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Abstract

Existence and construction of the solutions of some Markov moment problems are discussed. Starting from
the moments of a solution, one recalls a method of recovering this solution, also solving approximately
related systems with infinite many nonlinear equations and infinite unknowns. This is the first aim of this
review paper. Extension of linear forms with two constraints is applied. Measure theory arguments play a
central role. Other results in analysis and functional analysis are used tacitly, sending the reader to the
references for unproved stated theorems. Secondly, in the end, existence of solutions of special Markov
moment problems is studied.
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1 Introduction

We start by recalling the following abstract version of the Markov moment problem, motivated by the
classical moment problem [1], [2], [3]. The point (a) of the next theorem shows clearly that it is an
interpolation problem with two constraints.

Theorem 1.1. ([4]). Let X be an ordered vector space, Y an order complete vector lattice,
{x j }je = X, {y j }je 3 Y given families and Fy,F, e L(X,Y) two linear operators. The following statements

are equivalent

(a)there is a linear operator F e L(X,Y) such that
R(x)<F(x)<F(x)vxe X, Flxj)=y; vied;
(b)for any finite subset Jo — J and any {/11- }jeJo c R, we have
Zﬁij =Y -y YLy e Xy (= Zﬁjyj' AR
jedo jedo
If X is a space (usually a Banach space) of functions defined on a closed subset A of R*,(n € N,n > 1),

containing polynomials and continuous compactly supported functions (with their supports contained in
A), and
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) =t = tl =y, ty) €A, = (i, oy jy) EN, 1

then we have a classical Markov moment problem. If n = 1, we have a one-dimensional problem, while in
case of n > 2, we have a multidimensional (real) moment problem. In most of cases, F; = 0, so the solution
F is positive. Consequently, it can be represented by a positive scalar or vector measure. The upper
constraint F < F, on the positive cone X, of X might ensure the continuity and controls the norm of the
solution (under the assumption that F, is continuous). The elements y;,j € ] are called the moments, and
the equalities F(xj) =y;, j €] are the interpolation moment-conditions. Three aspects are studied in
solving such problems: the existence, the uniqueness and the construction of the solution (if it is unique).
The first aspect is solved by Theorem 1.1 (in the case of the abstract version). For some other related results
and/or completions see [5]- [12]. For discussion on the uniqueness of some solutions, see [13], [14], [15].
Considering the classical Markov moment problem, under the hypothesis that the subspace of polynomials
is dense in X and the solution F is continuous, then its uniqueness follows too. For the construction of the
solution, see [6], [7], [8], [9], [10], [12]. The background of this work is contained in some chapters from [16],
[17], [18]. The rest of the paper is organized as follows. Section 2 is devoted mainly to inverse problems
related to some Markov moment problems. The one-dimensional case as well as the multidimensional case
is illustrated. In the end, a Markov moment problem not necessarily involving polynomials is discussed in a
very general setting. An example of a two-dimensional classicalmoment problemis given as a consequence.
Section 3 contains the proofs and related methods used before it. Section 4 concludes the paper.

2 The results

We start by recalling a truncated and a full one-dimensional Markov moment problem, as well as a related
inverse problem (see [8], [9] and the references therein). The first result is a truncated moment problem,
because only the first n moments are given. Although, the solution represented by h € L*([0,b]) (with
respect to Lebesgue measure) is defined on the whole space L*([0,b]). Let b € (0,00),9;(®) = jt/ " ,t €
[0,b],j € N\{0}.

Theorem 2.1. For a given family of numbers (M j)r}:l, consider the following statements

(@) there exists heL™([0,b]) such that

by .
0<h(t)<1ae., m,-:;jotl htydt, j=12,K ,n;

(b) for any family of scalars (A j)?zl,one has

j=1 j=1

(c) there exists a Borel subset B such that

IB j'tj_ldt=mj, j=1K ,n.
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Then (b) = (a) < (c)
Corollary 2.1. Under the equivalent conditions (a), (c) of Theorem 2.1, there exist sequences

Yin <X <Yon <Xgn <K <yjp <X <K, neN

7

such that the following relations hold

neN i

o0
m, = inf [Z (x‘j‘yn - ylj‘n)] k=1K ,n
Remark 2.1. To approximate the numbers, xf,,y,, one can make use of Fourier approximate expansion of
h with respect to the orthonormal sequence attached to the functions ktX~1 via Gram-Schmidt algorithm,
also using the values of the moments My . Thus, one obtains a smooth approximation-function h of h, and

the intervals of ends y,,,x,;, are connected components of the open sets approximating from above
subsets of the following form, in the sense of the measures of these sets:

!
{t’zpm)ghakzpm)}'

Remark 2.2. A similar result to that of Theorem 2.1 in several dimensions holds, with the same proof.

