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Abstract: 

In the present review-paper, we start by recalling some of our earlier results on the construction 

of a nontrivial function 𝑓𝑓 defined implicitly by the equation (1), without using the implicit 

function theorem. This is the first aim of the paper. Here the function 𝑔𝑔 is given, satisfying 

some conditions. All these considerations work in the real case, for functions and a class of 

operators. The second aim is to consider the complex case, proving the analyticity of the 

function 𝑓𝑓 defined implicitly, under the hypothesis that 𝑔𝑔 is analytic and verifies natural 

conditions, related to the real case. Some consequences are deduced.  Finally, one illustrates 

the preceding results by an application to a concrete functional and respectively operatorial 

equation. Related examples are given, some of them pointing out elementary functions 𝑔𝑔 for 

which equation (1) leads to nontrivial solutions 𝑓𝑓 that can be expressed by means of 

elementary functions.  

Keywords: constructive solutions; function defined implicitly; analyticity; self-adjoint operators; functional 

calculus. 

1. Introduction  

The equation 

𝑔𝑔 = 𝑔𝑔 ∘ 𝑓 𝑓                                                                               (1) 

where g is given, while f is the unknown function, always has the trivial solution  

,,)( Dxxxf =  

where D  is the domain of definition for .f When (the nonlinear) function g  is firstly decreasing and then 

increasing (hence g−  firstly increases and then decreases), there exists exactly one decreasing nontrivial 

solution ,f  with the proprties stated in Theorem 3.1 below. These equations were studied in [3]-[6]. The 

present review paper is mainly based on article [4]. For concrete functions ,g  one obtains special 

properties of the corresponding solutions .f  

The present approach allows the construction of the solutions of such functional and operatorial 

equations, without using the implicit function theorem. In the operatorial case the solution F  is a function 

of XDU  , where X  is the commutative algebra of selfadjoint operators defined by (3). We 

essentially use the fact that X  is also an order-complete vector lattice, with respect to the natural order 

relation on the real vector space 𝒜𝒜(𝐻)  of all selfadjoint operators acting on the Hilbert space .H  

The background of this paper is partially covered by some chapters from [1] and [9]. Some other types of 

functional and operatorial equations are discussed in [2], [7]. The rest of the paper is organized as follows. 

Section 2 emphasizes the methods applied along this work. In the first part of Section 3, we recall some 

known results on the subject, especially related to the real case. Then we consider the case of complex 

analytic functions. The general idea is that analyticity of 𝑔𝑔 implies the same property for 𝑓𝑓. In the end of 

Section 3, concrete functional and operatorial equations are solved and simple examples when the 

solution can be written explicitly in terms of elementary functions are given.  Section 4 concludes the 

paper.  

 

2. Methods 

The main methods used along this paper are: 
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1) Constructing a real function 𝑓 defined implicitly by a given real continuous function 𝑔 of one real 

variable, under appropriate assumptions on 𝑔 (see Theorem 3.1, assertion (x)), without using the 

implicit function theorem. Deducing basic properties of the “unknown” function 𝑓. 

2) Solving operatorial equations involving functions 𝑔𝑔, 𝑓𝑓 of self-adjoint operators, derived from real 

continuous functions 𝑔𝑔, 𝑓𝑓 by means of functional calculus (see [1] and the references there). For an 

illustrative example, see Theorem 3.7 from below. In particular, equations involving symmetric 

matrices with real entries are under attention.  

3) In the case when 𝑔𝑔 is a complex analytic function of one complex variable, deducing the analyticity 

of 𝑓𝑓. Here elements of elementary complex analysis [9] are applied.  

3. Results and Discussion 

I) The real case 

Theorem 3.1. (see also [3]-[6]). Le t R, vu , vu  , [,] vu  and let R[,:] →vug  be a continuous 

function. Assume that 

 (a) ,R)(lim)(lim ==


wxgxg
vxux

 

(b) g is strictly decreasing on [,] u  and strictly  increasing on [.,[ v  

Then there exists [,][,:] vuvuf →  such that 

[,])),(()( vuxxfgxg =  

and f has the following qualities 

(i) f  is strictly decreasing on [,] vu  and we have 

;)(lim,)(lim uxfvxf
vxux

==


 

(ii)   is the unique fixed point of f; 

