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Abstract 

This paper is concerned with an exact solution of a circular cylinder in uniform viscous flow and its application 

to a flowmeter named Tension Thread Flow Meter. An analytical procedure to lead the exact solution for a drag 

of a circular cylinder suspended in a uniform viscous flow has been demonstrated, and it is found that the drag 

is proportional to the square of velocity weakly rather than the linear dependency on the velocity, as Stokes law 

for a sphere. When the Reynolds number Re < 0.4, the relation between the drag coefficient Cf and Re, as well 

as the drag of a circular cylinder in uniform flow and Re, have been derived and presented as simple analytical 

expressions. The theoretical results on the drag of a circular cylinder in a uniform flow have been applied directly 

to the prototype flowmeter, and to the velocity calibration for the selected scales of the thread, and their 

arrangements together with the velocity range, to be used. A prototype flowmeter has been manufactured and 

then deployed successfully to measure three velocity components in oscillatory waves. It is suggested that the 

potential of the flowmeter is almost limitless so that it is strongly recommended to develop the commercial 

version for general users, who are interested in measuring boundary layer flow, oscillatory wave, and turbulence. 
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1. Introduction 

Navier-Stokes equations have been accepted as the basic equation describing motion of flows for nearly two 

centuries (Navier 1827, Stokes 1845). However, this view was objected by Tsugé(1969), because Navier-Stokes 

equation is only valid when the flow is laminar, but not for turbulent flow. At latest, until 1969, Tsugé had gotten 

a belief that Navier-Stokes equations are not applicable for turbulent flow, so that he started to formulate 

alternative equation to solve turbulent problems on the basis of kinetic theory, for he considered that unless 

one views motion of flow microscopically, it is impossible to know the true behavior of fluid motion. Refer to 

Nakagawa (2006) for more details on Tsugé’s work on turbulence. This is the main reason why the present 

authors have neither interest in solving turbulent flow by using Navier-Stokes equation, nor results obtained by 

the equation. 

In the meanwhile, the present authors are required to have the detail knowledge concerning to the drag exerted 

on a circular cylinder suspended in a uniform flow at low Reynolds number in order to develop a novel flow 

meter, called Tension Thread Flow Meter( referred to TTFM hereafter). Thus, an extensive literature survey on 

the relevant papers (e.g. Wieselsberger 1921, Richards 1934) has been conducted, and it is found that Lamb 

(1932) reported useful formula on the drag of two-dimensional elliptic cylinder moving in a fluid with constant 

velocity U in the form  
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Delliptic=4πμU/〚a/(a+b)−γ −ln〔U/(8ν)∙(a+b)〛, (1) 

where π is ratio of circumference, μ the dynamic viscosity, a the semi-axis being parallel to the flow, b the other 

semi-axis normal to the flow, γ= lim
𝑛=∞

(1 + 1/2 + 1/3 + ⋯ + 1/n − ln ∙ n)=0.57721 Euler constant, and ν the 

kinematic viscosity. In (1), when a=0, we have the drag of a plate placed normal to the flow direction, while when 

b=0, it gives the drag of a plate parallel to the flow direction. 

In this study, a review on the formula for the drag of a circular cylinder has been made with reference to the 

design of TTFM, because this knowledge is essential for the further development or improvement. 

2. Theoretical 

The Navier-Stokes equations with no external forces may be expressed by  

ν∇2u=(1/ρ)∂p/ ∂x+∂u/ ∂t+u∂u/ ∂x+v∂u/ ∂y+w∂u/ ∂z, 

ν∇2v=(1/ρ)∂p/ ∂y+∂v/ ∂t+u∂v/ ∂x+v∂v/ ∂y+w∂v/ ∂z, (2) 

ν∇2w=(1/ρ)∂p/ ∂z+∂w/ ∂t+u∂w/ ∂x+v∂w/ ∂y+w∂w/ ∂z, and 

the equation of continuity is  

∂ρ/ ∂t+∂(ρu)/ ∂x+∂(ρv)/ ∂y+∂(ρw)/ ∂z=0. (3) 

By neglecting the inertia terms in Navier-Stokes equations, we have equations of motion in a viscous liquid. 

