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Abstract

In this paper, we study differential equation with fully fuzzy initial value. We propose a numeri-
cal method to approximate the fuzzy solution by using partition of fuzzy interval and generalization
of Hukuhara difference and division. We prove some theorems for differential equation by fuzzy
initial value. Finally, we solve numerical example to illustrate our proposed method.
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1. Introduction

The concept of fuzzy set theory was first introduced by Lotfi Zadeh in 1960s which is now used
as a powerful tool for modeling uncertainty and for processing vague or subjective information in
mathematical models. Fuzzy set theory are used to study a variety of problems fuzzy metric spaces
[20], fuzzy linear systems [4, 5, 23], fuzzy differential equations [6, 7, 10, 16, 17] and other topics.
The concept of fuzzy derivative was first introduced by Chang and Zadeh [7], and it was followed
by Dubois and Prade[8]. The fuzzy differential equations and fuzzy initial value problem were regu-
larly treated by Kaleva [15] and Seikkala[22]. Several authors have produced a wide range of results
in both the theoretical and applied fields of fuzzy differential equations [1, 2, 6, 14, 19, 21, 22].
Some of researchers worked for approximate solving the fuzzy initial value problem y = f(x, y)
where x0 is real number and y(x0) = y0 fuzzy number [1, 2, 6]. We used of definition fuzzy directed
line induced by L. Hongliang et al.[17] and extent to fuzzy interval. This paper used of partition
of fuzzy interval [17] and generalization of Hukuhara difference and division [24]. Engineers, Com-
puter Scientists and Operations Researchers have taken up fuzzy sets with interest, Mathematicians
gave serious interest to fuzzy sets only in the resent years, though they have been involved with
the development of fuzzy sets from the very beginning. Many interesting Mathematical problems
are coming to the fore front and now fuzzy sets has emerged as an independent branch of Applied
Mathematics and was discussed by many authors [9, 10, 11, 12, 13, 15, 16, 18, 26, 27]. Abbas-
bandy and Allah Viranloo studied Numerical solution of fuzzy differential equation by Runge-Kutta
method[3].

Fuzzy sets are taken into consideration with respect to a nonempty base set X of elements of
interest. The important idea is that each element x ∈ X is assigned a membership grade u(x)
taking values in [0,1], with u(x) = 0 corresponding to non-membership, 0 < u(x) < 1 to partial
membership, and u(x) = 1 to full membership. Zadeh says that fuzzy subset of X is a nonempty
subset {(x, u(x)) : x ∈ X} of X × [0, 1] for some function u : X → [0, 1]. The function u itself is
often used for the fuzzy set.

In this article, we develop numerical methods for solving fuzzy differential equations by an
application of fourth order Runge-Kutta method. In Section 2 we list some basic definitions to
fuzzy valued functions. Section 3 contains numerical methods with full fuzzy initial values. Section
4 contains the Runge-Kutta method for solving full fuzzy differential equations. Section 5 contains
the numerical examples to illustrate the theory.

2. Preliminaries

First, we review fuzzy numbers and some results about it. There are various definitions for
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the concept of fuzzy number. Let E1 be the set of all functions u : R → [0, 1] such that u

is normal, fuzzy convex, upper semicontinuous and closure of {x ∈ R : u(x) > 0} , is compact.
For any u ∈ E, u is called a fuzzy number in parametric form a pair (u(r), u(r)) of function
u(r), u(r), 0 ≤ r ≤ 1 which satisfies the following requirements:
1. u(r) is bounded monotonic increasing left continuous function.
2. u(r) is bounded monotonic decreasing left continuous function.
3. u(r) ≤ u(r), 0 ≤ r ≤ 1.

In this paper, we used of parametric form of fuzzy numbers. For u, v ∈ E1, the metric distance
is define as

D(u, v) = sup
r∈[0,1]

max{|u(r)− vr|, |u(r)− v(r)|}. (1)

Theorem 2.1. [25],
(1) (E,D) is a complete metric space,
(2) D(u+ w, v + w) = D(u, v) here u, v, w ∈ E,

(3)D(u+ v, w+ e) ≤ D(u,w) +D(v, e), here u, v, w, e ∈ E. For ranking of u, v ∈ E, u ≤ v if and
only if u(r) ≤ v(r) and u(r) ≤ v(r) and u < v if and only if u(r) < v(r) and u(r) < v(r) for any
r ∈ [0, 1].

Definition 2.1.[17], Let u0, v0 ∈ E, u0(0) < v0(0). The fuzzy number set {wt ∈ E|wt = (1 −

t)u0 + tv0, t ∈ (−∞,+∞)} is called fuzzy directed line induced by u0, v0 and denoted by
−→
u0v0.

