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Abstract 

This paper investigates the numerical estimation characteristics of the robust recursive least-squares (RLS) 

Wiener estimators by using the observed values with random delays, packet dropouts, and out-of-order packets 

for the systems with or without the uncertain parameters in the system matrix and the observation vector. The 

estimation characteristics are compared with the existing estimators.  

(1) The estimation accuracy of the robust RLS Wiener filter is superior to the RLS Wiener filter and fixed-

point smoother. 

(2) The estimation accuracy of the robust RLS Wiener filter is superior to the RLS Wiener filter and fixed-

point smoother, which are designed for the delayed and uncertain observations, except for the observation 

noise N(0, 0.52), provided that the signal exists in the observed values. 

(3) In the case of the observations with random delays and without including the uncertain parameters in 

the system matrix and the observation vector, the estimation accuracies of the robust RLS Wiener filter and 

fixed-point smoother are superior to the RLS Wiener filter and fixed-point smoother, which are designed for the 

delayed and uncertain observations. 

It should be noted that the robust RLS Wiener estimators do not assume any knowledges of the probabilities of 

the random delays, and the uncertain parameters. 

Keywords: Robust filter; robust fixed-point smoother; delayed observation; autoregressive model; packet 

dropout.  

1. Introduction  

Usually, the recursive least-squares (RLS) Wiener estimators (Nakamori, 1995) assume the knowledge of the 

state-space model except the input matrix and the variance of the white-noise input. If the observed values are 

randomly delayed or the parameters in the state-space model contain uncertainties, the estimation accuracies 

of the RLS Wiener estimators become degraded in comparison with the case of using the complete state-space 

model. For this reason, there have been investigated on the RLS Wiener estimators with the randomly delayed 

and uncertain observations  (Nakamori, 2018), and the robust RLS Wiener estimators (Nakamori, 2019a, 2019b) 

with the observations, generated by the system with the uncertain parameters in the system and observation 

matrices. The robust RLS Wiener estimators (Nakamori, 2019a, 2019b) do not use any information on the 

uncertain parameters in the system. In Nakamori (2018), the uncertain observation means that the observation 

does not contain the signal with a certain probability. In Dong & You (2006), the robust finite horizon Kalman-

type filter is designed for a class of discrete-time uncertain systems, including random delays, packet dropouts, 

and out-of-order packets. In addition to the random delays in the observed values, there might occur the case, 

where some parameters in the state-space model include uncertainties. In Chen & Zhang (2011) the robust 

Kalman filter is designed in uncertain stochastic systems with time-invariant state delayed; bounded random 

observation delays and missing measurements. The robust Kalman filter (Chen & Zhang, 2011) uses the 

information on the probabilities of the delays of the observations. This paper investigates numerically on the 

estimation characteristics of the robust RLS Wiener filter and fixed-point smoother (Nakamori, 2019a, 2019b) 

for the randomly delayed, packet dropouts and out-of-order packets observed values in the state-space model 

with or without the uncertain parameters in the system matrix and the observation vector. The estimation 

characteristics are compared with the existing estimators. The main simulation results for the scalar signal are 

summarized as follows.  

(1) The estimation accuracy of the robust RLS Wiener filter (Nakamori, 2019a, 2019b) is superior to the RLS 

Wiener filter and fixed-point smoother (Nakamori, 1995). 



Computer Reviews Journal Vol 7 (2020) ISSN: 2581-6640                          https://purkh.com/index.php/tocomp 

30 

 

(2) The estimation accuracy of the robust RLS Wiener filter (Nakamori, 2019a, 2019b) is superior to the RLS 

Wiener filter and fixed-point smoother (Nakamori, 2018), which are designed for the delayed and uncertain 

observations, except for the observation noise N(0, 0.52). 

(3) In the case of the observations with random delays, packet dropouts, out-of-order packets and without 

including the uncertain parameters in the system matrix and the observation vector, the estimation accuracies 

of the robust RLS Wiener filter and fixed-point smoother (Nakamori, 2019a, 2019b) are superior to the RLS 

Wiener filter and fixed-point smoother (Nakamori, 2018), which are designed for the delayed and uncertain 

observations. Here, the probability containing the signal in the observed value is set to one. 

In the simulation, it should be noted that the robust RLS Wiener estimators do not assume any knowledges on 

the probabilities of random delays of the observations, and the uncertain parameters.      

In section 2, we consider an example of sequence with random delays, packet dropouts and out-of-order packets 

by referring to Liu, Yang, Zhou, Naeem, Wang & Wang (2018). In section 3, Theorem 1 presents the robust RLS 

Wiener filtering and fixed-point smoothing algorithms (Nakamori, 2019a, 2019b). In section 4, the estimation 

characteristics of the filter and the fixed-point smoother are shown numerically for the RLS Wiener filter and 

fixed-point smoother (Nakamori, 1995), the robust RLS Wiener estimators (Nakamori, 2019a, 2019b) and the 

RLS Wiener estimators (Nakamori, 2018), which are designed for the randomly delayed and uncertain 

observations. 

2. Observations with random delays, packet dropouts and out-of-order packets 

Table 1 Samples of degraded observations with one-step or two-steps delays. “*”: Observation with one-step 

delay; “**”: Observation with two-steps delay. Packet dropouts: y(22), y(24), y(28), y(30), y(85), y(86). 

