𝜎𝑡
2 = ℎ𝑡(𝑁) + 𝑎(𝜀𝑡−1) ⋯ 𝑎(𝜀𝑡−𝑁−𝑡)𝜎𝑡−𝑁−1

2  

 It follows that; 

  𝜎𝑡
2 − ℎ𝑡 = {ℎ𝑡(𝑁) − ℎ𝑡} + 𝑎(𝜀𝑡−1) ⋯ 𝑎(𝜀𝑡−𝑁−1)𝜎𝑡−𝑁−1

2  

  The term in brackets on the right-hand side tend to 0 𝑎 ∙ 𝑠  as  𝑁 → ∞. Moreover, since the series defining 

ℎ𝑡  converges 𝑎 ∙ 𝑠, we have 𝑎(𝜀𝑡−1) ⋯ 𝑎(𝜀𝑡−𝑛) → 0 with probability 1 as 𝑛 → ∞ in addition, the distribution of 

𝜎𝑡−𝑁−1
2  is independent of N by stationarity .Therefore , 𝑎(𝜀𝑡−1) ⋯ 𝑎(𝜀𝑡−𝑛) → 0 in probability as 𝑁 → ∞. We have  

proved that 𝜎𝑡
2 − ℎ → 0 in probability as 𝑁 → ∞ . This term being independent of N, we necessarily have ℎ𝑡 = 𝜎𝑡

2 

for any t   𝑎 ∙ 𝑠 . 

 If  𝑔 > 0, ℎ𝑡 = +∞ 𝑎 ∙ 𝑠 it follows that this exists on almost surely finite solution to (6).  

 For g=0, we give a proof by contradiction suppose there exists a strictly stationary solution (𝑦𝑡 , 𝜎𝑡
2) of 

(6) . We have, for  𝑛 > 0. 

           𝜎0
2 ≥ {1 + ∑ 𝑎(𝜀𝑡−1) ⋯ 𝑎(𝜀 − 𝑖)𝑛

𝑖=1 } 

 From which we deduce that 𝑎(𝜀−1) ⋯ 𝑎(𝜀−𝑛)𝛼0 converges to zero  𝑎 ∙ 𝑠, as 𝑛 → ∞, or equivalently, that 

 ∑ log 𝑎(𝜀𝑖) + log 𝛼0 → −∞ 𝑎 ∙ 𝑠𝑛
𝑖=1  as 𝑛 → ∞    (7d) 

By the Chung-Fuchs theorem, we have   limsup ∑ log 𝑎(𝜀1) = +∞ 𝑛
𝑖=1 with probability 1, which contradict (7d).∎ 

 Proposition 1 (condition for explosion)  

For GARCH (1,1) model defined by (1) and (2) given  𝑡 ≥ 1, with initial conditions for 𝑦0 and 𝜎0 

                 𝑔 > 0 → 𝜎𝑡
2 → +∞ 𝑎 ∙ 𝑠  (𝑡 → ∞) 

If in addition, 𝐸|log(𝜀𝑡
2)| < ∞ then 
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 𝑔 > 0 → 𝑦𝑡
2 → +∞ 𝑎 ∙ 𝑠  (𝑡 → ∞). 

 

 

Theorem 2 18 (second order stationarity conditions of the GARCH (1,1) process) 

Let 𝜔 > 0. If 𝛼 + 𝛽 ≥ 1, a nonanticipative and second order stationary solution to the GARCH (1,1) model does 

not exist. If 𝛼 + 𝛽 < 1, the process 𝑦𝑡 defined by (7c) is second, order stationary. More precisely, 𝑦𝑡 is a weak 

white noise. Moreover, there exists no other second order stationary and non anticipative solution. 

Proof: See 18 

 Distributional Assumptions 

There are three assumptions about the conditional distribution of the error term 𝜖 commonly employed when 

working with ARCH models: normal (Gaussian) distribution, Student’s t-distribution, and the Generalized Error 

Distribution (GED). Given a distributional assumption, ARCH models are typically estimated by the method of 

maximum likelihood. 

 For the GARCH(1, 1) model with conditionally normal errors, the contribution 

to the log-likelihood for observation t is: 

                       𝑙𝑡 = −
1

2
log(2𝜋) −

1

2
log 𝜎𝑡

2 −
1

2
∗

(𝑦𝑡−𝑋𝑡
′)2

𝜎𝑡
2               (8) 

where 𝜎𝑡
2 is specified in one of the forms above. 