When external forces are absent, if we attempt to find the steady and incompressible fluid (ρ=const.), motion 

produced by the translation of circular cylinder with constant velocity U through an infinite mass of liquid, (2) 

and (3) become simplified equations, respectively. 

μ∇2u=∂p/∂x, 

μ∇2v=∂p/∂y, (4) 

μ∇2w=∂p/∂z,  

and 

∂u/ ∂x+∂v/ ∂y+∂w/ ∂z=0. (5) 

However, (4) and (5) prove to be impossible to satisfy all of the required conditions. This was pointed out by 

Stokes, who gave the following remark: “The pressure of the cylinder on the fluid continually tends to increase 

the quantity of fluid with which it carries, while the friction of the fluid at a distance from the cylinder continually 

tends to diminish it. In the case of a sphere, these two cause eventually counteract each other, and so the motion 

becomes uniform. But in the case of a cylinder, the increase in the quantity of fluid carried continually gains on 

the decrease due to the friction of the surrounding fluid, and the quantity carried increases indefinitely as the 

cylinder moves on”. 

It appears, however, that if the inertia-terms in (2) are partially taken into account, the Stokes remark may be 

modified, and a definite value of the drag on the circular cylinder is obtained as follows: 
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Equation (2) are satisfied by 

u=− ∂∅/ ∂x+[1/(2k)]∙ ∂χ/ ∂x −χ, 

v=− ∂∅/ ∂y+[1/(2k)]∙ ∂χ/ ∂y, (6) 

where ∅ is velocity potential, and  

p=ρU∂∅/ ∂x, (7) 

provided 

∇1
2∅=0, (8) 

and 

(∇1
2−2k ∙ ∂/ ∂x)χ=0. (9) 

The solution of (9) is 

χ=c∙ekx∫ e
∞

0
-krcoshωdω. (10) 

For the definite integral, we have the expansions, 

∫ 𝑒
∞

0
-krcoshωdω=[π/(2kr)]e-kr〚1−12/(8kr)+12∙32/[1∙ 2(8kr)] −…〛, (11) 

which is suitable for large values of kr. On one hand, for small values of kr, we get 

χ=−c(1+kr)[γ+ln(1/2)∙(kr)], (12) 

with 

(1/(2k)∙ ∂χ/ ∂x −χ=−[c/(2k)]∙[k(1/2−γ −lnkr/2)+∂lnr/∂x −kr2/2∙ ∂2lnr/∂x2+…], 

(1/(2k)∙ ∂χ/ ∂y=−[c/(2k)]∙(∂lnr/∂y −kr2/2∙ ∂2lnr/∂x∂y+…). (13) 

Hence, if we put the velocity potential, 

∅=A0lnr+A1∂lnr/∂x+…, (14) 

we find that the condition u=−U, v=0, and w=0 will be satisfied for r=a, provided 

c=2U/[1/2−γ −ln(ka/2)], A0=−c/(2k), A1=ca2/4, (15) 

approximately. Thus, near the cylinder, we obtain 

u=(1/2)∙c[γ −
1

2
+ln(kr/2)+(r2−a2)/2∙ ∂2lnr/∂x2], 

v=c/4∙(r2−a2)∙ ∂2lnr/∂x∂y. (16) 

The vorticity is given by 

ζ=∂v/ ∂x − ∂u/ ∂y=c∙ekz∙ ∂(∫ 𝑒
∞

0
-krcoshω∙ dω, 

which for large values of kr takes the form, 

ζ=−kc∙(y/r)[π/(2kr)]1/2e−k(r−x). (17) 
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To calculate the force exerted by the fluid on the cylinder, we have to integrate the expression, 

r∙prx =−px+
μr ∂u

∂r
+ μ(x∂u/ ∂x +y∂v/ ∂x). (18) 

with respect to the angular coordinate θ from 0 to 2π. The first term of (18) gives, when r is put equal to a, 

−ρUA0∫ 𝑐𝑜𝑠
2𝜋

0
2θdθ=−πρUA0=πμθ. (19) 

