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Abstract 

In this study, nonlinear vibration analysis of a parametrically excited piezoelectric nano beam subjected to DC 

and AC voltages is investigated for biological sensor applications on the basis of the non-local continuum theory. 

Equations of the motion and boundary conditions of the nano beam are obtained by implementation of 

Hamilton’s principle and the Galerkin approach. Hamiltonian solution namely Frequency-Amplitude approach 

is used for natural frequencies and mode shapes as a function of the piezo-layered nano beam characteristic 

non-local size scale parameter. The size effects on the vibration behavior (frequency and harmonic response) of 

the beam are studied and it is found that the non-local parameter has significant effects on the free vibration 

of system. 

Keyword: Piezoelectric Nano biological sensor, Nonlocal continuum theory, Size scale parameter, vibration 

response, Hamiltonian, Frequency-Amplitude approach. 

1. Introduction 

In recent years, piezoelectric nano/micro-structures such as nano-beams, nano-membranes and nano-shells 

have been fabricated, and are attracting worldwide attention in nano/micro-electromechanical (NEMS/MEMS) 

systems [1]. Analysis of nonlinear dynamics and vibration of NEMS/MEMS is one of the important issues in such 

systems which unlike excitation forces of the external excitation, the force here appear as time-varying 

coefficients or parameters in the differential equation. In the past decade, investigating the nonlinear dynamics 

and vibration on the nano/micro-structures has become one of the attractive research areas in nano/micro-

mechanics. 

In this case, a concept of mass sensing based on amplification of parametric resonance is proposed by Turner 

and Zhang [2]. Also, the dynamic responses and behavior of parametric resonance of a micro- oscillator is 

investigated by Zhang et al. [3]. Dynamics of an electrostatically actuated MEMS resonant sensor under 

parametric and external excitations is presented by Zhang et al. using the method of multiple scales [4]. The 

deflection and natural frequency of a new piezoelectric sensor–actuator system combined electrostatic and 

piezoelectric is investigated by Zamanian et al. using the Hamilton principle and the Galerkin method [5]. Also, 
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Rezaei Kivi et al. presented electrostatic and piezoelectric excitations and static and dynamic pull-in instability 

on a micro-gripper and an FGP micro-beam, respectively [6]. Pure parametric excitation of the micro cantilever 

beam actuated by piezoelectric layer is studied by Ghazavi et al. [7]. Non-Fourier heat conduction model based 

on continuum theory is used for by Saeedi Vahdat et al. to study thermoelastic damping (TED) in a micro-beam 

resonator applying Galerkin and complex-frequency approaches [8]. Also, Azizi et al. investigated nonlinear 

dynamics of a parametrically excited piezoelectric mass-sensor which discretized to a nonlinear damped 

Mathieu equation and were excited by a combination of a DC and an AC voltage [9]. 

Moreover, experiments at the nano/microscale are extremely difficult to conduct and atomistic dynamic 

modeling is strongly restricted by computational capacities. Therefore, high-order continuum theories have 

emerged as an applicable approach to analyze the dynamic behavior of nano/microsystems, which have 

attracted much interest in recent years. Jiang and Yan [10] employed the surface elasticity theory to study the 

static behavior of nanowires. They presented explicit solutions to analyses surface effects on the deflection of 

the beam. Moreover, Eringen [11, 12] proposed non-local continuum mechanics formulation which has been 

extensively used to investigate the size effect on small-scale systems [13-15]. Nonlinearity in NEMS/MEMS may 

lead to major problems in calculating and analyzing the governing equations, especially strongly nonlinear 

system. Recently, some approximate methods are considered to be the powerful methods capable of handling 

strongly nonlinear behaviors, especially in NEMS/MEMS systems and can converge to an accurate periodic 

solution for smooth nonlinear systems that can be showed in works of Hashemi Kachapi et al. in references [16-

19]. 