Theorem 2.2. [17], Let ws, wt ∈
−→
u0v0, then

(1)s ≤ t⇔ ws ≤ wt

(2)s = t ⇔ ws = wt, i.e. s 6= t⇔ ws 6= wt.

Definition 2.2.[24] For two fuzzy number u, v ∈ E, then

u+ v = w ∈ E ←→

{
u+ v = w,

u+ v = w,

λu =

{
(λu, λu), λ ≥ 0,
(λu, λu), λ < 0,

u⊖g v = w ∈ E ←→





(i)u = v + w,

or

(ii)v = u+ (−1)w,
(2)

uv = w ←→

{
w = min{u v, u v, u v, u v},

w = max{u v, u v, u v, u v},

u÷g v = w ∈ E ←→





(i)u = vw,

or w−1 = ( 1
w(r) ,

1
w(r) )

(ii)v = uw−1.

Theorem 2.3.[24] A ⊖g B exists if and only if B ⊖g A and (−B) ⊖g (−A) exist and A ⊖g B =
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(−B)⊖g (−A) = −(B ⊖g A).

Definition 2.3.[17] Let f :
−→
u0v0−→ E be a fuzzy mapping and x ∈ R fixed. Suppose for |y| > |x|,

xy > 0, f(wy) ⊖ f(wx) exists, when x < 0,
f(wy)⊖f(wx)

wy⊖wx

exists, when x < 0
f(wx)⊖f(wy)

wx⊖wy

exists.

And suppose for |y| < |x|, xy ≥ 0, f(wx)⊖ f(wy) exists, and when x > 0,
f(wx)⊖f(wy)

wx⊖wy

exists,

when x < 0
f(wy)⊖f(wx)

wy⊖wx

exists. If there is a F ′(wx) ∈ E such that when x > 0

lim
y→x+

D

(
f(wy)⊖ f(wx)

wy ⊖ wx

, f ′(wx)

)
= 0,

and

lim
y→x−

D

(
f(wx)⊖ f(wy)

wx ⊖ wy

, f ′(wx)

)
= 0,

hold. When x < 0

lim
y→x+

D

(
f(wx)⊖ f(wy)

wx ⊖ wy

, f ′(wx)

)
= 0,

and

lim
y→x−

D

(
f(wy)⊖ f(wx)

wy ⊖ wx

, f ′(wx)

)
= 0.

hold. Then we say f is fuzzy differentiable at wx and its fuzzy derivative at wx is f ′(wx).

3. Numerical Method with Full Fuzzy Initial Values

In this section, we are going to study the differential equation with fully fuzzy initial values as
{

y′ = f(x, y)
y(u0) = U0, u0, v0 ∈ E

(3)

where f : [u0, v0]× E −→ E is such that u0, v0 ∈ E, u0(0) < v0(0) and D2((x, y), (x, y) < δ.
(1)For every ǫ > 0, there exists a δ > 0 such that D(f(x, y), f(x, y) < ǫ,
(x, y), (x, y) ∈ [u0, v0]× E.
(2)There exists a L > 0, D(f(x, y1), f(x, y2)) ≤ LD(y1, y2), x, y1, y2 ∈ E For numerically solving
equation (3), we approximate y(v0). Now we define the metric distance in E2 as follows:

D2((u, v), (u′, v′)) = max{D(u, u′), D(v, v′)}, (u, v), (u′, v′) ∈ E2. (4)

Definition 3.1. Let u0, v0 ∈ E, u0(0) < vo(0).The fuzzy number set {wt ∈ E|wt = (1 − t)u0 +
tv0, t ∈ [0, 1]}, is called fuzzy interval[u0, v0].

Definition 3.2. Suppose [u0, v0]is the fuzzy interval. If p[0, 1] = {x0 = 0, x1, ......, xn = 1|x0 <

x1 < .... < xn}, denote the partition of [0,1]. If wi = (1 − xi)u0 + xiv0; i = 0, 1, ..., n, then,
by Theorem 2.2 w0 = u0 < w1 < ..... < wn−1 < wn = v0, Therefore p̃[u0,v0] = {w0 =
u0, w1......., wn−1, wn = v0} is the partition of [u0, v0].

Theorem 3.1. Let u ∈ E,m, n ∈> 0 then mu⊖g nu = (m− n)u.
Proof:

mu⊖g nu = (m− n)u←→





(i)mu = nu+ (m− n)u,
or

(ii)nu = mu+ (−1)(m− n)u,
(5)
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(i)(mu,mu) = (nu, nu) + (m− n)(u, u) if m ≥ n this case is correct.
(ii) (nu, nu) = (mu,mu) + (n−m)(u, u) if m < n this case is correct.

Regarding to generalization of Hukuhara difference and division and definition 2.3, differentia-
bility of F at wxis proved in the following theorem.