The second term contributes, on substitution from (16), πμc. The third term gives a zero result, to our order of 

approximation. The final value for the drag Dcylinder per unit length of a circular cylinder is, therefore, expressed 

as, 

Dcylinder=2πμc−4πμU/[1/2−γ −ln(1/4∙Ua/ν), (20) 

when the Reynolds number Re=Ua/ν is smaller than 1, where π is the ratio of circumference, μ the dynamic 

viscosity of the fluid, U the flow velocity, γ the Euler constant, a the radius of cylinder, and ν the kinematic 

viscosity of fluid. Equation (20) 

may be written as, 

Dcylinder=4πμU/[1/2−γ −ln(Re/4)], (21) 

On one hand, introducing the conventional expression of drag, we put formally, 

Dcylinde=1/2∙Cf ρU2S, (22), 

where Cf is drag coefficient, ρ the fluid density, S the projected area of the circular cylinder on the plane normal 

to the flow direction. Since S=a for the unit length of the cylinder, (21) and (22) gives us the drag coefficient as, 

Cf=8πRe-1/(lnRe-1 −ϵ), (23) 

with 

ϵ = 0.077. 

This formula is valuable in practical point of view: (21) is an exact solution of Navier-Stokes equation, and thus 

it is considered to be valid if the Reynolds number is smaller than 1. That is, we can obtain the drag by inserting 

the value of Re, and the velocity U into (21) easily.  

Fig. 1 Drag coefficient against Reynolds number. 
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Fig.1 shows the relation of the drag coefficient Cf against the Reynolds number Re. 

It can be seen that Cf decreases with increasing Re gradually, and takes almost constant value of 75 once Re 

exceeds to the value of 0.2. 

Fig. 2 Drag against Reynolds number. 

Fig.2 denotes that the drag Dcylinder increases with the Reynolds number Re along the quadratic curve in this 

range of the Reynolds number Re=Ua/ν. In another words, The drag depends on the square of the velocity U2 

weakly.  

It may be worth comparing with the drag Dcylinder with the drag Dsphere in the uniform velocity. The latter was 

derived by Stokes (1851) theoretically as 

Dsphere=6πμrU  

or 

Dsphere=Cf(Re)∙(1/2)∙ ρU2S, 

with 

Cf=24/Re, Re=Ur/ν, and S=πr2, 

where μ is the dynamic viscosity, and r the radius of the sphere, U the velocity, Cf the drag coefficient, Re the 

Reynolds number, ρ.the fluid density, and S the projected area of the sphere. In case of the sphere, the drag 

Dsphere depends on the Reynold number linearly in this range of the Reynolds number, viz. Re < 1.0. 

3. Experimental 

 

Fig.3 Schematic diagram of the experimental set-up. 
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Fig.3 shows a schematic diagram of the experimental set-up (Nakagawa 1983). The two-dimensional wave tank 

is 0.7m wide. The wave generator is a hybrid type of piston and flap.  

Fig.4 General view of the Tension Thread Flow Meter. 

Fig.4 shows a general view of TTFM. The flow velocity is measured by the three cotton threads [1], [2] and [3], 

which measure velocities in the x-, y- and z-directions, respectively.  
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Fig.5 Cross-sections of the elastic support assembly. 

The cross-sections of the elastic support assembly through the pipe axis are shown in Fig.5. The upper cross-

section includes the plane of the cantilever of thickness 0.5mm, whereas the lower cross-section is normal to 

the plane. One end of the thread is fixed rigidly to the head of the screw rod, while the other end is knotted at 

the free end of the cantilever, so that it is supported elastically. Initial tension in the thread is controllable within 

a certain limit by adjusting the horizontal position of the screw rod. A semiconductor strain gauge of 120 Ω is 

glued on each surface of the cantilever, which is made of CFRP (carbon-fiber-reinforced plastic) of specific 

weight 1.7 and Young modulus 1.96∙105 N/mm2. The length and the diameter of all the threads are 55mm and 

0.01mm, respectively. Threads [1] and [3] are suspended in the same horizontal plane, and are parallel each 

other and separated by 20mm. Thread [2] is in a horizontal plane at 15mm below the plane including threads 

[1] and [3], but it is normal to them. It is, therefore, clear that the velocity measured by the flowmeter is an 

integrated mean velocity in the small space, where the three threads are suspended: In the data analysis, 

however, the geometrical center of the three midpoints of the threads is assumed as the measuring point.  