Time k 1 2 3 4 5 6 7 8 9 10 

Observations y(1) y(2) y(3) y(4) y(5) y(6) y(7) y(8) y(9) y(10) 

Degraded 

delayed 

observations 

𝑦𝑑(1) 𝑦𝑑(2) 𝑦𝑑(3) 𝑦𝑑(4) 𝑦𝑑(5) 𝑦𝑑(6) 𝑦𝑑(7) 𝑦𝑑(8) 𝑦𝑑(9) 𝑦𝑑(10) 

………… 

Time k 21 22 23 24 25 26 27 28 29 30 

Observations y(21) y(22) y(23) y(24) y(25) y(26) y(27) y(28) y(29) y(30) 

Degraded 

delayed 

observations 

𝑦𝑑(21) 𝑦𝑑(21) 

* 

𝑦𝑑(23) 𝑦𝑑(23) 

* 

𝑦𝑑(25) 𝑦𝑑(26) 𝑦𝑑(27) 𝑦𝑑(27) 

* 

𝑦𝑑(29) 𝑦𝑑(29) 

* 

…………. 

Time k 81 82 83 84 85 86 87 88 89 90 

Observations y(81) y(82) y(83) y(84) y(85) y(86) y(87) y(88) y(89) y(90) 

Degraded 

delayed 

observations 

𝑦𝑑(81) 𝑦𝑑(82) 𝑦𝑑(83) 𝑦𝑑(84) 𝑦𝑑(84) 

* 

𝑦𝑑(84) 

** 

𝑦𝑑(87) 𝑦𝑑(88) 𝑦𝑑(89) 𝑦𝑑(90) 

Referring to Fig.1 in Liu et al. (2018), Table 1 shows the sequence of the observations with random one-step or 

two-steps delays. Here, the probabilities of one step and two-steps delays are 0.1 and 0.05 respectively. Packet 

dropout occurs when the observed value is delayed. This phenomena are shown in the observation sequence 

of Table 1. 𝑦𝑑(𝑘) in Table 1 represents the degraded observed value of the observed value y(k) by the random 
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delays and the uncertain parameters in the system matrix and the observation vector. Section 3 describes on 

the robust estimation technique based on the state-space model including the uncertain parameters, and the 

robust RLS Wiener filtering and fixed-point smoothing algorithms with the degraded observations (Nakamori, 

2019a, 2019b).  

3. Robust RLS Wiener filtering and fixed-point smoothing algorithms (Nakamori, 2019a, 2019b) 

Let the signal 𝑧(𝑘)  be generated by the state-space model in linear discrete-time wide-sense stationary 

stochastic 

 

𝑦(𝑘) = 𝑧(𝑘) + 𝑣(𝑘), 𝑧(𝑘) = 𝐻𝑥(𝑘),

𝑥(𝑘 + 1) = Φ𝑥(𝑘) + Γ𝑤(𝑘),

𝐸[𝑣(𝑘)𝑣(𝑠)] = 𝑅𝛿𝐾(𝑘 − 𝑠),

𝐸[𝑤(𝑘)𝑤𝑇(𝑠)] = 𝑄𝛿𝐾(𝑘 − 𝑠).

 (1) 

systems. Here, 𝑧(𝑘): signal to be estimated; 𝐻: m × n observation matrix; 𝑥(𝑘): 𝑛 × 1 state vector; 𝑣(𝑘): zero-

mean white observation noise with variance R ; Φ:  state transition matrix; 𝑤(𝑘):  white-noise input with 

variance Q; Γ: 𝑛 × 𝑙 input matrix. Let the signal process be independent of the observation noise process. Let the 

signal process be fit to the autoregressive (AR) model of the finite order 𝑀.  

 

𝑧(𝑘) = −𝑎1𝑧(𝑘 − 1) − 𝑎2𝑧(𝑘 − 2)⋯

−𝑎𝑀𝑧(𝑘 − 𝑀) + 𝑒(𝑘),

𝐸[𝑒(𝑘)𝑒(𝑠)] = 𝑄𝛿𝐾(𝑘 − 𝑠)
 (2) 

The system matrix Φ in (1) is not necessarily restricted to the controllable canonical form. Let us express the 

signal 𝑧(𝑘) by the state vector 𝑥(𝑘)𝑎𝑠  

 

𝑧(𝑘) = 𝐻𝑥(𝑘), 𝐻 = [𝐼𝑚×𝑚 0 0 ⋯ 0 0],

𝑥(𝑘) =

[
 
 
 
 
 

𝑥1(𝑘)

𝑥2(𝑘)

⋮
𝑥𝑀−1(𝑘)

𝑥𝑀(𝑘) ]
 
 
 
 
 

=

[
 
 
 
 

𝑧(𝑘)

𝑧(𝑘 + 1)
⋮

𝑧(𝑘 + 𝑀 − 2)

𝑧(𝑘 + 𝑀 − 1)]
 
 
 
 

.
 (3) 

From (2), the state equation for 𝑥(𝑘) is given by 

 

𝑥(𝑘 + 1) = Φ𝑥(𝑘) + Γ𝑤(𝑘),

𝐸[𝑤(𝑘)𝑤𝑇(𝑠)] = 𝑄𝛿𝐾(𝑘 − 𝑠),

Φ =

[
 
 
 
 