Theorem 3.2. Let F :
−→
u0v0−→ E be a fuzzy mapping and x ∈ R+ if f ′(wx) ∈ E exist and

lim
h−→0

D

(
{f(wx+h ⊖g f(wx)} ÷g {wx+h ⊖g wx}, f

′(wx)

)
= 0

then we say f is fuzzy differentiable at wx and its fuzzy derivative at wx is F ′(wx).
Proof:

f(wx)⊖g f(wx+h) = −(f(wx+h)⊖ f(wx))
wx ⊖g wx+h = −(wx+h ⊖g wx)

(6)

Regarding to, Definition 2.3 and x ∈ R+. If h −→ 0+ then
|x+ h| > |x|, (x + h).x > 0, f(wx+h ⊖g f(wx), {f(wx+h ⊖g f(wx)} ÷g {wx+h ⊖g wx} exits, If
h −→ 0− then |x+ h| < |x| , (x+h).x > 0, f(wx)⊖g f(wx+h), {f(wx⊖g f(wx+h)}÷g {wx⊖gwx+h}
exits, and with

lim
h−→0

D ({f(wx+h)⊖g f(wx)} ÷g {wx+h ⊖g wx}, f
′(wx)) = 0,

then

lim
h−→0+

D ({f(wx+h)⊖g f(wx)} ÷g {wx+h ⊖g wx}, f
′(wx)) = 0,

and relations (4,5)

lim
h−→0−

D ({f(wx)⊖g f(wx+h)} ÷g {wx ⊖g wx+h}, f
′(wx)) = 0.

Hence, proof is complete
For approximation y(v0) in problem (1), we consider p[0,1] = {

i
n
|i = 0, 1, ....n} as a partition of

[0,1], using definition 3.2 p̃[u0,v0] = {wi = (1− i
n
)u0+

i
n
v0|i = 0, 1, ..., n} is the partition of [u0, v0].

Suppose that y′(wi)exists, hence using Theorem 3.2

lim
h−→0

D ({y(wi+i)⊖g y(wi)} ÷g {wi+1 ⊖g wi}, y
′(wi)) = 0 (7)

then by (1) where y′(wi) = f(wi, y(wi)).

4. The Runge-Kutta method

The Runge-Kutta method is a fourth order approximation of Y ′
1(t; r)and Y ′

2(t; r) to develop
the Runge-Kutta method, we define

y
k,n+1

(r)− y
k,n

(r) =
4∑

i=1

wiki(tk,n; yk,n(r)),

yk,n+1(r)− y
k,n

(r) =

4∑

i=1

wiki(tk,n; yk,n(r)),
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Where w1, w2, w3, w4 are constants and

k1,1 = min{hf(t, u)|u ∈ [y1 (t, r) , y2 (t, r)]},

k1,2 = max{hf(t, u)|u ∈ [y1 (t, r) , y2 (t, r)]},

k2,1 = min{hf(t+
1

2
h, u)|u ∈ [z1,1 (t, y (t, r)) , z1,2 (t, y (t, r))]},

k2,2 = max{hf(t+
1

2
h, u)|u ∈ [z1,1 (t, y (t, r)) , z1,2 (t, y (t, r))]},

k3,1 = min{hf(t+
1

2
h, u)|u ∈ [z2,1 (t, y (t, r)) , z2,2 (t, y (t, r))]},

k3,2 = max{hf(t+
1

2
h, u)|u ∈ [z2,1 (t, y (t, r)) , z2,2 (t, y (t, r))]},

k4,1 = min{hf(t+ h, u)|u ∈ [z3,1 (t, y (t, r)) , z3,2 (t, y (t, r))]},

k4,2 = max{hf(t+ h, u)|u ∈ [z3,1 (t, y (t, r)) , z3,2 (t, y (t, r))]},

Next we define

z1,1 (t, y (t, r)) = y1(t, r) +
1

2
k1,1 (t, y (t, r)) ,

z1,2 (t, y (t, r)) = y2(t, r) +
1

2
k1,2 (t, y (t, r)) ,

z2,1 (t, y (t, r)) = y1(t, r) +
1

2
k2,1 (t, y (t, r)) ,

z2,2 (t, y (t, r)) = y2(t, r) +
1

2
k2,2 (t, y (t, r)) ,

z3,1 (t, y (t, r)) = y1(t, r) + k3,1 (t, y (t, r)) ,

z3,2 (t, y (t, r)) = y2(t, r) + k3,2 (t, y (t, r)) .

Now we define

F [t, y (t, r)] = k1,1 (t, y (t, r)) + 2k2,1 (t, y (t, r)) + 2k3,1 (t, y (t, r)) + k4,1 (t, y (t, r)) ,

G [t, y (t, r)] = k1,2 (t, y (t, r)) + 2k2,2 (t, y (t, r)) + 2k3,2 (t, y (t, r)) + k4,2 (t, y (t, r)) .