(iii) we have ff =−1
 on [;,] vu  

(iv) f is continuous on [;,] vu  

(v) if 𝑔 ∈ 𝐶𝑛(]𝑢, 𝑣[\{𝛼}), 𝑛 ∈ ℕ ∪ {∞}, 𝑛 ≥ 1, then 𝑓 ∈ 𝐶𝑛(]𝑢, 𝑣[\{𝛼}); 

 

(vi) if g is derivable on },{\[,] vu  so is f; 

(vii) if [),,(]2 vuCg   0)( g  and there exists R=
→

)(lim:1 xf
x

 then  

𝑓 ∈ 𝐶1(]𝑢, 𝑣[) ∩ 𝐶2(]𝑢, 𝑣[\{𝛼}) and 𝑓 ′(𝛼) = −1; 

 (viii) if [),,(]3 vuCg   0)( g  and there exist R=
→

)(lim:1 xf
x

 and ,)(lim:2 Rxf
x

=
→

  then  

𝑓 ∈ 𝐶2(]𝑢, 𝑣[) ∩ 𝐶3(]𝑢, 𝑣[\{𝛼}) 

and 

;
)(

)(

3

2
)( 2






g

g
f




−==  

(ix) if g  is analytic at ,  then f  is derivable at   and ( ) ;1−= f  

(x) let ,|: [,] ul gg =  ;|: [,] vr gg =  then we have  

],])}()(;[,[sup{))(()( 000
1

0  uxxgxgvxxggxf lrlr == −   
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and 

[,[)}()(;],]inf{))(()( 000
1

0 vxxgxguxxggxf rlrl  == −   

We recall the geometric meaning of the construction of .f  If  ,\[,] vux  consider the horizontal 

passing through the point ( )( )., xgx  Thanks to the qualities of ,g  this straight line intersect once again 

the graph of g  at exactly one point 

( )( ) ( )( ) .,,, 1111 xxxgxxgx =  

We define 

( ) .1xxf =  

Then we have 

( ) ( ) ( )( )   ( ) .:,\[,],1  === fvuxxfgxgxg  

When x  runs over the interval ( )xfu ],,]   runs over the interval [,,[ v  in the decreasing sense, from v  

to .  When x  runs over the interval [,[ v  (in the increasing sense), ( )xf  runs over the interval ],,] u  

in the decreasing sense, from   to .u  

 Let [,0]   and denote by G  the set of all continuous functions ( ) ,0[,,0][,0:] =→ gg  

which are decreasing on ],0]   and increasing on [,,[   such that 

( ) ( ) .limlim
0

==


xgxg
xx

 

For ,, Ghg   an interesting problem is the following one: find necessary and sufficient conditions on 

hg,  for the equality: 

,hg ff =  

where hg ff ,  are the corresponding functions attached to ,g  respectively to h  by Theorem 3.1. The 

following statement is giving the answer. For the detailed proof see the references of one of the papers 

[3]-[6]. 

Theorem 3.2. Let [.,0],,  Ghg  Then hgghg + ,,   are also elements of G  and the following 

statements are equivalent 

(a) ;hg ff =  

(b) ;,|:,|:, [,[],0]
11 Ggggggghgh rlllrr === 
−−

   

(c) there exists  such that ( ) ,00 =    is continuous and increasing, verifying the 

relation 

ℎ = 𝜑 ∘ 𝑔. 

Next we consider the abstract operatorial version of Theorem 2.1. In the sequel, X  will be an order-

complete vector lattice, and )(XIzom+  will be the set of all vector space isomorphisms XXT →:  

which apply +X  onto itself. 

Theorem 3.3. Let X  be an order-complete vector lattice, +X  its positive cone, ,X  lD  a convex 

subset such that 

[,0[[,0[: →



MathLAB Journal Vol 7 (2020) ISSN: 2582-0389                                                     http://www.purkh.com/index.php/mathlab 

27 

};;{   xXxDl  

rD  a convex subset such that 

};;{   xXxDr  

Let XDg ll →:  be a convex operator such that 

𝜕𝑔𝑙(𝑥) ∩ (−𝐼𝑧𝑜𝑚+(𝑋)) ≠ ∅    ∀𝑥 ∈ 𝐷𝑙\{𝛼} 

Let XDg rr →:  be a convex operator such that 

𝜕𝑔𝑟(𝑥) ∩ (𝐼𝑧𝑜𝑚+(𝑋)) ≠ ∅    ∀𝑥 ∈ 𝐷𝑟\{𝛼} 

We also assume that 

)()(  rl gg =  and ),()( rl gRgR =  

where )(gR  is the range of ,g  while )(xg  is the set of all subgradients of g  at x . Let 