 For the Student’s t-distribution, the log-likelihood contributions are of the form: 

         𝑙𝑡 = −
1

2
log [

π(v−2)Γ(v 2⁄ )2

Γ(
v+1

2
)

2 ] −
1

2
log 𝜎𝑡

2 −
(𝑣+1)

2
log [1 +

(𝑦𝑡−𝑋𝑡
′𝜃)2

𝜎𝑡
2(𝑣−2)

]       (9) 

where the degree of freedom controls the tail behaviour. The t-distribution approaches the normal as v→ ∞ 

For the GED, we have: 

𝑙𝑡 = −
1

2
log [

Γ(1 r⁄ )3

Γ(3/r)(r/2)2
] −

1

2
log 𝜎𝑡

2 − [
Γ(3/r)(𝑦𝑡 − 𝑋𝑡

′𝜃)2

𝜎𝑡
2Γ(1 r⁄ ) 

]

r/2

 

where the tail parameter   𝑟 > 0. The GED is a normal distribution if 𝑟 = 2, and fat-tailed if 𝑟 < 2.  

Other GARCH Extensions 

EGARCH Model 

The EGARCH or Exponential GARCH model was proposed by Nelson (1991). The specification for the conditional 

variance is: 

log(𝜎𝑡
2) = 𝜔 + ∑ 𝛽𝑗 log(𝜎𝑡−𝑗

𝑞
)

𝑞

𝑗=1

+ ∑ 𝛼𝑖 |
𝜖𝑡−𝑖

 

𝜎𝑡−𝑖
 |

𝑝

𝑖=1

+ ∑ 𝛾𝑘

𝜖𝑡−𝑘
 

𝜎𝑡−𝑘
 

𝑟

𝑘=1

              (10) 
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Recall log(𝜎𝑡
2)  is the log of the conditional variance, hence the leverage effect is exponential, rather than 

quadratic, and that forecasts of the conditional variance are guaranteed to be nonnegative.  

 

PARCH Model 

Taylor (1986) and Schwert (1989) introduced the standard deviation GARCH model, where the standard 

deviation is modelled rather than the variance. The Power ARCH specification follow that. In the Power ARCH 

model, the power parameter 𝛿 of the standard deviation can be estimated rather than imposed, and the optional 

𝛾 parameters are added to capture asymmetry of up to order: 

𝜎𝑡
𝛿 = 𝜔 + ∑ 𝛽𝑗𝜎𝑡−𝑗

𝛿

𝑞

𝑗=1

+ ∑ 𝛼𝑖(|  𝜖𝑡−𝑖
 | − 𝛾𝑘𝜖𝑡−𝑖

 )𝛿

𝑝

𝑖=1

                 (11) 

Where 𝛿 > 0,   |𝛾𝑖| ≤ 1  for,  𝑖 = 1, … , 𝑟,   𝛾𝑖 = 0 for all 𝑖 > 𝑟,   and 𝑟 ≤ 𝑝. 

The symmetric model sets 𝛾𝑖 = 0 for all 𝑖.  

We observe that if 𝛿 = 2 and 𝛾𝑖 = 0 for all 𝑖, the PARCH model is simply a standard GARCH specification. As in 

the previous models, the asymmetric effects are present if  𝛾𝑖 ≤ 1 

TARCH Model 

TARCH or Threshold ARCH and Threshold GARCH sometimes referred to as GJR-GARCH were introduced 

independently by Zakoïan (1994) and Glosten, Jaganathan, and Runkle (1993). The generalized specification for 

the conditional variance is given by: 

𝜎𝑡
2 = 𝜔 + ∑ 𝛽𝑗𝜎𝑡−𝑗

𝑞

𝑞

𝑗=1

+ ∑ 𝛼𝑖𝜖𝑡−𝑖
2

𝑝

𝑖=1

+ ∑ 𝛾𝑘𝜖𝑡−𝑘
2 𝐼𝑡−𝑘

𝑟

𝑖=1

                                (12) 

 

where  

𝐼𝑡 = { 
1,   𝜖𝑡 < 0  

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
 

In this model, good news, 𝜖𝑡−1 > 0, and bad news. 𝜖𝑡−1 < 0 , have differential effects on the conditional variance; 

good news has an impact of 𝛼𝑖 , while bad news has an impact of  𝛼𝑖 + 𝛾𝑖 . If   𝛾𝑖 > 0, bad news increases volatility, 

and we say that there is a leverage effect for the i-th order. If  𝛾𝑖 ≠ 0, the news impact is asymmetric. 

Data. The data used is Dangote cement (Dangocem) daily stock data from 20th October 2015 to 9th February 

2018, a total of 550 observations. The data was gotten from www.cashcraft.com. Fig 1a shows the time series 

plot of Dangocem price for the time period, while fig 1b is e price the return for the same time period. 

 

 

 

 

http://www.cashcraft.com/
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Results 

In this work, we estimated the parameters of GARCH (1, 1) , EGARCH, PGARCH AND TARCH of the Dangocem 

return series and attempt to interpret the result in the light of the stylized facts outlined earlier.  

Test for stationarity (Unit root test):                                                                                                               

Table (1a) show that Dangote return series is stationary at level since the value of the test statistics -22.11431 is 

lower than that of the critical values at 1%, 5% and 10%. Thus, the series is stationary of order 0. 