The exact and approximate solution at tn,0 ≤ n ≤ N are denoted by

[Y (tn)]r = (Y1(tn, r), Y2 (tn, r)] ,

[y (tn)]r = [y1(tn, r), y2 (tn, r)] , as

Y1(tn+1, r) ≃ Y1(tn, r) +
1

6
F [tn, Y (tn, r)],

Y2(tn+1, r) ≃ Y2(tn, r) +
1
6G[tn, Y (tn, r)], and

y1(tn+1, r) = y1(tn, r) +
1

6
F [tn, Y (tn, r)],

y2(tn+1, r) = y2(tn, r) +
1

6
G[tn, Y (tn, r)].

With Theorem 3.1 and wi = (1− i
n
)u0 +

i
n
v0 then wi+1 ⊖g wi = −

1
n
u0 +

1
n
v0 hence with division

of (2.2). Eq (7) rewritten as




y1(wi+1 ⊖g y1(wi)) ≃ ( 1
n
v0 + (− 1

n
)u0)

1
6 (k1,1 + 2k2,1 + 2k3,1 + k4,1) ∈ E,

y1(w0) = U0 i = 0, 1, .....n− 1,
(8)
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



y2(wi+1 ⊖g y2(wi)) ≃ ( 1
n
v0 + (− 1

n
)u0)

1
6 (k1,2 + 2k2,2 + 2k3,2 + k4,2) ∈ E,

y2(w0) = U0 i = 0, 1, .....n− 1.
(9)

Therefore by difference of (2)




y1(wi+1) ≃ y1(wi) + ( 1
n
v0 + (− 1

n
)u0)

1
6 (k1,1 + 2k2,1 + 2k3,1 + k4,1) ,

y1(w0) = U0 i = 0, 1, .....n− 1,
(10)





y2(wi+1) ≃ y2(wi) + ( 1
n
v0 + (− 1

n
)u0)

1
6 (k1,2 + 2k2,2 + 2k3,2 + k4,2) ,

y2(w0) = U0 i = 0, 1, .....n− 1.
(11)

We will replace the exact solution Y (wi) ; i = 0, 1...., n by approximated solution y(wi);i=0,1.....n
and then Eq (9) and Eq(10) can be rewriten as





Y1(wi+1) ≃ Y1(wi) + ( 1
n
v0 + (− 1

n
)u0)

1
6 (k1,1 + 2k2,1 + 2k3,1 + k4,1) ,

Y1(w0) = U0 i = 0, 1, .....n− 1,
(12)

and




Y2(wi+1) ≃ Y2(wi) + ( 1
n
v0 + (− 1

n
)u0)

1
6 (k1,2 + 2k2,2 + 2k3,2 + k4,2) ,

Y2(w0) = U0 i = 0, 1, .....n− 1.
(13)

For illustrating of our proposed method ,we solve an example as follows:

5. Numerical Examples :

Example 5.1.
Consider the following differential equation with fully fuzzy initial value.





y′ = xy

y(u0) = U0 = (e0.005r
2+1, e0.005r

2−0.02r+1.02)

(14)

where u0 = (0.1r, 0.2 − 0.1r) and F (x, y) = xy. We want to approximate y(v0) by v0 = (0.3 +
0.1r, 0.5− 0.1r).
We show that f : [u0, v0]× E −→ E satisfied in condition (1) and (2).
Therefore (1) is satisfied if for fixǫ > 0, 0 < δ < ǫ

|v0(0)|+M
exits such that

M ≥ max
x∈[u0(0),v0(0)]

{|y(x)|}

Assume D2((x, y), (x′, y′)) = max{D(x, x′), D(y, y′)} < δ

then, D(f(x, y), f(x′, y′)) = supr∈[0,1] max{
∣∣xy(r)− x′y′(r)

∣∣ ,
∣∣xy(r)− x′y′(r)

∣∣} = Φ
(i) If

Φ =
∣∣x(r∗)y(r∗)− x′(r∗)y′(r∗)

∣∣ ,
≤ |x(r∗)|D(y, y′) +

∣∣y(r∗)
∣∣D(x, x′),

< |v0(0)| δ +Mδ,

= (|v0(0)|+M)δ,

< ǫ.
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(ii) If

Φ =
∣∣x(r∗)y(r∗)− x′(r∗)y′(r∗)

∣∣ ,
≤ |x(r∗)|D(y, y′) + |y(r∗)|D(x, x′),

< |v0(0)| δ +Mδ,

= (|v0(0)|+M)δ,

< ǫ.