0 𝐼𝑚×𝑚 0 ⋯ 0

0 0 𝐼𝑚×𝑚 ⋯ 0

⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ 𝐼𝑚×𝑚

−𝑎𝑀 −𝑎𝑀−1 −𝑎𝑀−2 ⋯ −𝑎1 ]
 
 
 
 

,

𝑤(𝑘) = 𝑒(𝑘 + 𝑁),

 (4) 

with the system matrix Φ in the controllable canonical form. The AR parameters 𝑎𝑖, 1 ≤ 𝑖 ≤ 𝑀, are calculated by 

the Yule-Walker equation (Nakamori, 2019b), which uses the auto-covariance function of the signal 𝑧(𝑘) , 

𝐾𝑧(𝑘, 𝑠) = 𝐸[𝑧(𝑘)𝑧𝑇(𝑠)] = 𝐾𝑧(𝑖), 𝑖 = 𝑘 − 𝑠, 0 ≤ 𝑖 ≤ 𝑁.  
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𝐾(𝑘, 𝑘)

[
 
 
 
 
 

𝑎1
𝑇

𝑎2
𝑇

⋮
𝑎𝑀−1

𝑇

𝑎𝑀
𝑇 ]

 
 
 
 
 

= −

[
 
 
 
 

𝐾𝑧
𝑇(1)

𝐾𝑧
𝑇(2)
⋮

𝐾𝑧
𝑇(𝑀 − 1)

𝐾𝑧
𝑇(𝑀) ]

 
 
 
 

,

𝐾(𝑘, 𝑘)

=

[
 
 
 
 

𝐾𝑧(0) 𝐾𝑧(1) ⋯

𝐾𝑧
𝑇(1) 𝐾𝑧(0) ⋯
⋮ ⋮ ⋱

𝐾𝑧
𝑇(𝑀 − 2) 𝐾𝑧

𝑇(𝑀 − 3) ⋯

𝐾𝑧
𝑇(𝑀 − 1) 𝐾𝑧

𝑇(𝑀 − 2) ⋯

𝐾𝑧(𝑀 − 2) 𝐾𝑧(𝑀 − 1)

𝐾𝑧(𝑀 − 3) 𝐾𝑧(𝑀 − 2)
⋮ ⋮

𝐾𝑧(0) 𝐾𝑧(1)

𝐾𝑧
𝑇(1) 𝐾𝑧(0) ]

 
 
 
 

.

 (5) 

In Nakamori (2019a, 2019b), the degraded observations �̆�(𝑘) are generated by the state-space model with the 

uncertain quantities ΔΦ(𝑘) in the system matrix and ∆H(k) in the observation matrix. �̆�(𝑘) is given as the sum 

of the degraded signal �̆�(𝑘) and the white observation noise 𝑣(𝑘). The robust estimators (Nakamori, 2019a, 

2019b) do not require any information on ΔΦ(𝑘) and ∆H(k). 

 

�̆�(𝑘) = �̆�(𝑘) + 𝑣(𝑘), �̆�(𝑘) = �̆�(𝑘)�̆�(𝑘),

�̆�(𝑘 + 1) = Φ̆(𝑘)�̆�(𝑘) + Γ̆𝜁(𝑘),

Φ̆(𝑘) = Φ + ΔΦ(𝑘), �̆�(𝑘) = 𝐻(𝑘) + ∆H(𝑘) 

 (6) 

In Nakamori (2019a, 2019b), the degraded signal �̆�(𝑘) is also fitted to the AR model of the 𝑁-th order. 

 

�̆�(𝑘) = −�̆�1�̆�(𝑘 − 1) − �̆�2�̆�(𝑘 − 2)⋯
−�̆�𝑁�̆�(𝑘 − 𝑁) + �̆�(𝑘),

𝐸[�̆�(𝑘)�̆�(𝑠)] = �̆�𝛿𝐾(𝑘 − 𝑠)

 (7) 

In (6), it is considered that the degraded signal �̆�(𝑘) is influenced by the uncertainties in the system matrix Φ̆(𝑘), 

the observation matrix �̆�(𝑘), the input matrix Γ̆, the white-noise input 𝜁(𝑘). In Nakamori (2019a, 2019b), the 

uncertainties of the system and observation matrices are supposed in particular. Since the degraded signal �̆�(𝑘) 

is modelled in terms of the AR model, it results in that the robust RLS Wiener estimators (Nakamori, 2019a, 

2019b) do not use the information on ΔΦ(𝑘) and ∆H(𝑘) at all. If the observation �̆�(𝑘) is delayed, the degraded 

signal �̆�(𝑘) is also delayed accordingly. The additional observation noise v(k) is statistically independent of 

�̆�(𝑘). From this fact, the robust RLS Wiener estimators might be suggested to estimate the signal 𝑧(𝑘) with the 

randomly delayed observations regarding the systems having the uncertain parameters in the system and 

observation matrices. This paper examines to estimate the signal with the delayed and degraded observations 

from numerical aspect. In terms of the state vector �̆�(𝑘), �̆�(𝑘) is expressed as  

 

�̆�(𝑘) = �̆��̆�(𝑘), �̆� = [𝐼𝑚×𝑚 0 0 ⋯ 0],

�̆�(𝑘) =

[
 
 
 
 

�̆�1(𝑘)

�̆�2(𝑘)
⋮

�̆�𝑁−1(𝑘)

�̆�𝑁(𝑘) ]
 
 
 
 

=

[
 
 
 
 

�̆�(𝑘)

