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Abstract

In this study, we define anti fuzzy G-submodules with respect to t-conorms and investigate some of their algebraic
properties. Later we introduce the union and direct sum of them and finally, we prove that the union, direct sum,
homomorphic images and pre images of them are also anti fuzzy G-submodules with respect to t-conorms.
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1. Introduction

In mathematics, given a group G, a G-module is an abelian group M on which G acts compatibly with the abelian
group structure on M . This widely applicable notion generalizes that of a representation of G. Group (co)homology
provides an important set of tools for studying general G-modules. The term G-module is also used for the more
general notion of an R-module on which G acts linearly (i.e. as a group of R-module automorphisms). Undoubtedly
the notion of fuzzy set theory initiated by Zadeh [42] in 1965 in a seminal paper, plays the central role for further
development. This notion tries to show that an object corresponds more or less to the particular category we want to
assimilate it to; that was how the idea of defining the membership of an element to a set not on the Aristotelian pair
{0, 1} any more but on the continuous interval [0, 1] was born. The notion of a fuzzy set is completely non-statistical in
nature and the concept of fuzzy set provides a natural way of dealing with problems in which the source of imprecision
is the absence of sharply defined criteria of class membership rather than the presence of random variables. In fact the
idea of describing all shades of reality was for long the obsession of some logicians [19, 37]. During last four decades
the fuzzy set theory has rapidly developed into an area which scientifically as well as from the application point of
view, is recognized as a very valuable contribution to the existing knowledge [3, 4, 5, 6, 7, 8, 11, 12, 14, 17, 18, 23,
24, 43, 44]. The triangular conorm (T -conorm) originated from the studies of probabilistic metric spaces [22, 38] in
which triangular inequalities were extended using the theory of T -conorm. Later, Hohle [13], Alsina et al. [2], etc.
introduced the T -conorm into fuzzy set theory and suggested that the T -conorm be used for the intersection and union
of fuzzy sets. Since then, many other researchers have presented various types of T -operators for the same purpose
[41, 10, 40] and even proposed some methods to generate the variations of these operators [16]. The author by using
norms, investigated some properties of fuzzy algebra [25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35]. In this paper, we use
the triangular conorm (T -conorm) to define the anti fuzzy G-submodules and we obtain some related results. Next
we show that the union, direct sum, homomorphic images and pre images of them are also anti fuzzy G-submodules
with respect to t-conorms.
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1 Preliminaries

The following definitions and preliminaries are required in the sequel of our work and hence presented in brief. For
details we refer reders to [20, 9, 15, 21, 39, 1, 36]. Throughout the paper, Q,R,C will always be rational, real and
complex numbers, respectively.

Definition 1 Let R be a ring. A commutative group (M,+) is called a left R-module or a left module over R with
respect to a mapping

. : R×M →M

if for all r, s ∈ R and m,n ∈M ,
(1) r.(m+ n) = r.m+ r.n,
(2) r.(s.m) = (rs).m,
(3) (r + s).m = r.m+ s.m.
If R has an identity 1 and if 1.m = m for all m ∈ M , then M is called a unitary or unital left R-module. A right
R-module can be defined in a similar fashion.

Definition 2 Let M be an R-module and N be a nonempty subset of M . Then N is called a submodule of M if N is
a subgroup of M and for all r ∈ R, a ∈ N , we have ra ∈ N.

Definition 3 Let G be a finite group. A vector space M over a field K is called a G-module if for every g ∈ G and
m ∈M, there exist a product ( called the action of G on M ) m.g ∈M satisfyirlg the following axioms:
(1) m.1G = m,∀m ∈M ( 1G being the identity element in G),
(2) m.(g.h) = (m.g).h , ∀m ∈M : g, h ∈ G and
(3) (k1m1 + k2m2).g = k1(m1.g) + k2(m2.g) ∀m1,m2 ∈M : g ∈ G : k1, k2 ∈ K.

Example 4 Let G = {1,−1} and M = C. Then M is a vector spacc over R and under the usual addition and
multiplication of real numbers, we can show that M is a G-module.

Remark 5 The operation (m, g)→ m.g defined above may be called a right-action of G on M and M may be said to
be a right G-module. In a similar way, we can define left-action and left G-module. We shall consider all G-modules
as left G-modules.