𝑔: 𝐷 ≔ 𝐷𝑙 ∪ 𝐷𝑟 → 𝑋, 
𝑔(𝑥) = 𝑔𝑙(𝑥)  ∀𝑥 ∈ 𝐷𝑙 , 𝑔(𝑥) = 𝑔𝑟(𝑥)  ∀𝑥 ∈ 𝐷𝑟 

Then there exists DDF →:  such that 

DxxFgxg = )),(()(  

F  is strictly decreasing in D  and it has the following properties: 

(i)   is the only fixed point of F; 

(ii) there exists 
1−F  and FF =−1

 on ;D  

(iii)we have 

,)}()(;sup{))(()( 000
1

0 llrrlr DxxgxgDxxggxF == −

.)}()(;inf{))(()( 000
1

0 rrllrl DxxgxgDxxggxF == −
 

II) On the analyticity of the solution. The complex case 

Application of the complex form of the implicit function theorem for a holomorphic function ,~g  that is the 

extension of the real function 𝑔 𝑔  of Theorem 3.1, might be difficult around 𝛼𝛼. Namely considering the 

equation 

( ) ( ) ( ) ,0~~, =−= wgzgwzH  

we have  

( )
( )
( )( )

( ).lim
0

0
~

~
lim,0, zw

zwg

zg

w

H
zz ==




=




→→   

Note that for points from  \[,] vu  we can apply the implicit function theorem (over the complex 

field), which leads to the analyticity of f at such points. Therefore, we only have to study the analyticity at 

𝛼𝛼. 

 

Theorem  3.4. Let g~  be the extension of the function 𝑔  from Theorem 3.1, such that g~  is holomorphic in a 

complex neighborhood of ]𝑢𝑢, 𝑣𝑣[. Then there is a unique holomorphic solution f
~

 of the equation  𝑔̃ = 𝑔̃ ∘ 𝑓 

such that 𝑓𝑓  is the extension of  𝑓𝑓  from Theorem 3.1 to a complex neighborhood of ]𝑢𝑢, 𝑣𝑣[. 

Proof. From the preceding remarks, we have to prove the analyticity of f
~

 only at 𝛼. To this end, let us 

write the following expansions: 

𝑔̃(𝑧) − 𝑔̃(𝛼) = (𝑧 − 𝛼)2𝑘 [
𝑔̃(2𝑘)(𝛼)

(2𝑘)!
+

𝑔̃(2𝑘+1)(𝛼)

(2𝑘 +)!
(𝑧 − 𝛼) + 0(𝑧 − 𝛼)], 
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𝑔̃(𝑓(𝑧)) − 𝑔̃(𝛼) = (𝑓(𝑧) − 𝛼)2𝑘 [
𝑔̃(2𝑘)(𝛼)

(2𝑘)!
+

𝑔̃(2𝑘+1)(𝛼)

(2𝑘 +)!
(𝑓(𝑧) − 𝛼) + 0(𝑓(𝑧) − 𝛼)] 

Here 𝑚𝑚 = 2𝑘 ≥ 2 is the smallest natural number, which for the derivative of order 𝑚 of  𝑔̃  at  𝛼 is not 

vanishing. By Taylor formula, it must be an even number, since 𝛼𝛼 is a minimum point for 𝑔𝑔. On the other 

hand, since  𝑔̃ = 𝑔̃ ∘ 𝑓, elementary computations and the preceding expansions lead to 

( ) ( )( ).lim  fzfz ==→  

Further computations yield 

( ) ( ) ( )( ) ( ) ( )( )
( )( ) ( ) ( )( ) ( )( )

,~~
!2/~

!2/~~~ 2/1

2

2
k

k

k

zfzfkg

zzkg

z

fzf















−+

−+
=

−

−








 

where 𝜑𝜑  is holomorphic around 𝛼𝛼.  It follows that 𝑓′̃(𝛼)  is a 2𝑘𝑘-order root of the unity. Using the fact 

that f
~

 applies intervals of the real line into the real line and that it is decreasing we deduce that 𝑓′̃(𝛼) =