�̆�(𝑘 + 1)
⋮

�̆�(𝑘 + 𝑁 − 2)

�̆�(𝑘 + 𝑁 − 1)]
 
 
 
 

.
 (8) 

From (7), the state equation for the state vector �̆�(𝑘) is given by 
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�̆�(𝑘 + 1) = Φ̆�̆�(𝑘) + Γ̆𝜁(𝑘),

𝐸[𝜁(𝑘)𝜁𝑇(𝑠)] = �̆�𝛿𝐾(𝑘 − 𝑠),

Φ̆ =

[
 
 
 
 

0 𝐼𝑚×𝑚 0 ⋯ 0

0 0 𝐼𝑚×𝑚 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ 𝐼𝑚×𝑚

−�̆�𝑁 −�̆�𝑁−1 −�̆�𝑁−2 ⋯ −�̆�1 ]
 
 
 
 

,

Γ =

[
 
 
 
 

0

0

0
⋮

𝐼𝑚×𝑚]
 
 
 
 

,

𝜁(𝑘) = �̆�(𝑘 + 𝑁).

 (9) 

The auto-covariance function 𝐾(𝑘, 𝑠) of the state vector �̆�(𝑘) is represented as  

 
𝐾(𝑘, 𝑠) = {

𝐴(𝑘)𝐵𝑇(𝑠),0 ≤ 𝑠 ≤ 𝑘,

𝐵(𝑘)𝐴𝑇(𝑠),0 ≤ 𝑘 ≤ 𝑠,

𝐴(𝑘) = Φ̆
𝑘
, 𝐵𝑇(𝑠) = Φ̆

−𝑠
𝐾(𝑠, 𝑠).

 (10) 

Here, 𝐾(𝑘, 𝑘) is expressed, with the auto-variance function 𝐾𝑧(𝑘 − 𝑠) = 𝐸[�̆�(𝑘)�̆�𝑇(𝑠)] of the degraded signal 

�̆�(𝑘), as 

 

𝐾(𝑘, 𝑘) = 𝐸

[
 
 
 
 
 

[
 
 
 
 

�̆�(𝑘)

�̆�(𝑘 + 1)
⋮

�̆�(𝑘 + 𝑁 − 2)

�̆�(𝑘 + 𝑁 − 1)]
 
 
 
 

× [�̆�𝑇(𝑘) �̆�𝑇(𝑘 + 1) ⋯

�̆�𝑇(𝑘 + 𝑁 − 2) �̆�𝑇(𝑘 + 𝑁 − 1)]

=

[
 
 
 
 

𝐾𝑧(0) 𝐾𝑧(−1) ⋯

𝐾𝑧(1) 𝐾𝑧(0) ⋯
⋮ ⋮ ⋱

𝐾𝑧(𝑁 − 2) 𝐾𝑧(𝑁 − 3) ⋯

𝐾𝑧(𝑁 − 1) 𝐾𝑧(𝑁 − 2) ⋯

𝐾�̆�(−𝑁 + 2) 𝐾𝑧(−𝑁 + 1)

𝐾�̆�(−𝑁 + 3) 𝐾𝑧(−𝑁 + 2)
⋮ ⋮

𝐾𝑧(0) 𝐾𝑧(−1)

𝐾𝑧(1) 𝐾𝑧(0) ]
 
 
 
 

.

 (11) 

By using 𝐾𝑧(𝑖), 0 ≤ 𝑖 ≤ 𝑁 , the Yule-Walker equation for the AR parameters �̆�𝑖 , 1 ≤ 𝑖 ≤ 𝑁, is given by (9) in 

Nakamori (2019a, 2019b). Also, the cross-covariance function 𝐾𝑥𝑥(𝑘, 𝑠) = 𝐸[𝑥(𝑘)�̆�𝑇(𝑠)] of the state vector 𝑥(𝑘) 

with �̆�(𝑠) is represented as 

 
𝐾𝑥𝑥(𝑘, 𝑠) = 𝛼(𝑘)𝛽𝑇(𝑠),0 ≤ 𝑠 ≤ 𝑘,

𝛼(𝑘) = Φ
𝑘, 𝛽𝑇(𝑠) = Φ

−𝑠𝐾𝑥𝑥(𝑠, 𝑠).
 (12) 

Based on the prerequisites on the linear robust estimation problem in the above, Theorem 1 presents the robust 

RLS Wiener filtering and fixed-point smoothing algorithms (Nakamori, 2019a, 2019b) for estimating the signal 

𝑧(𝑘).  

Theorem 1 (Nakamori, 2019a, 2019b) Let the state-space model containing the uncertain quantities ΔΦ(k) and 

𝐻(𝑘) be given by (6) in linear discrete-time stochastic systems. Let the state-space model for the signal 𝑧(𝑘) be 

given by (1). Let the signal 𝑧(𝑘) and the degraded signal �̆�(𝑘) be fitted to the AR models of the orders 𝑀 and 𝑁 

respectively. Let the variance 𝐾(𝑘, 𝑘)  of the state vector �̆�(𝑘)  for the degraded signal �̆�(𝑘)  and the cross-

variance 𝐾𝑥𝑥(𝑘, 𝑘) of the state vector 𝑥(𝑘) for the signal 𝑧(𝑘) with the state vector �̆�(𝑘) for the degraded signal 
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�̆�(𝑘) be given by (12). Let the variance of the white observation noise 𝑣(𝑘) be 𝑅. Then, the robust RLS Wiener 

estimation algorithms for the filtering estimate �̂�(𝑘, 𝑘) and the fixed-point smoothing estimate �̂�(𝑘, 𝐿) of the 

signal 𝑧(𝑘) consist of (13)-(23).  