An increase of the thread tension due to the flow produces a small deflection of the cantilever and thus a strain 

in the gauges. Each of the threads can measure a separate velocity component normal to the respective plane 

of the cantilever, because the ratio of the width to the thickness is sufficiently large: The ratio is 6 and 16 at the 

tip and base of the cantilever, respectively. In general, the flow drag on a thread is not linearly proportional to 

the velocity, but is proportional to square of the velocity, as being elucidated theoretically in section 3, and 

shown in Fig.2. 

Two strain gauges glued to the surface of a cantilever and a bridge box constitute an AC Wheatstone bridge, 

and the out-of-balance electrical signal is amplified by a dynamic amplifier and then recorded on magnetic tape.  
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Calibrations of the present flowmeter have been made in a tank filled with still water. The plane of the cantilever 

is carefully set normal to the longitudinal axis of the tank. The flowmeter is then towed along the axis at a 

specified speed in the water and the output electrical signal is recorded on the tape. In this way, the flowmeter 

has been calibrated in the velocity range 3.0 ~120cm/s.  

 

Fig. 6 Velocity calibration curves. 

Fig.6 shows the calibration curves, where x, y and z denote the calibration curves for threads [1], [2] and [3], 

respectively.  

4. Results and Discussion 

The supporting rod of the flowmeter is fixed to a point gauge mounted on the carriage, which is capable of 

moving along the parallel rails on the upper edge of the wave tank (Fig.3). The vertical position of the flowmeter 

is thus adjusted by turning the point gauge knob. During measurements of the flow velocity, time histories of 

the water-surface elevation have been obtained with two capacitance-type wave-gauges concurrently. Water 

surface elevations are measured 1.0m behind the wave generator and at the same longitudinal position where 

TTFM is set to measure the flow velocity. 

The flow velocities (u, v, w) are first separated into the steady flows (U,V,W) and the unsteady flows(u
^

, v
^

, w
^

).  
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Fig.7 Time histories of η, u
^

, v
^

 and w
^

, before shoaling and wave breaking. 

(a) 2 cm above the tank bed, (b) 8 cm above the tank bed, (c) 2 cm below the wave trough. 

Fig.7 illustrates time histories of the water surface elevation η and the unsteady flows (u
^

, v
^

, w
^

) at x/L=−1.0, which 

is the longitudinal position on this side of wave breaking point by just one wavelength L. The wave at this 

position has not yet experienced neither shoaling nor breaking. It may be seen in this figure that the wave 

profiles are almost sinusoidal, with small deformations. Near the water surface, as shown in Fig.7(c), the phase 

of η is highly correlated with that of u
^

 and w
^

, but is little correlated with that of v
^

. Near the bed, however, as 

shown in Fig.7 (a,b), ηw
^

-correlation as well as ηv
^

-correlation becomes small, though ηu
^

-correlation remains 

large. 

5. Conclusions 

In this section, new knowledge and insights obtained through the present study have been summarized:  

1. An analytical procedure to lead the exact solution for drag of a circular cylinder suspended in a uniform 

viscous flow has been demonstrated, and it is found that the drag is proportional to the square of 

velocity weakly rather than the linear dependency on the velocity, as Stokes law for a sphere. 

2. When the Reynolds number Re < 0.4, the relation between the drag coefficient Cf and Re, as well as the 

drag of a circular cylinder in a uniform flow and Re, have been derived and presented as simple analytical 

expressions. 
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3. The theoretical results on the drag of a circular cylinder in a uniform viscous flow have been applied 

directly to the prototype Tension Thread Flow Meter (TTFM), and the velocity calibration with respect to 

the selected scales of the thread, and their arrangements together with the velocity range, to be used. 

4. A prototype TTFM have been manufactured and then deployed successfully to measure three velocity 

components in an oscillatory waves. 

5. It is suggested that the potential of TTFM is almost limitless, so that it is strongly recommended to 

develop commercial version of TTFM for general users, who are interested in measuring boundary layer 

flow, oscillatory wave, and/or turbulence.  
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