𝑓 ′(𝛼) = −1. This concludes the proof. □ 

In the sequel, for a complex neighborhood 𝑉 of  𝛼𝛼,  we denote 

   

   .0Im,Re;,0Im,Re;

,0Im,Re;,0Im,Re;

==

==

−+

−+

zzVzVzzVzV

zzVzVzzVzV

rr

ll




 

Corollary 3.1. There is a neighborhood V  of   such that  

( )VfVf
~

:
~

→  

is a one to one mapping and we have 𝑓 ∘ 𝑓 = 𝑖𝑑, and 

𝑓(𝑉𝑙
+) = (𝑓(𝑉))

𝑟

−

, 𝑓(𝑉𝑙
−) = (𝑓(𝑉))

𝑟

+

, 𝑓(𝑉𝑟
+) = (𝑓(𝑉))

𝑙

−

, 𝑓(𝑉𝑟
−) = (𝑓(𝑉))

𝑙

+

 

Proof. The first two assertions follow by the local inversion theorem and respectively from the analytic 

continuation principle ( f
~

 is a holomorphic extension of f ). The last four relations are consequences of 

the fact that f
~

 is conformal at 𝑥𝑥0 = 𝛼𝛼, also using the qualities of 𝑓𝑓 (see the comments following 

Theorem 3.1). The conclusions follow. □      

Corollary 3.2. There is a complex neighborhood 𝑊𝑊 of  ]𝑢𝑢, 𝑣𝑣[ such that f
~

 is holomorphic on 𝑊𝑊. 

Corollary 3.3. The function ( )( )


−+
−

zf
z

1
 is univalent in the open disc |𝑧 − 𝛼| < 1 if and only if 

𝑓(𝑧) = −𝑧 + 2𝛼.  

Proof. For the only if part, assume that 

1

𝑧 − 𝛼
+ (𝑓(𝑧) − 𝛼) =

1

𝑧 − 𝛼
− (𝑧 − 𝛼) +

𝑓 ′′(𝛼)

2
(𝑧 − 𝛼)2 + ⋯ 

 

is univalent in the open disc |𝑧𝑧 − 𝛼𝛼| < 1. Then by the area theorem 14.13 [9], we should have 

,1

1

2




=n

nan  

where  𝑎𝑛 𝑎𝑛𝑎𝑛, 𝑛𝑛𝑛 ≥ 1 are the coefficients of the holomorphic part of the preceding expansion. Since 

𝑎𝑎1 = −1, it follows that all the others 𝑎𝑛𝑎𝑛 , 𝑛 ≥ 2 are vanishing, so that 
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( ) ( ) .2,  +−=+−=− zzfzzf  

Conversely, if this last relation is verified, then a straightforward computation shows that the function  

( )( )


−+
−

zf
z

1
 

is univalent in the unit open disc centered at 𝛼𝛼. This concludes the proof. □ 

Remark 3.1. The function 𝑓(𝑧) = −𝑧 + 2𝛼 is an extreme point of the convex set of all holomorphic 

functions with real coefficients ( ) ( ) 


=



=

−=

1

2

1

.1,

n

n
n

n

n anzaz   It is also an extreme point of the 

convex subset of all functions 

( ) ( ) ,2,1,0,1,

2

2
1

1

+−= 


=



=

nmpapazazh nn

n

nm
nn

n

n
n 

 

where  𝑎𝑛, 𝑝𝑛 , 𝑚𝑛𝑚𝑛 are given numbers with the properties from above. 

Theorem 3.5. In a small neighborhood of  𝛼𝛼, we have 

( )
( )
( )

.~

~
2

~

zg

zg
zzf




−  

Proof. The following relations hold true 

( )( ) ( ) ( ) ( )( )
( )