Fixed-point smoothing estimate of the signal 𝑧(𝑘) at the fixed point k: �̂�(𝑘, 𝐿)  

 �̂�(𝑘, 𝐿) = 𝐻�̂�(𝑘, 𝐿) (13) 

Fixed-point smoothing estimate of the state vector 𝑥(𝑘) at the fixed point k: �̂�(𝑘, 𝐿) 

 
�̂�(𝑘, 𝐿) = �̂�(𝑘, 𝐿 − 1) + ℎ(𝑘, 𝐿, 𝐿)(�̆�(𝐿) − �̆�Φ̆�̂̆�(𝐿 − 1, 𝐿 − 1)),

�̂�(𝑘, 𝐿)|𝐿=𝑘 = �̂�(𝑘, 𝑘)
 (14) 

Smoother gain for �̂�(𝑘, 𝐿) in (14): ℎ(𝑘, 𝐿, 𝐿)  

 
ℎ(𝑘, 𝐿, 𝐿) = [𝐾𝑥𝑥(𝑘, 𝑘)(Φ̆

𝑇
)𝐿−𝑘�̆�𝑇 − 𝑞(𝑘, 𝐿 − 1)Φ̆

𝑇
�̆�𝑇]

× {𝑅 + �̆�[𝐾(𝐿, 𝐿) − Φ̆𝑆0(𝐿 − 1)Φ̆
𝑇
]�̆�𝑇}−1

 (15) 

 

 
𝑞(𝑘, 𝐿) = 𝑞(𝑘, 𝐿 − 1)Φ̆

𝑇
+ ℎ(𝑘, 𝐿, 𝐿)�̆�[𝐾(𝐿, 𝐿) − Φ̆𝑆0(𝐿 − 1)Φ̆

𝑇
],

𝑞(𝑘, 𝑘) = 𝑆0(𝑘)
 (16) 

Filtering estimate of the signal 𝑧(𝑘): �̂�(𝑘, 𝑘)  

 �̂�(𝑘, 𝑘) = 𝐻�̂�(𝑘, 𝑘) (17) 

Filtering estimate of 𝑥(𝑘): �̂�(𝑘, 𝑘)  

 
�̂�(𝑘, 𝑘) = Φ�̂�(𝑘 − 1, 𝑘 − 1) + 𝐺(𝑘)(�̆�(𝑘) − �̆�Φ̆�̂̆�(𝑘 − 1, 𝑘 − 1)),

�̂�(0,0) = 0
 (18) 

Filter gain for �̂�(𝑘, 𝑘) in (18): 𝐺(𝑘)  

 

𝐺(𝑘) = [𝐾𝑥𝑧(𝑘, 𝑘) − Φ𝑆(𝑘 − 1)Φ̆
𝑇
�̆�𝑇]

× {𝑅 + �̆�[𝐾(𝑘, 𝑘) − Φ̆𝑆0(𝐿 − 1)Φ̆
𝑇
]�̆�𝑇}−1,

𝐾𝑥𝑧(𝑘, 𝑘) = 𝐾𝑥𝑥(𝑘, 𝑘)�̆�𝑇

 (19) 

Filtering estimate of �̆�(𝑘): �̂̆�(𝑘, 𝑘)  

 
�̂̆�(𝑘, 𝑘) = Φ̆�̂̆�(𝑘 − 1, 𝑘 − 1) + 𝑔(𝑘)(�̆�(𝑘) − �̆�Φ̆�̂̆�(𝑘 − 1, 𝑘 − 1)),

�̂̆�(0,0) = 0
 (20) 

Filter gain for �̂̆�(𝑘, 𝑘) in (20): 𝑔(𝑘) 

 
𝑔(𝑘) = [𝐾(𝑘, 𝑘)�̆�𝑇 − Φ̆𝑆0(𝑘 − 1)Φ̆

𝑇
�̆�𝑇]

× {𝑅 + �̆�[𝐾(𝑘, 𝑘) − Φ̆𝑆0(𝐿 − 1)Φ̆
𝑇
]�̆�𝑇}−1

 (21) 

Auto-variance function of �̂̆�(𝑘, 𝑘): 𝑆0(𝑘) = 𝐸[�̂̆�(𝑘, 𝑘)�̂̆�𝑇(𝑘, 𝑘)]  

 
𝑆0(𝑘) = Φ̆𝑆0(𝑘 − 1)Φ̆

𝑇
+ 𝑔(𝑘)�̆�[𝐾(𝑘, 𝑘) − Φ̆𝑆0(𝑘 − 1)Φ̆

𝑇
],

𝑆0(0) = 0
 (22) 

Cross-variance function of �̂�(𝑘, 𝑘) with �̂̆�(𝑘, 𝑘): 𝑆(𝑘) = 𝐸[�̂�(𝑘, 𝑘)�̂̆�𝑇(𝑘, 𝑘)]  

 
𝑆(𝑘) = Φ𝑆(𝑘 − 1)Φ̆

𝑇
+ 𝐺(𝑘)�̆�[𝐾(𝑘, 𝑘) − Φ̆𝑆0(𝑘 − 1)Φ̆

𝑇
],

𝑆(0) = 0
 (23) 

  

Section 4 shows the estimation characteristics numerically for the filter and the fixed-point smoother by the RLS 

Wiener filter and fixed-point smoother (Nakamori, 1995), the robust RLS Wiener estimators (Nakamori, 2019a, 
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2019b), and the RLS Wiener estimators (Nakamori, 2018), which are designed for the randomly delayed and 

uncertain observations. 