Summary Statistics:                                                                                                                

The summary statistics (Table 1b) indicates that the return series distribution has a long right tail with skewness 

of  0.075569 and is peaked (leptokurtic) relative to the normal with a kurtosis of 6.473351(presence of fat tail 

since 𝐾𝑢𝑟𝑡 > 3). The standard deviation is 0.021653 which translate to a daily variance of 0.0005 or an annualized 

volatility of 0.36%. 

The Q-Q plot                                                                                                                             

The Q-Q plot (fig 1c) does not lie on the straight line, indicating that the return series is not normally 

distributed implying that we reject the assumption of normality. 

  

 

 Dangocem Stock return  

 Mean  0.000832  Skewness  0.075569 

 Maximum  0.084780  Kurtosis  6.473351 

 Minimum -0.10255  Observations  549 

 Std. Dev.  0.021653   

 

  AIC SIC HQ 

ADF Test Statistics -22.1143 -22.1143 -22.1143 

Test critical values: 1% level 
5% level 
10% level 

-3.44205 -3.44205 -3.44205 

-2.8666 -2.8666 -2.8666 

-2.56952 -2.56952 -2.56952 

Table 1: Stationarity test 

        

Fig 1a Time series of Dangocem daily stock price     Fig 1b Dangocem return series       Fig 1c Q-Q plot of the return  

      series  
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Table 1a: Stationarity test   Table 1b: Summary statistics of stock returns. 
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Parameter Estimation 

 The parameters were estimated for GARCH(1,1), EGARCH, PGARCH and TARCH and three information criteria 

Akaike, Schwartz and Hann Quinon were utilized to assess the performance of the different models. Recall the 

model with the least information criterion is said to perform better than the one with greater information 

criterion. From table 2, TARCH perform better by the AIC and HQ but the GARCH (1,1) perform better by the 

SIC.  

It is observed that except for PARCH model, 𝛼 + 𝛽 < 1, implying that volatility reverts to the mean. The speed 

of reversion varies; for GARCH (1,1) with 𝛼 + 𝛽 =  0.839867413 it reverts slowly showing persistence while it 

revert quickly by the EGARCH 𝛼 + 𝛽 = 0.44030187 model.  

 News impact has asymmetric effect since 𝛾 ≠ 0  for all the models. There is also the presence of leverage effect 

that is bad news increases volatility since 𝛾 > 0 for all the models.   From the TARCH model it can be seen that 

the volatility process is driven more by negative innovation. This is because positive innovation has an impact 

of -0.02314, while negative innovation has an impact of 0.270927. 

The unconditional mean for GARCH(1,1), EGARCH, PGARCH and TARCH are 0.000481    -3.716708349, -0.000289, 

and 0.000737 respectively. It is obvious that only GARCH(1,1) and TARCH’s value that are close to the sample 

mean of  0.000832 see Table 1b. Thus, we can confirm that GARCH(1,1) and TARCH models perform better as 

alluded by the Information Criteria. 

    

 Conclusion 

In this paper, the GARCH model was presented. In particular, the GARCH (1,1), EGARCH, PGARCH and TARCH 

were used to model the Dangocem daily stock price from the 20th October 2015 to 9th February 2018, a total of 

550 observations. The Unit Root test showed that the return series are stationary also confirmed by the fact that 

𝛼 + 𝛽 < 1  for all the model except the PARCH model. The summary statistics showed that the return series has 

a fat tail with Kurtosis of  6.473351. From the Q-Q plot, it was seen that the return series was not normally 

distributed hence we could not use the assumption of normality.   

The parameter estimation result shows that the volatility of the return series, there is mean reversion since except 

for the PARCH model  𝛼 + 𝛽 < 1. News impact has asymmetric effect since 𝛾 ≠ 0  and there is the presence of 

leverage effect. Overall the GARCH(1,1) and the TARCH model outperform the other model as was shown by 

the Information Criteria as well as predicting the forecast variance, 

 

 

 

            

  GARCH(1,1) EGARCH PARCH TARCH 

ω 7.70E-05 -2.08023 0.000461 0.000345 

β 0.192087 0.391907 2.417959 0.55542 

α 0.64778 0.048395 0.176349 -0.02314 

γ  0.772289 0.706957 0.294068 

δ   1  

α+β 0.839867 0.440302 2.594308 0.532283 

AIC -5.55121 -5.533 -5.35897 -5.55539 

SIC -5.51982 -5.49377 -5.31189 -5.51616 

HQ -5.53894 -5.51767 -5.34057 -5.54006 
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Root Mean Squared Error 4.030875

Mean Absolute Error      2.295027

Mean Abs. Percent Error 1.233606

Theil Inequality Coefficient  0.010778

     Bias Proportion         0.001951

     Variance Proportion  0.002149

     Covariance Proportion  0.995899
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Forecast of Variance Table 2:  Parameters estimation for the models  Fig 2: Forecast of variance 
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