( )( ) ( )( )( ).0
2

~
~~~0

22
zzfzzf

zg
zzfzgzgzfg −+−


+−=−=  

Dividing by 𝑓𝑓(𝑧) − 𝑧𝑧 ≠ 0  and neglecting the remained terms in 𝑓(𝑧) − 𝑧𝑧𝑧, the conclusion follows.□  

                                                                                       

Corollary 3.4. For g~  as above and any linear bounded operator U  acting on a Hilbert space ,H  with 

spectrum𝜎(𝑈) in a small neighborhood of 𝛼 𝛼𝛼, there is a holomorphic function f
~

 such that 

 

( )( ) ( ) ( )( )
( )   ( )( )  

( ) ( ) ( )  ,~~2
~

,0Im
~

0Im

,
~~

,~~~

1−−



==

UgUgUUf

zUfzU

UUffUgUfg

  

for all such operators 𝑈𝑈. 

Proof. Part of the relations follows by analytic functional calculus. For the third relation, one applies 

Corollary 3.1. For the last relation one uses Theorem 3.5. □       

III) Examples and applications 

We consider the functional equation 

( ) ( )( ) ( )( ) .0,0,0,expexp −=−  axxfxfxx
aa  

This equation is equivalent to the following one 

𝑥𝑒𝑥𝑝 

𝑥𝑒𝑥𝑝(−𝑏𝑥) = 𝑓(𝑥)𝑒𝑥𝑝(−𝑏𝑓(𝑥)), 𝑥 > 0, 𝑏 ≔ 𝛽 𝑎⁄ > 0                                             (2) 

Theorem 3.6. There exists a unique decreasing solution 𝑓𝑓𝑓: ]0, ∞[→]0, ∞[ of the equation (2) and this 

solution has the following properties: 
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(i) ( ) ( ) ;0,0 +=−−=+ ff  

(ii) b/1=  is the unique fixed point of ;f  

(iii) ff =−1  on [;,0]   

(iv) the following constructive formulae for ( )xf  hold 

𝑓(𝑥0) = 𝑠𝑢𝑝{𝑥 ∈ [1 𝑏, ∞[; 𝑥 ∙ 𝑒𝑥𝑝(−𝑏𝑥) ≥ 𝑥0⁄ ∙ 𝑒𝑥𝑝(−𝑏𝑥0)}, ∀𝑥0 ∈]0, 1 𝑏],⁄  

𝑓(𝑥0) = 𝑖𝑛𝑓{𝑥 ∈]0, 1 𝑏];⁄ 𝑥 ∙ 𝑒𝑥𝑝(−𝑏𝑥) ≥ 𝑥0 ∙ 𝑒𝑥𝑝(−𝑏𝑥0)}, ∀𝑥0 ∈ [1 𝑏, ∞[;⁄  

(v) f  is the restriction of a holomorphic function f
~

 on a complex neighborhood of [,,0]   such that 

( ) ,
~~

,1/1
~

idffbf =−=  and f
~

 has the properties mentioned in Corollary 3.1; 

(vi) in a small neighborhood of ,/1 b  we have:  

( ) .
2

12~

bz

bz

b
zzf

−

−
+  

Proof. The function 𝑔(𝑥𝑥) = −𝑥𝑥 ∙ 𝑒𝑥𝑝𝑒𝑥𝑝(−𝑏𝑥𝑏𝑥) decreases from 0  to ( ) 11/1 −−−= bebg  in the 

interval  ,,0 1−b  and increases from ( )1−bg  to  0  in the interval ]𝑏−1𝑏, ∞[. Hence the conclusions (i)-(iv) 

follow from Theorem 3.1. The function 𝑔𝑔 is the restriction of a holomorphic function ,~g  with 

𝑔̃′(𝑏−1) = 0, 𝑔̃(𝑛)(𝑧) = (−1)𝑛𝑏𝑛−1 ∙ 𝑒𝑥𝑝(−𝑏𝑧)(𝑛 − 𝑏𝑧), 𝑛 ∈ ℕ, 𝑛 ≥ 1, 𝑧 ∈ ℂ. 

In particular, ( ) ,0~ 1  −bg  so that one applies Corollary 3.1 that leads to the conclusion (v) of the present 

statement. The assertion (vi) follows from Theorem 3.5. The proof is complete. □                                                                                                                                                                                                                                                                                             

Let 𝑔𝑔 𝑔   be the function from the proof of Theorem 3.6. Then there exists appropriate intervals  

]𝑢, 𝑣[ containing 𝑏−1 such that 𝑔 is convex on ]𝑢, 𝑣[, 𝑔(𝑢) 𝑔 = 𝑔(𝑣). The convexity is required in Theorem 3.3 

in order to deduce the existence of a subgradient, which allows the construction of the solution. Next we 

apply Theorem 3.3 to the operatorial equation corresponding to (2). The case of arbitrary linear bounded 

operators follows from Corollary 3.4, for  

( ) ( ) fbzbzzzg
~

,,0Re,exp~ 1−=−−=   

 being the holomorphic extension of  𝑓𝑓  from Theorem 3.6 to a complex neighborhood of  ]0, ∞[ (see also 

Theorem 3.1). Now we consider the case of the associated operator equation in a commutative algebra of 

self-adjoint operators 𝑋𝑋𝑋𝑋 = 𝑋𝑋(𝐴𝐴), 𝐴 𝐴 ∈ 𝒜𝒜(𝐻𝐻) being a fixed self-adjoint operator acting on the 

Hilbert space  𝐻𝐻𝐻. We define 

 

𝑋1 = {𝑈 ∈ 𝒜(𝐻); 𝑈𝐴 = 𝐴𝑈}, 𝑋 = 𝑋(𝐴) = {𝑉 ∈ 𝑋1; 𝑉𝑈 = 𝑈𝑉, ∀𝑈 ∈ 𝑋1}                           (3) 