(2) is satisfied,since

D(F (x, y), F (x, y′)) = D(xy, xy′) = sup
r∈[0,1]

max{
∣∣xy(r)− xy′(r)

∣∣ ,
∣∣xy(r)− xy′(r)

∣∣} = Ψ

I. If Ψ =
∣∣x(r∗)y(r∗)− x(r∗)y′(r∗)

∣∣ = |x(r∗)|
∣∣y(r∗)− y′(r∗)

∣∣ ≤ LD(y, y′),

II. If Ψ =
∣∣x(r∗)y(r∗)− x(r∗)y′(r∗)

∣∣ = |x(r∗)|
∣∣y(r∗)− y′(r∗)

∣∣ ≤ LD(y, y′).

We used of n=4 with p[0, 1] = {0, 1
4 ,

2
4 ,

3
4 ,

4
4} hence

w0 = u0 = (0.1r, 0.2− 0.1r),

w1 =
3

4
u0 +

1

4
v0 = (0.075 + 0.1r, 0.275 + 0.1r),

w2 =
1

2
u0 +

1

2
v0 = (0.15 + 0.1r, 0.35 + 0.1r),

w3 =
1

4
u0 +

3

4
v0 = (0.225 + 0.1r, 0.425 + 0.1r),

w4 = v0 = (0.3 + 0.1r, 0.5− 0.1r),

y1(wi+1) ≃ y1(wi) +
1

6
(k1,1 + 2k2,1 + 2k3,1 + k4,1) ,

y2(wi+1) ≃ y2(wi) +
1

6
(k1,2 + 2k2,2 + 2k3,2 + k4,2) ,

where i = 0, 1, 2, 3

By 1
4v0 + (− 1

4 )u0 = (0.025 + 0.05r, 0.125− 0.05r)

y1(wi+1) ≃ y1(wi) +
1

6
(k1,1 + 2k2,1 + 2k3,1 + k4,1) , i = 0, 1, 2, 3,

y2(wi+1) ≃ y2(wi) +
1

6
(k1,2 + 2k2,2 + 2k3,2 + k4,2) , i = 0, 1, 2, 3,

y1(w4) = y1(v0) ≃ y1(w3) +
1

6
(k1,1 + 2k2,1 + 2k3,1 + k4,1) ,

y2(w4) = y2(v0) ≃ y2(w3) +
1

6
(k1,2 + 2k2,2 + 2k3,2 + k4,2) .

Where,

k1,1(wi, y(wi)) = min{(0.025 + 0.05r , 0.125− 0.05r)f(wi, u(wi))|

u(wi) ∈ [y1 (t, r) , y2 (wi, r)]},

k1,2(wi, y(wi)) = max{(0.025 + 0.05r , 0.125− 0.05r)f(wi, u(wi))|

u(wi) ∈ [y1 (t, r) , y2 (wi, r)]},
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k2,1(wi, y(wi)) = min{(0.025 + 0.05r , 0.125− 0.05r)f(wi +
(0.025 + 0.05r)

2
, u(wi))|

u(wi) ∈ [z1,1 (wi, y (wi, r)) , z1,2 (wi, y (wi, r))]},

k2,2(wi, y(wi)) = max{(0.025 + 0.05r , 0.125− 0.05r)f(wi +
0.125− 0.05r

2
, u(wi))|

u(wi) ∈ [z1,1 (wi, y (wi, r)) , z1,2 (wi, y (wi, r))]},

k3,1(wi, y(wi)) = min{(0.025 + 0.05r , 0.125− 0.05r)f(wi +
0.025 + 0.05r

2
, u(wi))|

u(wi) ∈ [z2,1 (wi, y (wi, r)) , z2,2 (wi, y (wi, r))]},

k3,2(wi, y(wi)) = max{(0.025 + 0.05r , 0.125− 0.05r)f(wi +
0.125− 0.05r

2
, u(wi))|

u(wi) ∈ [z2,1 (wi, y (wi, r)) , z2,2 (wi, y (wi, r))]},

k4,1(wi, y(wi)) = min{(0.025 + 0.05r , 0.125− 0.05r)f(wi + 0.025 + 0.05r, u(wi))|

u(wi) ∈ [z3,1 (wi, y (wi, r)) , z3,2 (wi, y (wi, r))]},

k4,2(wi, y(wi)) = max{(0.025 + 0.05r , 0.125− 0.05r)f(wi + 0.125− 0.05r, u(wi))|

u(wi) ∈ [z3,1 (wi, y (wi, r)) , z3,2 (wi, y (wi, r))]},

z1,1 (wi, y (wi, r)) = y1(wi, r) +
1

2
k1,1 (wi, y (wi, r)) ,

z1,2 (wi, y (wi, r)) = y2(wi, r) +
1

2
k1,2 (wi, y (wi, r)) ,

z2,1 (wi, y (wi, r)) = y1(wi, r) +
1

2
k2,1 (wi, y (wi, r)) ,

z2,2 (wi, y (wi, r)) = y2(wi, r) +
1

2
k2,2 (wi, y (wi, r)) ,

z3,1 (wi, y (wi, r)) = y1(wi, r) + k3,1 (wi, y (wi, r)) ,

z3,2 (wi, y (wi, r)) = y2(wi, r) + k3,2 (wi, y (wi, r)) .