In this study, nonlinear vibration analysis of a parametrically excited piezoelectric nano beam subjected to DC 

and AC voltages is investigated on the basis of the non-local continuum theory and using Hamilton’s and 

Galerkin principle and also Hamiltonian solution namely Frequency-Amplitude approach is used for analysis of 

nonlinear vibration. 

3. Nonlocal model of piezoelectric nano beam  

A piezoelectric nano beam with geometric and material property, i.e., length l , width a , thickness h , density 

  Young’s modulus E , thickness of two piezoelectric layers ph , density p is shown in Fig. 1. Also, pE ,  pe , 

p , DCV  and ACV  are Young’s modulus, the piezoelectric constant, the dielectric constant,  DC and AC voltages 

of  piezoelectric layers, respectively. The coordinate system is attached to the middle of the left end of the piezo-

nano beam where x and z refer to a horizontal and vertical coordinate, respectively.as illustrated in Fig. 1, 
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Fig. 1. piezoelectric nano sensor: (a) Front view (b) Side view 

The total potential strain energy of the nano-beam can be expressed as [9]: 

= + +b a PU U U U  (1) 

Where bU , PU  and aU  are potential energy due to the bending, piezoelectric actuation axial force and the 

mid-plane stretching axial force, respectively, and expressed as:  
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Also, the kinetic energy of the piezo-nano beam is introduced as: 
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where ( ) 2= +eq P Pah ah ah   .  

The work . .n cW due to the external damping can be presented as: 
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where ( )=   visf w t  is considered as the damping force and   is the viscous damping constant of the 

system [7]. 

The total partial differential equation of motion is obtained by the Hamiltonian as:  
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Including the effect of viscous damping, the governing equation and the corresponding boundary conditions 

reduce to: 
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Equation (10) rewrite and resulted in; 
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Where 
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For the beam with the piezo layers, the non-local constitutive relationships can be stated in a one-dimensional 

(1D) form as [11-12]: 
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Where   is nonlocal parameter. By integrating (15)– (16) with (14) and combining them, we can obtain 
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Moreover, submitting (18) into (12) gives 
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Also, by substituting (20) into (12) and (13), the equation of the motion and boundary conditions of the piezo-

layered nano beam can be concluded as 
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where pV  is the piezoelectric applied voltage and = −p p p pK e Q h  is a constant coefficient? There deflection 

is no exact solution to Eq. (22). To approximate the homoclinic trajectory of Eq. (22), Galerkin method is used to 

discretize this equation; therefore, the approximate solution is supposed to be in the form 
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The deflection ( , )w x t  in Eq. (23) is expressed as a sum of spatial shapes that, a priori, satisfy the imposed 

kinematic boundary conditions and n is the number of degrees of freedom, ( )i x  is the i  eigenfunction of 

the beam and ( )iu   is the i  time dependent deflection parameter of the beam. Based on a single degree-of- 

freedom model of the beams ( n 1= ), Eq. (23) can be solved with appropriate accuracy.  
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Eqs. (24) or (25) are the first eigenfunction of a double-clamped beam that satisfy all the kinematic boundary 

conditions. The one-parameter Galerkin method can be computed by: 
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After substituting for ( )( , )T w x t  from Eq. (21) into Eq. (26), multiplying by 
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Keeping the first mode in the modal expansion to Eq. (27), yields to nonlinear equation as follows: 
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where Eq. (28) present completely the flexural vibration equation for nano beam with piezo-layered actuators 

for mass sensing applications. 

4. Solution Approach 

In this Section, the size-dependent nonlinear vibration of a nano beam is simulated. The geometry and material 

properties of the beam and the piezo actuator are listed in Table 1.  