𝑋+ = {𝑉 ∈ 𝑋; < 𝑉ℎℎ, ℎ > ≥ 0, ∀ℎ ∈ 𝐻} 

 

It is known that 𝑋𝑋  defined by (3) is an order complete Banach lattice and a commutative algebra (cf. [1]). 

We denote: 

𝐷𝑙 = {𝑉 ∈ 𝑋;  𝜎(𝑉) ⊆ [𝑢, 1/𝑏[}⋃{𝑏−1𝐼}, 

𝐷𝑟 = {𝑉 ∈ 𝑋;  𝜎(𝑉) ⊆ [
1

𝑏
, 𝑣]} ⋃{𝑏−1𝐼}  

𝐷 = 𝐷𝑙⋃𝐷𝑟 

where 𝜎𝜎(𝑉𝑉) is the spectrum of  𝑉𝑉. 
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Theorem 3.7. There exists a decreasing mapping ,: DDF →  such that 

( ) ( ) ( )( ) .,expexp DUUbFUFbUU −=−  

This mapping has the following properties: 

(i) Ib 1−  is the unique fixed point of ;F  

(ii) F  is invertible and FF =−1  on ;D  

(iii) F  applies lD  onto 
rD  and 

rD  onto ;lD  

(iv) the following constructive formulas for F  hold 

( ) ( ) ( ) 

( ) ( ) ( )  ;,expexp;inf

,,expexp;sup

0000

0000

rl

lr

DUbUUbUUDUUF

DUbUUbUUDUUF

−−=

−−=
 

(v) for ,AU   with the spectrum in a small neighborhood of ,1−b  we have: 

( ) ( )( ) .2)2(
11 −− −−+ bUIbUIbUUF  

Proof. We have to verify the conditions from the statement of Theorem 3.3. To prove the convexity of 

𝑔(𝑈) = −𝑈𝑒𝑥𝑝(−𝑏𝑈) on the convex subsets  𝐷𝑙 , 𝐷𝑟𝐷𝑙 , 𝐷𝑟  we use the convexity of the scalar function 𝑔  on 

]𝑢𝑢, 𝑣𝑣[ and the positivity of the spectral measures attached to the elements 𝑈1, 𝑈2 ∈ 𝐷𝑙 ,𝐷𝑙  respectively 

𝑈𝑗𝑈𝑗 ∈ 𝐷𝑟 , 𝑗 = 1,2. The fact that 𝑈1, 𝑈2  are commuting operators is essential. For 𝑡𝑡 ∈ [0,1],  we have (thanks 

to the properties of functional calculus attached to the tuple (𝑈𝑈1, 𝑈𝑈2), which “preserves” inequalities) 

 

( )( ) ( ) ( ) ( ).11 2121 UtgUgttUUtg +−+−

 

Hence the convexity on the subsets rl DD ,  is proved. On the other hand, for we have: 

( ) ( )( ) 0exp −−= IbUbUUgl  

as a product of two commuting self-adjoint operators, the first one being positive and the second one 

being negative. In the same way, one shows that 

( )  .\,0 1IbDUUg rr
−  

It remains to prove that the ranges of the operators 𝑔𝑙 , 𝑔𝑟𝑔𝑟  coincide, and also the assertions (iii) and (v) of 

the present statement. Let  

( ) ( ) ( ),:, 121 UFUgrUg ll =  

where F  is associated to 𝑓 by means of functional calculus. Using the qualities of ,f  we obtain 

( ) ( )( ) ( )( )   .,/1 2112 rDUvbUfUFU ==   

From the equality 𝑔𝑙(𝑡) = 𝑔𝑟(𝑓(𝑡)), 𝑡 ∈ [𝑢, 1 𝑏⁄ ] ⊃ 𝜎(𝑈1),  by integration with respect to the spectral 

measure attached to 𝑈𝑈1  one obtains 

𝑔𝑙(𝑈1) = ∫ 𝑔𝑙(𝑡)𝑑𝐸𝑈1
= ∫ 𝑔𝑟(𝑓(𝑡))𝑑𝐸𝑈1

= 𝑔𝑟(𝐹(𝑈1)) = 𝑔𝑟(𝑈2) ∈ 𝑅(𝑔𝑟)

𝜎(𝑈1)𝜎(𝑈1)
 

Similarly, one proves that 𝑅 𝑅(𝑔𝑟) ⊂ 𝑅(𝑔𝑙). Now all the conclusion (except (v)), follow by application of 

Theorem 3.3. The assertion (v) is a consequence of (vi), Theorem 3.6. This concludes the proof. □                                                                                                                                                                                           

 ,\ 1IbDU l
−
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We next give some examples for which the exact analytic expression of the solution 𝑓𝑓 can be determined 

explicitly. 

Theorem 3.8. The nontrivial solution of the equation 

 

( ) ( ) ( )( ) ,0,11 −=− −−−− xeeee xfxfxx  

is given by 

( ) ( ) .0,1ln −−= − xexf x  

Its holomorphic extension is  

( ) ( ) .0Re,1ln
~

−−= − zezf z  

Proof. One can prove easily that the function 

( ) ( ) [,0],1 −−= −− xeexg xx  

verifies the conditions of Theorem 3.1, where 𝛼𝛼 = 𝑙𝑛(2). To find the analytic expression of 𝑓𝑓, we rewrite 

our functional equation as 

( ) ( ) ( )( ) ( )( ).22 xxfxxfxxfxxf eeeeeeee −−−−−−−− +−=−=−  

Dividing by 

( ) ,2ln,0 − −− xee xxf  

and doing some straightforward computations, one obtains the result. This concludes the proof. □    

Example  3.1. The unique nontrivial solution 𝑓 of the equation 

( ) ( )( ) ( )
2

2

~,1,
~~~