Definition 6 Let M be a G-module. A vector subspaee N of M is a G-submodule if N is also a G-module under the
same action of G. Thus N is G-submodule of G-module M if and only if N is submodule of M and N be a G-module.

Example 7 Let Q be the field of rationals and G = {1,−1} and M = R. Then M is a G-module over Q. Now for
each r /∈ Q we get that N = Q(r) is a G-submodule of M.

Definition 8 Let M and N be G-modules. A mapping f : M →M is a G-module homomorphism if
(1) f(k1m1 + k2m2) = k1f(m1) + k2f(m2)
(2) f(gm) = gf(m)
for all m1,m2m ∈M and k1, k2 ∈ K and g ∈ G.

Definition 9 Let X a non-empty sets. A fuzzy subset µ of X is a function µ : X → [0, 1]. Denote by [0, 1]X , the set
of all fuzzy subset of X.

Definition 10 Let f be a mapping from R-module M into R-module N. Let µ ∈ [0, 1]M and ν ∈ [0, 1]N . For all y ∈ N
define f(µ) ∈ [0, 1]N and f−1(ν) ∈ [0, 1]M as

f(µ)(y) =

{
sup{µ(x) | x ∈M,f(x) = y} if f−1(x) 6= ∅

∅ if f−1(x) = ∅.
Also for all x ∈M , f−1(ν)(x) = ν(f(x)).
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Definition 11 A t-conorm C is a function C : [0, 1]× [0, 1]→ [0, 1] having the following four properties:
(C1) C(x, 0) = x (neutral element),
(C2) C(x, y) ≤ C(x, z) if y ≤ z (monotonicity),
(C3) C(x, y) = C(y, x) (commutativity),
(C4) C(x,C(y, z)) = C(C(x, y), z) (associativity),
for all x, y, z ∈ [0, 1].
Properties (C1),(C2) and (C3) give C(1, 1) = C(0, 1) = C(1, 0) = 1, C(0, 0) = 0.
We say that C is idempotent if for all x ∈ [0, 1], we have C(x, x) = x.

Example 12 For all x, y ∈ [0, 1] the basic t-conorms are

Cm(x, y) = max{x, y},

Cb(x, y) = min{1, x+ y},

Cp(x, y) = x+ y − xy,

C∗(x, y) =

 x if y = 0
y if x = 0
1 otherwise

which are called standard union, bounded sum, algebraic sum and drastic union respectively.
We can see that

Cm(x, y) ≤ Cp(x, y) ≤ Cb(x, y) ≤ C∗(x, y).

Definition 13 Define
Cn(x1, x2, ..., xn) = C(xi, Cn−1(x1, x2, ..., xi−1, xi+1, ..., xn))

for all 1 ≤ i ≤ n, n ≥ 2, C2 = C. Also define

C∞(x1, x2, ...) = limn→∞C(x1, x2, ..., xn).

Definition 14 The union of fuzzy subsets µ1 and µ1 in a set X over t-conorm C we mean the fuzzy subset µ = µ1∪µ2

in the set X such that for any x ∈ X

µ(x) = (µ1 ∪ µ2)(x) = C(µ1(x), µ2(x)).

Definition 15 Define the union of a collection of fuzzy subsets {µ1, µ2, ..} in a set X over t-conorm C as fuzzy subset
∪Cµi such that for any x ∈ X, (∪Cµi)(x) = C∞(µ1(x), µ2(x), ...).

Lemma 16 Let C be a t-conorm. Then

C(C(x, y), C(w, z)) = C(C(x,w), C(y, z)),

for all x, y, w, z ∈ [0, 1].
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2 Anti fuzzy G-modules under t-conorms

Firstly, we define anti fuzzy G-modules on M under t-conorm C.

Definition 17 Let G be a finite group and M be a G-module over K, which is a subfield of C. Then an anti fuzzy
G-module on M under t-conorm C is a fuzzy subset µ : M → [0, 1] such that
(1) µ(ax+ by) ≤ C(µ(x), µ(y))
(2) µ(gm) ≤ µ(m)
for all a, b ∈ K : x, y ∈M : m ∈M and g ∈ G.
Denote by AFGC(M), the set of all anti fuzzy G-modules on M under t-conorm C.

Example 18 Let G = {1,−1} and M = R2 is a vector space over real field R. Then M is a G-module over R. Define
µ : R2 → [0, 1] by

µ(x1, x2) =

{
(0, 0) if (x1, x2) = (0, 0),
0.45 if (x1, x2) 6= (0, 0).