Table 1. Material and geometric properties of nano beam and piezoelectric actuator 

Geometrical and mechanical property nano beam (SiO2) Piezoelectric layers (PZT) 
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( )Density,  32330 /kg m 
37500 /kg m 

)EYoung`s modulus ( 107 GPa 139 GPa 

)
pePiezoelectric constant ( ----- 12123 10 /m V− 

)hHeight ( 60 nm 20 nm 

)LLength ( 300 nm 300 nm 

)aWidth ( 60 nm 60 nm 

To solve the free vibration problem and study the size-dependent behavior of the system, a harmonic solution 

for the damped transverse displacement Eq. (28) is the first order periodic solution in the form of: 

 (30) ( ) cosu t A t=  

Which A  is oscillator amplitude and   is natural frequency of piezo-actuated non-local Nano beam which will 

be obtained. 

And the initial conditions take the form of: 
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We use the method of weighted residuals to overcome the shortcoming. To this end, we introduce two new 
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Substituted Eqs. (34) and (35) in Eqs. (36) and (37) that can be expressed as: 
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Substituting Eqs (32), (33), (39) and (40) into Eq. (38) leads to: 
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(41) 

That solution of Eq. (41), its approximate frequency leads to: 

( )

( )

( )

1/2
2 4 2 2

2 5 2 7 2 6 1 5 1 6 1 7

2 2 2 4 2

3 4 2 8 2 9 1 8 1 9

4 2 2 2

4 4 3 3

2

1 2

39.4784

0.3183 29.6088

4 8 4

 − + − + + −
 
 − − + + −
 
 + − +
 =

− +

A

               

             

     


  
  

(42) 

Where ω will be used in Eq. (30) as the first order of harmonic solution. 

5. Simulations and results 

In this section the result which obtained using the Frequency-Amplitude approach is investigated. In following, 

the effect of design parameters on the nonlinear frequency and steady state response or period of motion of 

nonlinear vibration in the nano beam with piezo-layered actuator for mass sensing applications, such as 

( 1 9)= Li i  to investigated and show in several cases. 

In Figs. 2-4, the effects of nonlocal parameter   on the natural frequency and free vibration response of nano 

beam for 1( 1 9)= = Li i , 1=A and 1=t  are investigated and in Figs 5-16 , the effects of ( 1 9)= Li i  

parameters on the natural frequency and free vibration response of nano beam for local case and different 

values on nonlocal parameter   are investigated. According to Fig. 2, it can be seen that the frequency response 

of the piezo-actuated nano beam decrease with increase of nonlocal parameter  .  
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Fig.2. The effects of nonlocal parameter   on the natural frequency of nano 

beam for 1( 1 9)= = Li i , 1=A and 1=t  

 

In Fig. 3 as shown, for values 1 , as the frequency, the harmonic response of system decreases and in the 

vicinity of 1=
 
a sudden leap happens and then with less steep decreases. 
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Fig.3. The effects of nonlocal parameter   on the free vibration response of nano 

beam for 1( 1 9)= = Li i , 1=A and 1=t  

Fig. 4 show that by increasing in values of nonlocal parameter  , the number of oscillations of the harmonic 

response of the piezo-actuated nano increase.  

 

Fig.4. The free vibration response of nano beam for different values of 

nonlocal parameter   and 1( 1 9)= = Li i , 1=A and 1=t  

Figs. 5-8 show the effects of 
1 and 2 parameters on the frequency and the free vibration response of nano 

beam for constant values of other parameters. According to Eq. (29), parameters of
 1 and 2  dependent on 

variation in 
 
and A . 

e 

Fig.5. The effects of nonlocal parameter   on the free vibration response of nano beam for 

1( 1 9)= = Li i , 1=A and 1=t  
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Fig.6. The effects of nonlocal parameter   on the free vibration response of nano beam for 

1( 1 9)= = Li i , 1=A and 1=t  

 

 

Fig.7. The effects of nonlocal parameter   on the free vibration response of nano beam for 

1( 1 9)= = Li i , 1=A and 1=t  
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Fig.8. The effects of nonlocal parameter   on the free vibration response of nano beam for 