The exact solution of (11) is Y = e
x
2

2
+1 therefore Y (v0) = e

v0
2

2
+1 = (e0.005r

2+0.03r+1.045, e0.005r
2−0.05r+1.125)

If we used of n=8 with p[0, 1] = {0, 1
8 ,

2
8 ,

3
8 ,

4
8 ,

5
8 ,

6
8 ,

7
8 ,

8
8} then

w0 = u0 = (0.1r, 0.2− 0.1r), w1 = (0.0375 + 0.1r, 0.2375 + 0.1r),

w2 = (0.075 + 0.1r, 0.275 + 0.1r), w3 = (0.1125 + 0.1r, 0.3125 + 0.1r),

w4 = (0.15 + 0.1r, 0.35− 0.1r), w5 = (0.1875 + 0.1r, 0.3875 + 0.1r),

w6 = (0.225 + 0.1r, 0.425 + 0.1r), w7 = (0.2625 + 0.1r, 0.4625 + 0.1r),

w8 = (0.3 + 0.1r, 0.5− 0.1r).

y1(wi+1) ≃ y1(wi) +
1

6
(k1,1 + 2k2,1 + 2k3,1 + k4,1) ,

y2(wi+1) ≃ y2(wi) +
1

6
(k1,2 + 2k2,2 + 2k3,2 + k4,2) ,

where i = 0, 1, ..., 7
By 1

8v0 + (− 1
8 )u0 = (0.0125 + 0.025r, 0.0625− 0.025r),

y1(wi+1) ≃ y1(wi) +
1

6
(k1,1 + 2k2,1 + 2k3,1 + k4,1) , i = 0, 1, 2, ..., 7,

y2(wi+1) ≃ y2(wi) +
1

6
(k1,2 + 2k2,2 + 2k3,2 + k4,2) , i = 0, 1, 2, ..., 7,
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Figure 1: (for n=4)

y1(w8) = y1(v0) ≃ y1(w7) +
1

6
(k1,1 + 2k2,1 + 2k3,1 + k4,1) ,

y2(w8) = y2(v0) ≃ y2(w7) +
1

6
(k1,2 + 2k2,2 + 2k3,2 + k4,2) .

Where,

k1,1(wi, y(wi)) = min{(0.0125 + 0.025r , 0.0625− 0.025r)f(wi, u(wi))|

u(wi) ∈ [y1 (t, r) , y2 (wi, r)]},

k1,2(wi, y(wi)) = max{(0.0125 + 0.025r , 0.0625− 0.025r)f(wi, u(wi))|

u(wi) ∈ [y1 (t, r) , y2 (wi, r)]},

k2,1(wi, y(wi)) = min{(0.0125 + 0.025r , 0.0625− 0.025r)f(wi +
(0.0125 + 0.025r)

2
, u(wi))|

u(wi) ∈ [z1,1 (wi, y (wi, r)) , z1,2 (wi, y (wi, r))]},

k2,2(wi, y(wi)) = max{(0.0125 + 0.025r , 0.0625− 0.025r)f(wi +
0.0625− 0.025r

2
, u(wi))|

u(wi) ∈ [z1,1 (wi, y (wi, r)) , z1,2 (wi, y (wi, r))]},

k3,1(wi, y(wi)) = min{(0.0125 + 0.025r , 0.0625− 0.025r)f(wi +
0.0125 + 0.025r

2
, u(wi))|

u(wi) ∈ [z2,1 (wi, y (wi, r)) , z2,2 (wi, y (wi, r))]},

k3,2(wi, y(wi)) = max{(0.0125 + 0.025r , 0.0625− 0.025r)f(wi +
0.0625− 0.025r

2
, u(wi))|

u(wi) ∈ [z2,1 (wi, y (wi, r)) , z2,2 (wi, y (wi, r))]},

k4,1(wi, y(wi)) = min{(0.0125 + 0.025r , 0.0625− 0.025r)f(wi + 0.0125 + 0.025r, u(wi))|

u(wi) ∈ [z3,1 (wi, y (wi, r)) , z3,2 (wi, y (wi, r))]},

k4,2(wi, y(wi)) = max{(0.0125 + 0.025r , 0.0625− 0.025r)f(wi + 0.0625− 0.025r, u(wi))|

u(wi) ∈ [z3,1 (wi, y (wi, r)) , z3,2 (wi, y (wi, r))]},

z1,1 (wi, y (wi, r)) = y1(wi, r) +
1

2
k1,1 (wi, y (wi, r)) ,
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z1,2 (wi, y (wi, r)) = y2(wi, r) +
1

2
k1,2 (wi, y (wi, r)) ,

z2,1 (wi, y (wi, r)) = y1(wi, r) +
1

2
k2,1 (wi, y (wi, r)) ,

z2,2 (wi, y (wi, r)) = y2(wi, r) +
1

2
k2,2 (wi, y (wi, r)) ,

z3,1 (wi, y (wi, r)) = y1(wi, r) + k3,1 (wi, y (wi, r)) ,

z3,2 (wi, y (wi, r)) = y2(wi, r) + k3,2 (wi, y (wi, r)) .