If C be standard union t-conorm C(a, b) = Cm(a, b) = max{a, b} for all a, b ∈ [0, 1], then µ ∈ AFGC(M).

In the followin proposition, we investigate relationship between AFGC(M) and G-submodules of M.

Proposition 19 Let M be a G-module over K and µ be a fuzzy set of M. If µ ∈ AFGC(M) and C be idempotent
t-conorm, then L(µ, α) = {x ∈M : µ(x) ≤ α} will be G-submodule of M.

Proof If L(µ, α) = ∅, then nothing to prove. Therefore, suppose that L(µ, α) 6= ∅, and let x, y ∈ U(µ, α) and a, b ∈ K.
Then
(1) µ(x) ≤ α and µ(y) ≤ α and as µ ∈ AFGC(M) so µ(ax+by) ≤ C(µ(x), µ(y)) ≤ C(α, α) = α and then µ(ax+by) ≤ α
so ax+ by ∈ L(µ, α).
(2) If g ∈ G, then µ(gx) ≤ µ(x) ≤ α and then gx ∈ L(µ, α).
Thus (1) and (2) give us that L(µ, α) is G-submodule of M.

Corollary 20 Let µ ∈ AFGC(M). Then N = {x | x ∈M,µ(x) = 0} is a G-submodule of the module M.

Proof In the Proposition 3.3 set α = 0.
In the following propositions, we prove that the union and direct sum of all anti fuzzy G-modules on M under

t-conorm C are also anti fuzzy G-modules on M under t-conorm C.

Proposition 21 The union of any collection of anti fuzzy G-submodules is an anti fuzzy G-submodule.

Proof Let x, y ∈M and a, b ∈ K. Then
(1)

(∪Cµi)(ax+ by) = C∞(µ1(ax+ by), µ2(ax+ by), ...) ≤ C∞(C(µ1(x), µ1(y)), C(µ2(x), µ2(y)), ..)

= C(C∞(µ1(x), µ2(x), ...), C∞(µ1(y), µ2(y), ...)) = C((∪Cµi)(x), (∪Cµi)(y)).

(2) Let g ∈ G then

(∪Cµi)(gx) = C∞(µ1(gx), µ2(gx), ...) ≤ C∞(µ1(x), µ2(x), ...) = (∪Cµi)(x).

Thus (∪Cµi) ∈ AFGC(M).
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Definition 22 By the direct sum of fuzzy sets {µ1, µ2, .., µn} over a t-conorm C we mean the fuzzy subset µ = ⊕n
i=1 µi

such that
µ(x1, x2, .., xn) = (⊕n

i=1 µi)(x1, x2, .., xn) = Cn(µ1(x1), µ2(x2), ..., µn(xn)).

Proposition 23 Let {M1,M2, ..,Mn} be a collection of G-submodules and M = ⊕n
i=1 Mi be its direct sum. If µi ∈

AFGC(Mi), then µ = ⊕n
i=1 ∈ AFGC(M).

Proof Let x, y ∈M,x = (x1, x2, ..., xn), y = (y1, y2, .., yn) and a, b ∈ K and g ∈ G. Then
(1)

µ(ax+ by) = µ(a(x1, x2, ..., xn) + b(y1, y2, .., yn))

= µ((ax1, ax2, ..., axn) + (by1, by2, .., byn))

= µ(ax1 + by1, ax2 + by2, .., axn + byn)

= Cn(µ1(ax1 + by1), µ2(ax2 + by2), ..., µn(axn + byn))

≤ Cn(C(µ1(x1), µ1(y1)), C(µ2(x2), µ2(y2)), ..., C(µn(xn), µn(yn)))

= C(Cn(µ1(x1), µ2(x2), ..., µn(xn)), Cn(µ1(y1), µ2(y2), ..., µn(yn)))

= C(µ(x), µ(y)).

(2)
µ(gx) = µ(g(x1, x2, ..., xn)) = µ(gx1, gx2, ..., gxn)

= Cn(µ1(rx1), µ2(rx2), ..., µn(rxn)) ≤ Cn(µ1(x1), µ2(x2), ..., µn(xn))

= µ(x).

Therefore µ ∈ AFGC(M).
In the following propositions, we investigate AFGC(−) under G-module homomorphisms.