−
==

z

z
zgzzfgzg  

is given by 𝑓(𝑧) =
𝑧

𝑧−1
. 

Example 3.2. The unique nontrivial solution of the functional equation 

𝑔(𝑥) = 𝑔(𝑓(𝑥)), 𝑔(𝑥) = 𝑥 +
1

𝑥
  ,   𝑥 ∈]0, ∞[, 

is 𝑓(𝑥) =
1

𝑥
. A similar remark holds true for  𝑥 ∈] − ∞, 0[. It seems that this is example remains valid in 

complex, for  𝑔(𝑧) = 𝑧 +
1

𝑧
 , 𝑓(𝑧) =

1

𝑧
 ,   𝑧 ∈ ℂ\{0}. 

4. Conclusions 

We have proved that under certain assumptions on the given function 𝑔𝑔, there exists a unique nontrivial 

solution 𝑓𝑓 of the functional equation (1). In case of real functions 𝑔𝑔 of one real variable, verifying the 

condition of Theorem 3.1, the nontrivial strictly decreasing solution 𝑓𝑓 has as unique fixed point the 

unique minimum point of 𝑔𝑔. The real case for scalar-valued functions leads to generalization to functions 

of self-adjoint operators, by means of functional calculus (when inequalities are preserved). Along the 

proofs of these first results, the implicit function theorem is not used, even in the case when 𝑔𝑔 is smooth. 

In the case of real valued functions 𝑔𝑔, a geometric meaning of the construction of the nontrivial solution 

𝑓𝑓 is pointed out in the comment following Theorem 3.1. This idea is basic for the construction of 𝑓𝑓, not 

only for real valued functions, but also in the context of abstract (and concrete) order complete vector 
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lattices, according to Theorem 3.3 (and respectively Theorem 3.7). In the case of complex-valued functions 

𝑔𝑔, if 𝑔𝑔 is analytic, so is 𝑓𝑓. Finally, we emphasize three elementary functions 𝑔𝑔 for which the solution 

𝑓𝑓 is expressible by means of elementary functions as well. This could be a direction of research for future 

work on this subject.  
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