4. A numerical simulation example 

Let a scalar observation equation and a state equation for 𝑥(𝑘) be given by  

 

𝑦(𝑘) = 𝑧(𝑘) + 𝑣(𝑘), 𝑧(𝑘) = 𝐻𝑥(𝑘), 𝐻 = [0.95 −0.4], 𝑥(𝑘) = [
𝑥1(𝑘)

𝑥2(𝑘)
] ,

𝑥(𝑘 + 1) = Φ𝑥(𝑘) + Γ𝑤(𝑘), Φ = [
0.05 0.95

−0.98 0.2
] , Γ = [

0.952
0.2

] ,

𝐸[𝑣(𝑘)𝑣(𝑠)] = 𝑅𝛿𝐾(𝑘 − 𝑠), 𝐸[𝑤(𝑘)𝑤(𝑠)] = 𝑄𝛿𝐾(𝑘 − 𝑠), 𝑄 = 0. 52.

 (24) 

As shown in (2), the signal 𝑧(𝑘) is fitted to the 𝑀-th order AR model, M = 5. The state-space model contains the 

uncertain quantities Δ𝐻(𝑘) and ΔΦ(𝑘) as 

 

�⃑�(𝑘) = �̆�(𝑘) + 𝑣(𝑘), �̆�(𝑘) = �̄�(𝑘)�̄�(𝑘), �̄�(𝑘) = [
�̄�1(𝑘)

�̄�2(𝑘)
] ,

�̄�(𝑘) = 𝐻 + Δ𝐻(𝑘) = [1 + Δ3(𝑘) 0], Δ𝐻(𝑘) = [Δ3(𝑘) 0], Δ3(𝑘) = 0.3𝜁3(𝑘),

�̄�(𝑘 + 1) = Φ̄(𝑘)�̄�(𝑘) + Γ𝑤(𝑘), Φ̄(𝑘) = Φ + ΔΦ(𝑘), ΔΦ(𝑘) = [
Δ1(𝑘) 0

0 Δ2(𝑘)
] ,

Δ1(𝑘) = 0.1𝜁1(𝑘), Δ2(𝑘) = 0.2𝜁2(𝑘).

 (25) 

The observed values �̆�(𝑘) in Theorem 1 are generated as the random delays of the observed values �⃑�(𝑘) in (25) 

by one step or two steps. The probabilities of one-step and two-steps delays are 0.1 and 0.05 respectively. 𝜁1(𝑘), 

𝜁2(𝑘) and 𝜁3(𝑘) in (25) represent the uniformly distributed random variables taking values in the range 0 to 1. 

Δ1(𝑘), Δ2(𝑘) and Δ3(𝑘) consist of the deterministic mean values and the zero-mean random variables, which are 

mutually independent. The degraded signal �̆�(𝑘) is fitted to the 𝑁-th order AR model, N = 5. The system matrix 

Φ̆ for the state vector �̆�(𝑘) is given in (9). In terms of the auto-covariance function 𝐾𝑧(𝑘 − 𝑠) = 𝐾𝑧(𝑠 − 𝑘) =

𝐸[�̆�(𝑘)�̆�(𝑠)] of the degraded signal �̆�(𝑘), the auto-variance function 𝐾(𝑘, 𝑘) of the state vector �̆�(𝑘) is given by 

 

𝐾(𝑘, 𝑘) = 𝐸

[
 
 
 
 
 

[
 
 
 
 

�̆�(𝑘)

�̆�(𝑘 + 1)
⋮

�̆�(𝑘 + 𝑁 − 2)

�̆�(𝑘 + 𝑁 − 1)]
 
 
 
 

[�̆�(𝑘) �̆�(𝑘 + 1) ⋯ �̆�(𝑘 + 𝑁 − 2) �̆�(𝑘 + 𝑁 − 1)]

]
 
 
 
 
 

=

[
 
 
 
 

𝐾𝑧(0) 𝐾𝑧(1) ⋯ 𝐾𝑧(𝑁 − 2) 𝐾𝑧(𝑁 − 1)

𝐾𝑧(1) 𝐾𝑧(0) ⋯ 𝐾𝑧(𝑁 − 3) 𝐾𝑧(𝑁 − 2)
⋮ ⋮ ⋱ ⋮ ⋮

𝐾𝑧(𝑁 − 2) 𝐾𝑧(𝑁 − 3) ⋯ 𝐾𝑧(0) 𝐾𝑧(1)

𝐾𝑧(𝑁 − 1) 𝐾𝑧(𝑁 − 2) ⋯ 𝐾𝑧(1) 𝐾𝑧(0) ]
 
 
 
 

.