Proposition 24 Let f : M → N be a G-module epimorphism. If µ ∈ AFGC(M), then f(µ) ∈ AFGC(N).

Proof Let y1, y2 ∈ N and a, b ∈ K.
(1)

f(µ)(ay1 + by2) = sup{µ(ax1 + bx2) | x1, x2 ∈M,f(ax1) = ay1, f(bx2) = by2}
= sup{µ(ax1 + bx2) | x1, x2 ∈M,af(x1) = ay1, bf(x2) = by2}
≤ sup{C(µ(x1), µ(x2)) | x1, x2 ∈M,f(x1) = y1, f(x2) = y2}

= C(sup{µ(x1) | f(x1) = y1}, sup{µ(x2) | f(x2) = y2})
= C(f(µ)(y1), f(µ)(y2)).

(2) Let y ∈ N and g ∈ G.

f(µ)(gy) = sup{µ(gx) | x ∈M,f(gx) = gy}
= sup{µ(gx) | x ∈M, gf(x) = gy}
≤ sup{µ(x) | x ∈M,f(x) = y}

= f(µ)(y).

Thus f(µ) ∈ AFGC(N).
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Proposition 25 Let f : M → N be a G-module homomorphism. If ν ∈ AFGC(N), then f−1(ν) ∈ AFGC(M).

Proof Let x1, x2 ∈M and a, b ∈ K. Then
(1)

f−1(ν)(ax1 + bx2) = ν(f(ax1 + bx2)) = ν(f(ax1) + f(bx2))

= ν(af(x1) + bf(x2)) ≤ C(ν(f(x1), ν(f(x2))

= C(f−1(ν)(x1), f−1(ν)(x2)).

(2) Let x ∈M and g ∈ G. Then
f−1(ν)(gx) = ν(f(gx)) = ν(gf(x)) ≤ ν(f(x)) = f−1(ν)(x).
Then f−1(ν) ∈ AFGC(M).

Proposition 26 Let M be a G-module and N be a subset of M . Let

µ(x) =

{
0 if x ∈ N
α if x /∈ N

with α ∈ (0, 1] and C be an idempotent t-conorm. Then µ ∈ AFGC(M) if and only if N is a G-submodule of M .

Proof Let µ ∈ AFGC(M) and we prove that N is a submodule of M . Let x, y ∈ N ⊆M and a, b ∈ K. Now

µ(ax+ by) ≤ C(µ(x), µ(y)) = C(0, 0) = 0

so µ(ax+ by) = 0 and then ax+ by ∈ N.
Also let g ∈ G and then µ(gx) ≤ µ(x) = 0 so µ(gx) = 0 and then gx ∈ N.
Therefore N is a submodule of M and since N be a subset of M so N will be a G-submodule of M .
Conversely, let N is a submodule of M and we prove that µ ∈ AFGC(M). Suppose x, y ∈ M and a, b ∈ K and we
investigate the following conditions:

(1) If x, y ∈ N , then ax+ by ∈ N and then

µ(ax+ by) = 0 ≤ 0 = C(0, 0) = C(µ(x), µ(y)).

(2) For any x ∈ N and y 6∈ N then ax+ by /∈ N and so

µ(ax+ by) = α ≤ α = C(α, 0) = C(0, α) = C(µ(x), µ(y)).

(3) Let x 6∈ N and y ∈ N then ax+ by /∈ N and then

µ(ax+ by) = α ≤ α = C(α, 0) = C(µ(x), µ(y)).

(4) Finally, if x, y 6∈ N , ax+ by /∈ N and so

µ(ax+ by) = α ≤ α = C(α, α) = C(µ(x), µ(y)).
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Therefore from (1)-(4) we have that
µ(ax+ by) ≤ C(µ(x), µ(y)).

Now let x ∈M and g ∈ G. Then we have:
(1) If x ∈ N then gx ∈ N and then µ(gx) = 0 ≤ µ(x).
(2) If x 6∈ N , then gx /∈ N and so µ(gx) = α ≤ α = µ(x).
Therefore from (1) and (2) we have that µ(gx) ≤ µ(x).
Thus µ ∈ AFGC(M).

Corollary 27 Let M be an R-module and N be a subset of M . If µ : N → {0, 1} be the anti characteristic function
as

µ(x) =

{
0 if x ∈ N
1 if x /∈ N

then µ ∈ AFGC(M) if and only if N is a submodule of M .
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