The exact solution of (11) is Y = e
x
2

2
+1,therefore

Y (v0) = e
v0

2

2
+1 = (e0.005r

2+0.03r+1.045, e0.005r
2−0.05r+1.125)

2.7 2.8 2.9 3 3.1 3.2 3.3 3.4 3.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

y

r

− Exact
* RK Four

Figure 2: (for n=8)

Example 5.2

Consider the following differential equation with fully fuzzy initial value.





y′(t) = y(t)

y(u0) = U0 = (e0.1r, e0.2−0.1r)
(15)

where u0 = (0.1r, 0.2 − 0.1r) and f(x, y(t)) = y(t). We want to approximate y(v0) by v0 =
(0.3 + 0.1r, 0.5− 0.1r).
Again we used of n=4, we define w0, w1, w2, w3, w4 similarly as that of the Example 3.1.
Where

y1(wi+1) ≃ y1(wi) +
1

6
(k1,1 + 2k2,1 + 2k3,1 + k4,1) ,
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y2(wi+1) ≃ y2(wi) +
1

6
(k1,2 + 2k2,2 + 2k3,2 + k4,2) ,

where i = 0, 1, 2, 3
By 1

4v0 + (− 1
4 )u0 = (0.025 + 0.05r, 0.125− 0.05r),

y1(wi+1) ≃ y1(wi) +
1

6
(k1,1 + 2k2,1 + 2k3,1 + k4,1) , i = 0, 1, 2, 3,

y2(wi+1) ≃ y2(wi) +
1

6
(k1,2 + 2k2,2 + 2k3,2 + k4,2) , i = 0, 1, 2, 3,

y1(w4) = y1(v0) ≃ y1(w3) +
1

6
(k1,1 + 2k2,1 + 2k3,1 + k4,1) ,

y2(w4) = y2(v0) ≃ y2(w3) +
1

6
(k1,2 + 2k2,2 + 2k3,2 + k4,2) .

Where,

k1,1(wi, y(wi)) = min{(0.025 + 0.05r , 0.125− 0.05r)f(wi, u(wi))|

u(wi) ∈ [y1 (t, r) , y2 (wi, r)]},

k1,2(wi, y(wi)) = max{(0.025 + 0.05r , 0.125− 0.05r)f(wi, u(wi))|

u(wi) ∈ [y1 (t, r) , y2 (wi, r)]},

k2,1(wi, y(wi)) = min{(0.025 + 0.05r , 0.125− 0.05r)f(wi, u(wi))|

u(wi) ∈ [z1,1 (wi, y (wi, r)) , z1,2 (wi, y (wi, r))]},

k2,2(wi, y(wi)) = max{(0.025 + 0.05r , 0.125− 0.05r)f(wi, u(wi))|

u(wi) ∈ [z1,1 (wi, y (wi, r)) , z1,2 (wi, y (wi, r))]},

k3,1(wi, y(wi)) = min{(0.025 + 0.05r , 0.125− 0.05r)f(wi, u(wi))|

u(wi) ∈ [z2,1 (wi, y (wi, r)) , z2,2 (wi, y (wi, r))]},

k3,2(wi, y(wi)) = max{(0.025 + 0.05r , 0.125− 0.05r)f(wi, u(wi))|

u(wi) ∈ [z2,1 (wi, y (wi, r)) , z2,2 (wi, y (wi, r))]},

k4,1(wi, y(wi)) = min{(0.025 + 0.05r , 0.125− 0.05r)f(wi, u(wi))|

u(wi) ∈ [z3,1 (wi, y (wi, r)) , z3,2 (wi, y (wi, r))]},

k4,2(wi, y(wi)) = max{(0.025 + 0.05r , 0.125− 0.05r)f(wi, u(wi))|

u(wi) ∈ [z3,1 (wi, y (wi, r)) , z3,2 (wi, y (wi, r))]},

z1,1 (wi, y (wi, r)) = y1(wi, r) +
1

2
k1,1 (wi, y (wi, r)) ,

z1,2 (wi, y (wi, r)) = y2(wi, r) +
1

2
k1,2 (wi, y (wi, r)) ,

z2,1 (wi, y (wi, r)) = y1(wi, r) +
1

2
k2,1 (wi, y (wi, r)) ,

z2,2 (wi, y (wi, r)) = y2(wi, r) +
1

2
k2,2 (wi, y (wi, r)) ,

z3,1 (wi, y (wi, r)) = y1(wi, r) + k3,1 (wi, y (wi, r)) ,

z3,2 (wi, y (wi, r)) = y2(wi, r) + k3,2 (wi, y (wi, r)) .