Next, we go on with the full moment problems, when all the moments have prescribed values m,, k € N\{0}.
Here the solution h is the weak limit of the sequence of solutions of truncated moment problems (see [8],

[9] for the proof). The weak topology on L®([0,b]) is considered with respect to the dual pair
(L*([o,bD), L= ([0, 5] ).

Theorem 2.2. With the notations from Theorem 2.1, let (mk )k>1 be a sequence of real numbers. Consider

the following statements

(@) there exists a Borel function h such that
b k-1
O<h()<l ae, my :kJ‘ tKLhydt, ke N\{0};
a

(b) for any natural number n=1, and any & >0, there exist nonnegative scalars jj,

j=1K ,n, and sequences: Yjl<Xj1 <K <Yj,l <Xj|l <K, j=1K,n such that

n n

1—5£Z Bj <l mk=|imz,8j Z(lefl_yljflj , ke N\{0};
N n ’ H
j=1

j=1 [

() for any ne N\{Q}, there exists a Borel subset By such that
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mkzkj' kL4t k=1K ,n.
Bn

(d) for any natural n>1 and any {11.K , 24} = R the following relation holds true:
n n
Z Ak Mk SZ lk(bk —ak).
k=1 k=1

Then (d) = (a) < (b) < (c)

Remark 2.3. For the full moment problem, the following algorithm holds in determining (approximating)
YilXjI-

Step 1. (Approximating the function h). Let (en)p>1 be a Hilbert base constructed by the aid of Gram

Schmidt procedure, applied to the system of linearly independent functions
on®=n-t""1 neN\{0}.

Then for each fixed natural number n>1, one has:

en :i a{Vp; :><h,en>:i agn)<h,¢j>:i a{"m;,
=1 =1 =1

(n)

where the coefficients aj are known from Gram Schmidt procedure. Hence, we can determine each

Fourier coefficient of h, that is we can approximate h in L2 -norm by a sequence of polynomial functions
h,, n>1.Then there exists a subsequence

hkn —h
pointwise convergent almost everywhere in [a,b].
Step 2 For each ne N\{0}, the subsets

1
m': } p,m €N,

{t;;n—r')shkn @ <

can be approximated (in measure) by open subsets. The connected components of these open sets have as
end points approximations of the unknowns. y;;, x;,. Using a weakly compactness standard argument, we

can obtain h as the limit of a subsequences of X, , where B, are as in assertion (c) of Theorem 2.2.
Considering a suitable open set D, , with B, < D,_, from (a) one obtains

179



my zIDIi( 4Lt :Z(XE,I - yrfJ)v Dk, :Y ]yn,l'xn,l[ :
n | |

Thus, the unknowns are approximated by the ends of the connected components of open subsets D ,

while the latter subsets can be determined starting from the given moments and the previous arguments
of this algorithm. Note that all results of this section can be adapted to the multidimensional moment
problem, with similar proofs. In the sequel, we propose such a method.

Let A=(01)", dv =(~Inty)dt; A (~Int,)dt,. Assume that there exists a he Ly (A)0<h<lae., such that

mj = Jt “n(t))A 0 (< Ity DA gt )ty A ity
J=(Jl,...,1n), ik eN,k=1..n

Denote ¢;j (tl,...,tn):-tlle t,{” ik ef012.) k=1...n,(t,...tn )€ A Consider the system of equations

m; :J.(pj ~hdvzj.¢j ‘hdv ~

A A

k*l (X ) jk+L ( ) jk+1 jk+1

Xiom, p,g 1MXkm, p.g yk m.p.q MWk,m,pg yk mpg ~ Xkmpg || -
Zcpq ZH i 41 + 5  Jkz0k=1...n (2)
p.g<M meNk=1 k (Jk +1)

Theorem 2.3. An approximation for the solution of (2) is given by the coordinates xmq Yimpq, k € {1, ..., 1}
of the vertices of the cells from the cell — decomposition of the open subsets D, , associated to the known
polynomials h.