1( 1 9)= = Li i , 1=A and 1=t  

Figs. 9 and 10 show the effects of 
3  

parameter on the frequency and the free vibration response of nano beam 

for constant values of other parameters. According to Eq. (29), parameter of
 3  dependent on the viscous 

damping constant ( ). According to Fig. 9, it can be seen that in all of values of  , increasing in the viscous 

damping constant, reduce the natural frequency of the system that this decrease rate is higher by increasing of 

nonlocal parameter. Fig. 10 also show that by increasing in values of nonlocal parameter  , the number of 

oscillations of the harmonic response of the piezo-actuated nano increase.  
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Fig.9. The effects of nonlocal parameter   on the natural frequency of nano beam via 

3  

 

Fig.10. The effects of nonlocal parameter   on the free vibration response of nano 

beam via 
3  

Figs. 11 and 12 show the effects of 
5  

parameter on the frequency and the free vibration response of nano 

beam for constant values of other parameters. According to Eq. (29), parameter of
 5  dependent on the ( )eqEI
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. According to Fig. 11, it can be seen that in all of values of  , as the viscous damping constant, increasing in  

( )eqEI , reduce the natural frequency of the system that this decrease rate is higher by increasing of nonlocal 

parameter. Fig. 12 also show that by increasing in values of nonlocal parameter  , the number of oscillations 

of the harmonic response of the piezo-actuated nano increase.  

 

Fig.11. The effects of nonlocal parameter   on the natural frequency of 

nano beam via 
5  
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Fig.12. The effects of nonlocal parameter   on the free vibration 

response of nano beam via 
5  

Figs. 13 and 14 show the effects of 
6  

parameter on the frequency and the free vibration response of nano 

beam for constant values of other parameters. According to Eq. (29), parameter of
 6  dependent on the axial 

force of the piezoelectric voltage ( pF ). According to Fig. 13, it can be seen that in all of values of  , increasing 

in the piezoelectric voltage, reduce the natural frequency of the system that this decrease rate is higher by 

increasing of nonlocal parameter. Fig. 14 also show that by increasing in values of nonlocal parameter  , the 

number of oscillations of the harmonic response of the piezo-actuated nano increase.  
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Fig.13. The effects of nonlocal parameter   on the natural frequency of nano 

beam via 
6  

 

 

Fig.14. The effects of nonlocal parameter   on the free vibration 

response of nano beam via 
6  
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Figs. 15 and 16 show the effects of 
6  

parameter on the frequency and the free vibration response of nano 

beam for constant values of other parameters. According to Eq. (29), parameter of
 6  dependent on the axial 

force of the nano beam ( aF ). According to Fig. 15, it can be seen that in all of values of  , increasing in the 

axial force, reduce the natural frequency of the system that this decrease rate is higher by increasing of nonlocal 

parameter. Fig. 16 also show that by increasing in values of nonlocal parameter  , the number of oscillations 

of the harmonic response of the piezo-actuated nano increase.  

 

Fig.15. The effects of nonlocal parameter   on the natural frequency of nano beam via 
8  
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Fig.16. The effects of nonlocal parameter   on the free vibration response of nano beam via 

8  

Conclusions 

In this study, nonlinear vibration analysis of a parametrically excited piezoelectric nano beam subjected to DC 

and AC voltages is investigated for biological sensor applications on the basis of the non-local continuum theory. 

Equations of the motion and boundary conditions of the nano beam are obtained by implementation of 

Hamilton’s principle and the Galerkin approach. Hamiltonian solution namely Frequency-Amplitude approach 

is used for natural frequencies and mode shapes as a function of the piezo-layered nano beam characteristic 

non-local size scale parameter. It was seen that natural frequencies decrease as the non-local parameter 

increases and this reduction is more prominent for higher natural frequencies. Besides, by increasing in values 

of nonlocal parameter  , the number of oscillations of the harmonic response of the piezo-sensor nano 

increase. The size effects on the vibration behavior (frequency and harmonic response) of the beam have been 

studied and it is found that the non-local parameter has significant effects on the free vibration of system. 
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