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Abstract 

Existence and construction of the solutions of some Markov moment problems are discussed. Starting from 

the moments of a solution, one recalls a method of recovering this solution, also solving approximately 

related systems with infinite many nonlinear equations and infinite unknowns. This is the first aim of this  

review paper. Extension of linear forms with two constraints is applied. Measure theory arguments play a 

central role. Other results in analysis and functional analysis are used tacitly, sending the reader to the 

references for unproved stated theorems. Secondly, in the end, existence of solutions of special Markov 

moment problems is studied.   
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1 Introduction 

We start by recalling the following abstract version of the Markov moment problem, motivated by the 

classical moment problem [1], [2], [3]. The point (a) of the next theorem shows clearly that it is an 

interpolation problem with two constraints.  

Theorem 1.1. ([4]). Let X  be an ordered vector space, Y  an order complete vector lattice, 

    YyXx
JjjJjj 


,  given families and  YXLFF ,, 21   two linear operators. The following statements 

are equivalent 

(a)there is a linear operator  YXLF ,  such that 

        ;,21 JjyxFXxxFxFxF jj    

(b)for any finite subset JJ 0  and any   ,
0

R
Jjj 


  we have 

   .,, 1122

00

2112  FFyXx

Jj

jj

Jj

jj 
















 


  

If 𝑋 is a space (usually a Banach space) of functions defined on a closed subset 𝐴 of ℝ𝑛 , (𝑛 ∈ ℕ, 𝑛 ≥ 1), 

containing polynomials and continuous compactly supported functions (with their supports contained in 

𝐴), and  
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𝑥𝑗
(𝑡) = 𝑡𝑗 ≔ 𝑡1

𝑗1 ⋯ 𝑡𝑛
𝑗𝑛 , 𝑡 = (𝑡1, … , 𝑡𝑛

) ∈ 𝐴, 𝑗 = (𝑗1, … , 𝑗𝑛
) ∈ ℕ𝑛 ,                                     (1) 

then we have a classical Markov moment problem. If 𝑛 = 1, we have a one-dimensional problem, while in 

case of 𝑛 ≥ 2, we have a multidimensional (real) moment problem. In most of cases, 𝐹1 = 0, so the solution 

𝐹  is positive. Consequently, it can be represented by a positive scalar or vector measure. The upper 

constraint 𝐹 ≤ 𝐹2  on the positive cone 𝑋+ of 𝑋 might ensure the continuity and controls the norm of the 

solution (under the assumption that 𝐹2  is continuous). The elements 𝑦𝑗, 𝑗 ∈ 𝐽 are called the moments, and 

the equalities 𝐹(𝑥𝑗) = 𝑦𝑗 , 𝑗 ∈ 𝐽  are the interpolation moment-conditions. Three aspects are studied in 

solving such problems: the existence, the uniqueness and the construction of the solution (if it is unique).  

The first aspect is solved by Theorem 1.1 (in the case of the abstract version). For some other related results 

and/or completions see [5]- [12]. For discussion on the uniqueness of some solutions, see [13], [14], [15]. 

Considering the classical Markov moment problem, under the hypothesis that the subspace of polynomials  

is dense in 𝑋 and the solution 𝐹 is continuous, then its uniqueness follows too. For the construction of the 

solution, see [6], [7], [8], [9], [10], [12].  The background of this work is contained in some chapters from [16], 

[17], [18]. The rest of the paper is organized as follows. Section 2 is devoted mainly to inverse problems 

related to some Markov moment problems. The one-dimensional case as well as the multidimensional case 

is illustrated. In the end, a Markov moment problem not necessarily involving polynomials is discussed in a 

very general setting. An example of a two-dimensional classical moment problem is given as a consequence. 

Section 3 contains the proofs and related methods used before it. Section 4 concludes the paper. 