For some other methods applied to similar types of problems see [12].

In the sequel, we give sufficient conditions for the existence of a solution, in a very general setting. The
method works in an arbitrary measurable space, which may not involve polynomials. In the particular case
of subsets of R, the form of positive polynomials is not necessarily used. Along this short Section we follow
some results from [7].

Theorem 2.4. let (T,v) be a measurable space, where v is a positive O - finite measure on T. Let

X = L%,(T), {Xj}jes =X, {¥j}jes =R . Consider the following statements:

(@) there exists he Ly (T) such that
L X;(t)-h@®dv=y;, jed, -1<h(t)<lv-ae;

(b) for any finite subset Jq < J and any {xlj}jeJO c R we have
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Z ﬂ’ll]ylyj < Z ﬂlﬂjj:r Xi(t)dV‘L Xj(t)dV;

i,jedo i,jedg
(0) for any finite subset J, — J and any {Kj}jEJO c R, we have
PIRZATED SR E AR N R ECIE T MR ERTOIEY
i,jedg i,jedg
Then (b) = (a) = (c)

Corollary 2.2. Let

T= {(tl!tZ) (<] R2; OStl < 00, OStz Sexp(—tl)}, {y(leJZ) }(jl,jz)ez-% cR.

Consider the following statements

@) there exists a Lebesgue measurable “function” h on T such that

J:r t{12N(ty, tp)dtydty = Y(jp j) V(i1 J2) € z?,

-1< h(tl,tz) <1l ae;

(b) for any finite subset Jg C Zf and any {/”t(tl‘tz);(jl, j2) € Jo} = R we have

> Aig i) M1, i2)Y(iniz) Y(it,i2) <
(i1,i2).(j1.J2)€do

S Ay L
(1.i2).(iL,i2)€d0 PRI Gy 142 (j, 41yt

Then (b) = (a)

Note that T is a closed unbounded and non-semi-algebraic subset. Details can be found in [7]. In the same
paper [7], the solution of a moment problem on the ellipse is constructed.

3 Proofs and related methods

Proof of Theorem 2.3. We propose the following algorithm for approximating the solutions of the system
of equations (2), and an explanation for the last relations (2) (accompanied by explicit significance of

notations).
Step 1. Find an approximation & of the solution h in terms of the moments mj, je N ". To this end, since

he L°V°(A)c L‘Z,(A), h has a Fourier expansion with respect to the Hilbert base (l//j) associated following

jk =0
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Gram-Schmidt procedure to the complete system of linearly independent polynomials (gpj )ik 0" The

Fourier coefficients (h,yj) are given by

(ypy= D athe)= Y am,

lk<Jk. k<K

k=1,...,n k=1,...,n
where ¢, are given by the Gram-Schmidt procedure, so that we know h in terms of the moments. Recall
that there exists a subsequence of the sequence of Fourier partial sums, which converges pointwise to h.

This fact is a consequence of the remark that the partial sums of the Fourier series converge in an L? —
space. In the sequel we can write: h~h, where h is a partial sum of the Fourier series of h. Note that all

these partial sums are polynomials, so that they are continuous.

Step 2. Let h bea partial sum of the Fourier series with respectto the orthogonal polynomials (y/j )ik>0'

Using Schwarz inequality, and approximation of continuous functions A by simple functions

h(t,...ty)~ D CpaZy gt tn)
p,a<M

The numbers cj 4 are the values of h atsome points in

m ~ mg, +1
{(tl,...,tn);Z—Ssh(tl,...,tn)< ;p }

where p is large and mq is suitable chosen for approximating h.