The exact solution of (15) is Y = ex therefore Y (v0) = ev0 = (e0.3+0.1r, e0.5−0.1r).
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Figure 3: (for n=4)

Again if we used of n=8, we define w0, w1, w2, w3, w4, w5, w6, w7, w8 similarly as that of the
Example 3.1.
Where

y1(wi+1) ≃ y1(wi) +
1

6
(k1,1 + 2k2,1 + 2k3,1 + k4,1) ,

y2(wi+1) ≃ y2(wi) +
1

6
(k1,2 + 2k2,2 + 2k3,2 + k4,2) ,

where i = 0, 1, ..., 7
By 1

8v0 + (− 1
8 )u0 = (0.0125 + 0.025r, 0.0625− 0.025r)

y1(wi+1) ≃ y1(wi) +
1

6
(k1,1 + 2k2,1 + 2k3,1 + k4,1) , i = 0, 1, 2, ..., 7,

y2(wi+1) ≃ y2(wi) +
1

6
(k1,2 + 2k2,2 + 2k3,2 + k4,2) , i = 0, 1, 2, ..., 7,

y1(w8) = y1(v0) ≃ y1(w7) +
1

6
(k1,1 + 2k2,1 + 2k3,1 + k4,1) ,

y2(w8) = y2(v0) ≃ y2(w7) +
1

6
(k1,2 + 2k2,2 + 2k3,2 + k4,2) ,

Where,

k1,1(wi, y(wi)) = min{(0.0125 + 0.025r , 0.0625− 0.025r)f(wi, u(wi))|

u(wi) ∈ [y1 (t, r) , y2 (wi, r)]},

k1,2(wi, y(wi)) = max{(0.0125 + 0.025r , 0.0625− 0.025r)f(wi, u(wi))|

u(wi) ∈ [y1 (t, r) , y2 (wi, r)]},

k2,1(wi, y(wi)) = min{(0.0125 + 0.025r , 0.0625− 0.025r)f(wi, u(wi))|

u(wi) ∈ [z1,1 (wi, y (wi, r)) , z1,2 (wi, y (wi, r))]},

k2,2(wi, y(wi)) = max{(0.0125 + 0.025r , 0.0625− 0.025r)f(wi, u(wi))|

u(wi) ∈ [z1,1 (wi, y (wi, r)) , z1,2 (wi, y (wi, r))]},
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k3,1(wi, y(wi)) = min{(0.0125 + 0.025r , 0.0625− 0.025r)f(wi, u(wi))|

u(wi) ∈ [z2,1 (wi, y (wi, r)) , z2,2 (wi, y (wi, r))]},

k3,2(wi, y(wi)) = max{(0.0125 + 0.025r , 0.0625− 0.025r)f(wi, u(wi))|

u(wi) ∈ [z2,1 (wi, y (wi, r)) , z2,2 (wi, y (wi, r))]},

k4,1(wi, y(wi)) = min{(0.0125 + 0.025r , 0.0625− 0.025r)f(wi, u(wi))|

u(wi) ∈ [z3,1 (wi, y (wi, r)) , z3,2 (wi, y (wi, r))]},

k4,2(wi, y(wi)) = max{(0.0125 + 0.025r , 0.0625− 0.025r)f(wi, u(wi))|

u(wi) ∈ [z3,1 (wi, y (wi, r)) , z3,2 (wi, y (wi, r))]},

z1,1 (wi, y (wi, r)) = y1(wi, r) +
1

2
k1,1 (wi, y (wi, r)) ,

z1,2 (wi, y (wi, r)) = y2(wi, r) +
1

2
k1,2 (wi, y (wi, r)) ,

z2,1 (wi, y (wi, r)) = y1(wi, r) +
1

2
k2,1 (wi, y (wi, r)) ,

z2,2 (wi, y (wi, r)) = y2(wi, r) +
1

2
k2,2 (wi, y (wi, r)) ,

z3,1 (wi, y (wi, r)) = y1(wi, r) + k3,1 (wi, y (wi, r)) ,

z3,2 (wi, y (wi, r)) = y2(wi, r) + k3,2 (wi, y (wi, r)) .

The exact solution of(15) is Y = ex therefore Y (v0) = ev0 = (e0.3+0.1r, e0.5−0.1r).
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Figure 4: (for n=8)
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