2 The results 

We start by recalling a truncated and a full one-dimensional Markov moment problem, as well as a related 

inverse problem (see [8], [9] and the references therein). The first result is a truncated moment problem, 

because only the first 𝑛  moments are given. Although, the solution represented by ℎ ∈ 𝐿∞([0,𝑏] ) (with 

respect to Lebesgue measure) is defined on the whole space 𝐿1([0, 𝑏]).  Let 𝑏 ∈ (0, ∞), 𝜓𝑗
(𝑡) ≔ 𝑗𝑡𝑗−1, 𝑡 ∈

[0, 𝑏], 𝑗 ∈ ℕ\{0}. 

Theorem 2.1. For a given family of numbers
n
jjm 1)(  , consider the following statements 

(a) there exists ]),0([ bLh   such that  

;,,2,1,)(.,.1)(0 1

0
njdtthtjmeath j

b

j  


 

(b) for any family of scalars 
n
jj 1)(  ,one has 

j
j

n

j

jj

n

j

bm  




11

 ; 

(c) there exists a Borel subset 𝐵 such that 

 

njmdttj j
j

B
,,1,

1




 . 
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Then (b) ⇒ (a) ⇔ (c) 

Corollary 2.1. Under the equivalent conditions (a), (c) of Theorem 2.1, there exist sequences 

N,,,,2,2,1,1  nxyxyxy nlnlnnnn  , 

such that the following relations hold 

  nkyxm k
nj

k
nj

j
n

k ,,1,inf ,,

1
N
















 





 

Remark 2.1. To approximate the numbers, 𝑥𝑗,𝑛
𝑘 ,𝑦𝑗,𝑛

𝑘  one can make use of Fourier approximate expansion of 

ℎ with respect to the orthonormal sequence attached to the functions 1ktk  via Gram-Schmidt algorithm, 

also using the values of the moments km . Thus, one obtains a smooth approximation-function  ℎ̃ of h, and 

the intervals of ends 𝑦𝑙 ,𝑛 , 𝑥 𝑙,𝑛  are connected components of the open sets approximating from above 

subsets of the following form, in the sense of the measures of these sets:  











 


)(2

1
)(

~

)(2
;

np
ljth

np
ljt . 

Remark 2.2.  A similar result to that of Theorem 2.1 in several dimensions holds, with the same proof.  

Next, we go on with the full moment problems, when all the moments have prescribed values 𝑚𝑘 , 𝑘 ∈ ℕ\{0}. 

Here the solution ℎ is the weak limit of the sequence of solutions of truncated moment problems (see [8], 

[9] for the proof). The weak topology on 𝐿∞([0, 𝑏])  is considered with respect to the dual pair 
(𝐿1([0,𝑏]), 𝐿∞([0, 𝑏]) ). 

Theorem 2.2. With the notations from Theorem 2.1, let 1)( kkm  be a sequence of real numbers. Consider 

the following statements 

(a) there exists a Borel function h such that 

}0{\N,)(1.,.1)(0   kdtthkt
b

a
kkmeath ; 

(b) for any natural number 1n , and any 0 , there exist nonnegative scalars j , 

nj ,,1 , and sequences: njljxljyjxjy ,,1,,,1,1,  
 
such that 

,
,,

1

lim,1

1

1







































 







  k
lj

yk
lj

x

l

j

n

j
n

kmj

n

j

 };0{\Nk
 

(c)   for any }0{\Nn , there exists a Borel subset nB  such that 
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nkdtkt

nB
kkm ,,1,1   . 

(d) for any natural 1n  and any R},,{ 1 n   the following relation holds true: 

)(

11

kakbk

n

k

kmk

n

k









  . 

Then (d)   (a)  (b)   (c) 

Remark 2.3.  For the full moment problem, the following algorithm holds in determining (approximating)

ljxljy ,,, . 

Step 1. (Approximating the function h). Let 1)( nne  be a Hilbert base constructed by the aid of Gram 

Schmidt procedure, applied to the system of linearly independent functions 

}0{\N,1)(  nntntn . 