One deduces

mj zJ.(/JjﬁdeJ-%- Zcp’q 2D (tlv---:tn) dv =
A A \pd

Zcp’q ‘ Z J‘q)j 'l[xl,m,p,q 'Y1.m,p,q) (6 X[Xn,m,p,q,yn,m,p,q) (ta)dv
p.q meN A

TR My~ mg +1
where D, , are open subsets approximating in measure the subsets (tl,...,tn),z—pﬁh(tl,...,tn)< )

and whose cell decompositions may be written as below

(Ovl)n 2 Dp,q = YmeN[Xl,m.p,qrYI,m,p,q)XA ><[Xn,m,p,q:Yn,m,p,q) o

mg =~ mg +1
{(tl,...,tn);Z—SSh(tl,...,tn)< a }

2Pk

The above arguments yield
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YLm,p,q Yn,m,p,q

'Nchq Z _[ (=Inty Jaty A jtgn(_lnt“)dt" -

meNxq m, p.q Xn,m,p,q
Jk+1
ZC ZH Intk Vk m, pq tk |Yk,m,p,q _
p.q xk 2 'xk -
meN k=1 k+1 m,p,q (Jk +1) ,m,p.q
Jk+1 jk+1 Jk+1 jk+1
ZC Zﬁ Xgm, p, q (Xk,m,p,q )_ Yim,p.q In(yk,mypyq )+ Yiom pg ™ Xkm,p.g
P j+1 (ji +1)2
meN k=1 k

The conclusion is that we can determinate (approximate) the “unknowns” Yy m pq:Xk,m,p,q: K=1....n by
means of the cell decomposition of the open subsets D, 4 associated to the known polynomial h (cf. [18,
section 2.19]). The basic relations can be summarized as the system of equations (2), where mj are given,
Cp,q are known from Step 1, and the unknowns x ., ., . Yk mp,q are determined in terms of the cell -

decomposition of the suitable chosen open subsets D,,, deduced from the known polynomial h  (the

measure v is outer regular [18]). The unknowns are the coordinates of the vertices of the cells (see. [18,
section 2.19]). Clearly, the solution is not unique. o

Proof of Theorem 2.4. (b) = (a). The following implications hold:

Z AiXj =02 —p1, 0 € X, k=12=

i€do
J. @ dv — .[r¢2dv<J. @oav — .[r¢1dv_ z .[r X dv<J. ¢2dv+.[ @ dv =
i€do
_[T ¢2dV—(—IT (Plde:: F2(¢2)—F1(¢71):> jI X;dv| < Fo(92) — Fi(e).
i€do

On the other hand, the condition (b) can be rewritten as

2
Zﬂjyj Z L xjdv Zﬂjyj < J.[ X;jdv|.

j€do j€do j€do i€do

From the preceding relation, we conclude

PRI DI DI IESTCLY B ICARETEN

jedo j€do jedo

Whence the condition from the statement of Theorem 1.1 are accomplished, so that there exists a linear
form F on X such that
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-| =R <F@<F@=[ sv=IF@)I<] v voex, =

|F(¢)|£|F(¢+)|+|F(rp‘)|sz (p" +<o‘)dv=jT lpldv=lplh ., peX =||F <L
Flj)=yj i

According to representation of continuous linear functionals on Lt spaces, there exists

helfM. Flo)=] oOnM voely()
IIhL,=]IF|I<1=-1<h(t)<1 v-ae.

We also infer that
i :F(xj):_[r Xj(Oht)dv, Vjed.

Thus, the proof of the implication (b) = (a) is finished. The implication (a) = (c) is almost obvious

> Aivil= Zz,—L xj-h-dv< Y |z,—|-jr X ® - [h®)[dvs Y MJ"L[r | () ]-dv

iedo iedo iedo iedo
Taking the squares of the two members, the inequality is preserved. This concludes the proof. o
Conclusions

Section 2 refers to some earlier results on truncated and on full Markov moment problem [6], [8], recently
recalled in [9]. These results suggest the algorithms for the two inverse problems solved in section 2. The
proofs which are missing in this section make use of various notions and results, such as extreme points,
bang-bang principle, Krein-Milman theorem, Alaoglu’s theorem, theorem 1.1 recalled above, measure
theory [18]. Theorem 2.4 gives a sufficient condition for the existence of a solution h € L=(T), llll,, < 1 for
the general moment problem, not necessarily involving polynomials. Condition (b) is formulated in terms
of quadratic forms. Here only theorem 1.1 and measure theory arguments are applied. Corollary 2.2 follows,
also using Gamma Euler’s function. This corollary gives a sufficient condition for the existence of a solution
for a classical moment problem on an unbounded closed subset of finite two-dimensional Lebesgue
measure. Moreover, the classical moments of arbitrary natural orders on this subset, with respect to
Lebesgue measure, are finite.
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