 (26) 

Let 𝐾𝑧𝑧(𝑘, 𝑠) = 𝐸[𝑧(𝑘)�̆�(𝑠)] represent the cross-covariance function of the signal 𝑧(𝑘) with the degraded signal 

�̆�(𝑠). From (3) and (12), the cross-covariance function 𝐾𝑥𝑥(𝑘, 𝑠) is given by 
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𝐾𝑥�̆�(𝑘, 𝑠) = Φ
𝑘−𝑠𝐾𝑥𝑥(𝑠, 𝑠),0 ≤ 𝑠 ≤ 𝑘,

𝐾𝑥�̆�(𝑘, 𝑘) = 𝐸

[
 
 
 
 
 

[
 
 
 
 

𝑥1(𝑘)

𝑥2(𝑘)

⋮
𝑥𝑀−1(𝑘)

𝑥𝑀(𝑘) ]
 
 
 
 

[�̆�(𝑘) �̆�(𝑘 + 1) ⋯ �̆�(𝑘 + 𝑁 − 2) �̆�(𝑘 + 𝑁 − 1)]

]
 
 
 
 
 

=

[
 
 
 
 

𝐾𝑧𝑧(𝑘, 𝑘)] 𝐾𝑧𝑧(𝑘, 𝑘 + 1)

𝐾𝑧𝑧(𝑘 + 1, 𝑘) 𝐾𝑧𝑧(𝑘 + 1, 𝑘 + 1)
⋮ ⋮

𝐾𝑧𝑧(𝑘 + 𝑀 − 2, 𝑘) 𝐾𝑧𝑧(𝑘 + 𝑀 − 2, 𝑘 + 1)

𝐾𝑧𝑧(𝑘 + 𝑀 − 1, 𝑘) 𝐾𝑧𝑧(𝑘 + 𝑀 − 1, 𝑘 + 1)

⋯ 𝐾𝑧𝑧(𝑘, 𝑘 + 𝑁 − 2) 𝐾𝑧𝑧(𝑘, 𝑘 + 𝑁 − 1)

⋯ 𝐾𝑧�̆�(𝑘 + 1, 𝑘 + 𝑁 − 2) 𝐾𝑧𝑧(𝑘 + 1, 𝑘 + 𝑁 − 1)
⋱ ⋮ ⋮
⋯ 𝐾𝑧𝑧(𝑘 + 𝑀 − 2, 𝑘 + 𝑁 − 2) 𝐾𝑧𝑧(𝑘 + 𝑀 − 2, 𝑘 + 𝑁 − 1)

⋯ 𝐾𝑧𝑧(𝑘 + 𝑀 − 1, 𝑘 + 𝑁 − 2) 𝐾𝑧𝑧(𝑘 + 𝑀 − 1, 𝑘 + 𝑁 − 1)]
 
 
 
 

.

 (27) 

Fig. 1 illustrates the signal z(k), the filtering estimate �̂�(k, k) and the fixed-point smoothing estimate �̂�(𝑘, 𝑘 + 1) 

by the robust RLS Wiener filter and fixed-point smoother (Nakamori, 2019a, 2019b) vs. time k with the 

observations randomly delayed and degraded by the uncertain parameters in the system matrix and the 

observation vector for the white Gaussian observation noise N(0,0. 32). Fig. 2 illustrates the mean-square values 

(MSVs) of the filtering errors z(k) − �̂�(𝑘, 𝑘) and the fixed-point smoothing errors z(k) − �̂�(𝑘, 𝑘 + 𝐿𝑎𝑔), 1 ≤ Lag ≤

10, 1 ≤ k ≤ 2000, vs. Lag by the RLS Wiener filter and the fixed-point smoother (Nakamori, 1995) with the 

observations randomly delayed and degraded by the uncertain parameters in the system matrix and the 

observation vector. Fig. 2 indicates, in comparison with the MSV of the filtering errors, that the MSV of the fixed-

point smoothing errors decreases for each observation noise. Fig. 3 Illustrates the MSVs of the filtering errors 

z(k) − �̂�(𝑘, 𝑘) and the fixed-point smoothing errors z(k) − �̂�(𝑘, 𝑘 + 𝐿𝑎𝑔), 1 ≤ Lag ≤ 10, 1 ≤ k ≤ 2000, vs. Lag by 

the robust RLS Wiener filter and fixed-point smoother  (Nakamori, 2019a, 2019b) with the observations randomly 

delayed and degraded by the uncertain parameters in the system matrix and the observation vector. Fig. 3 

indicates that the MSV of the fixed-point smoothing errors is larger than the MSV of the filtering errors for each 

observation noise. From Fig. 2 and Fig. 3, the estimation accuracy of the robust RLS Wiener filter is superior to 

the RLS Wiener filter and fixed-point smoother for each observation noise. Fig. 4 illustrates the MSVs of the 

filtering errors z(k) − �̂�(𝑘, 𝑘)  and the fixed-point smoothing errors z(k) − �̂�(𝑘, 𝑘 + 𝐿𝑎𝑔), 1 ≤ Lag ≤ 10, 1 ≤ k ≤

2000, vs. Lag by the RLS Wiener filter and fixed-point smoother (Nakamori, 2018), which are designed for the 

delayed and uncertain observations, with the observations randomly delayed for the system with the uncertain 

parameters in the system matrix and the observation vector. From Fig. 3 and Fig. 4, the estimation accuracies of 

the robust RLS Wiener estimators (Nakamori, 2019a, 2019b) are superior in estimation accuracy to the RLS 

Wiener estimators (Nakamori, 2018) for the observation noises N(0, 0.12), N(0, 0.32) and  N(0, 0.72), except for 

N(0, 0.52). Fig. 5 illustrates the MSVs of the filtering errors z(k) − �̂�(𝑘, 𝑘) and the fixed-point smoothing errors 

z(k) − �̂�(𝑘, 𝑘 + 𝐿𝑎𝑔) , 1 ≤ Lag ≤ 10 , 1 ≤ k ≤ 2000 , vs. Lag by the robust RLS Wiener filter and fixed-point 

smoother  (Nakamori, 2019a, 2019b) with the randomly delayed observations, provided that the uncertain 

parameters are Δ1(𝑘) = 0, Δ2(𝑘) = 0 and Δ3(𝑘) = 0. Fig. 6. Illustrates the MSVs of the filtering errors z(k) −

�̂�(𝑘, 𝑘)  and the fixed-point smoothing errors z(k) − �̂�(𝑘, 𝑘 + 𝐿𝑎𝑔), 1 ≤ Lag ≤ 10, 1 ≤ k ≤ 2000, vs. Lag by the 

RLS Wiener filter and fixed-point smoother (Nakamori, 2018) with the randomly delayed observations. From Fig. 

5 and Fig. 6, it is shown, for the randomly delayed observed values, that the estimation accuracies of the robust 

RLS Wiener filter and fixed-point smoother (Nakamori, 2019a, 2019b) are superior to the RLS Wiener estimators 

(Nakamori, 2018). 
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Fig. 1 Signal z(k), filtering estimate �̂�(k, k)  and fixed-point smoothing estimate �̂�(𝑘, 𝑘 + 1) by robust RLS Wiener 

filter and fixed-point smoother (Nakamori, 2019a, 2019b) vs. time k with observations randomly delayed and 

degraded by uncertain parameters in system matrix and observation vector for white Gaussian observation noise 

N(0,0. 32). 

 

Fig. 2 Mean-square values of filtering errors z(k) − �̂�(𝑘, 𝑘)  and fixed-point smoothing errors z(k) − �̂�(𝑘, 𝑘 +

𝐿𝑎𝑔), 1 ≤ Lag ≤ 10, 1 ≤ k ≤ 2000, vs. Lag by RLS Wiener filter and fixed-point smoother (Nakamori, 1995) with 

observations randomly delayed and degraded by uncertain parameters in system matrix and observation vector. 
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Fig. 3 Mean-square values of filtering errors z(k) − �̂�(𝑘, 𝑘)  and fixed-point smoothing errors z(k) − �̂�(𝑘, 𝑘 +

𝐿𝑎𝑔), 1 ≤ Lag ≤ 10, 1 ≤ k ≤ 2000, vs. Lag by robust RLS Wiener filter and fixed-point smoother (Nakamori, 

2019a, 2019b) with observations randomly delayed and degraded by uncertain parameters in system matrix and 

observation vector. 

 

Fig. 4 Mean-square values of filtering errors z(k) − �̂�(𝑘, 𝑘)  and fixed-point smoothing errors z(k) − �̂�(𝑘, 𝑘 +

𝐿𝑎𝑔), 1 ≤ Lag ≤ 10, 1 ≤ k ≤ 2000, vs. Lag by RLS Wiener filter and fixed-point smoother (Nakamori, 2018), which 

are designed for delayed and uncertain observations, with observations randomly delayed and degraded by 

uncertain parameters in system matrix and observation vector. 
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Fig. 5 Mean-square values of filtering errors z(k) − �̂�(𝑘, 𝑘)  and fixed-point smoothing errors z(k) − �̂�(𝑘, 𝑘 +

𝐿𝑎𝑔), 1 ≤ Lag ≤ 10, 1 ≤ k ≤ 2000, vs. Lag by robust RLS Wiener filter and fixed-point smoother (Nakamori, 

2019a, 2019b) with randomly delayed observations. 

 

Fig. 6 Mean-square values of filtering errors z(k) − �̂�(𝑘, 𝑘)  and fixed-point smoothing errors z(k) − �̂�(𝑘, 𝑘 +

𝐿𝑎𝑔), 1 ≤ Lag ≤ 10, 1 ≤ k ≤ 2000, vs. Lag by RLS Wiener filter and fixed-point smoother (Nakamori, 2018), which 

are designed for delayed and uncertain observations, with randomly delayed observations. 

5. Conclusions 

This paper has investigated numerically on the estimation characteristics of the robust RLS Wiener filter and 

fixed-point smoother with the delayed, packet dropouts and out-of-order packets observed values for the 

systems with or without the uncertain parameters in the system matrix and the observation vector. The 

estimation characteristics are compared for the scalar signal with the existing estimators.  

(1) The estimation accuracy of the robust RLS Wiener filter is superior to the RLS Wiener filter and fixed-

point smoother. 

(2) The estimation accuracy of the robust RLS Wiener filter is superior to the RLS Wiener filter and fixed-

point smoother, which are designed for the delayed and uncertain observations, for the observation noises 

N(0, 0.12), N(0, 0.32) and  N(0, 0.72), except for N(0, 0.52). 
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(3) In the case of the observations with random delays and without including the uncertain parameters in 

the system matrix and the observation vector, the estimation accuracies of the robust RLS Wiener filter and 

fixed-point smoother are superior to the RLS Wiener filter and fixed-point smoother, which are designed for the 

delayed and uncertain observations. Here, the probability containing the signal in the observed value is set to 

one. 
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