Then for each fixed natural number 1n , one has: 

j
n
j

n

j

j
n
j

n

j

nj
n
j

n

j

n mahaehae
)(

1

)(

1

)(

1

,, 


  , 

where the coefficients 
)(n

ja  are known from Gram Schmidt procedure. Hence, we can determine each 

Fourier coefficient of h, that is we can approximate ℎ  in 
2L -norm by a sequence of polynomial functions 

nh , 1n . Then there exists a subsequence  

hh
nk 

 

pointwise convergent almost everywhere in ].,[ ba  

Step 2. For each }0{\Nn , the subsets 

,N,,
2

1
)(

2
; 







 

 lp

l
nkp

l mp
m

th
m

t  

can be approximated (in measure) by open subsets. The connected components of these open sets have as 

end points approximations of the unknowns. 𝑦𝑗,𝑙 , 𝑥𝑗.𝑙 .  Using a weakly compactness standard argument, we 

can obtain ℎ  as the limit of a subsequences of ℵ𝐵𝑛
,  where  𝐵𝑛  are as in assertion (c) of Theorem 2.2. 

Considering a suitable open set 𝐷𝑘𝑛
, with 𝐵𝑘𝑛

⊂ 𝐷𝑘𝑛
, from (a) one obtains 
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[,],)(
,,,,

1
lnln

l
nk

l

k
ln

k
ln

nkD

k
k xyDyxdttkm  

  . 

Thus, the unknowns are approximated by the ends of the connected components of open subsets 𝐷𝑘𝑛
, 

while the latter subsets can be determined starting from the given moments and the previous arguments 

of this algorithm. Note that all results of this section can be adapted to the multidimensional moment 

problem, with similar proofs. In the sequel, we propose such a method.  

Let     .ln)ln(,1,0 11 nn
n

dttdttdA    Assume that there exists a    .,.10, eahALh  
  such that 

       

  .,...,1,,,...,

,,...,ln)ln

1

111
1

1

nkNjjjj

dtdttthttttm

kn

nnn
nj

n

A

j

j



  
 

Denote       .,...,,,...,1,...2,1,0,,..., 1
1

11 Attnkjtttt nk
nj

n
j

nj    Consider the system of equations  

   

 
)2(,...,1,0,

11

lnln

~

1
2

1
,,,

1
,,,,,,

1
,,,,,,

1
,,,

,

, nkj
j

xy

j

yyxx
c

dhdhm

k

m

n

k k

kj
qpmk

kj
qpmk

k

qpmk
kj

qpmkqpmk
kj

qpmk

Mqp

qp

A

j

A

jj

















































 







 

Theorem 2.3. An approximation for the solution of (2) is given by the coordinates 𝑥𝑘,𝑚,𝑝𝑞,  𝑦𝑘,𝑚,𝑝𝑞,  𝑘 ∈ {1, … , 𝑛} 

of the vertices of the cells from the cell – decomposition of the open subsets 𝐷𝑝,𝑞  associated to the known 

polynomials ℎ̃. 

For some other methods applied to similar types of problems see [12]. 

 
In the sequel, we give sufficient conditions for the existence of a solution, in a very general setting. The 

method works in an arbitrary measurable space, which may not involve polynomials. In the particular case 

of subsets of ℝn, the form of positive polynomials is not necessarily used. Along this short Section we follow 

some results from [7]. 

Theorem 2.4. Let ),( vT  be a measurable space, where v is a positive   - finite measure on T. Let 

RyXxTLX JjjJjjv   }{,}{),(1
 . Consider the following statements: 

(a) there exists )(TLh v
  such that 

..1)(1,,)()( eavthJjydvthtx jj
T

 ; 

(b) for any finite subset JJ 0  and any RJjj  0
}{  we have 
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dvtxdvtxyy j
T

i
T

ji

Jji

jiji

Jji

)()(

0,0,
 



 ; 

(c) for any finite subset JJ 0
 and any RJjj   0

}{ , we have 

dvtxdvtxyy j
T

i
T

ji

Jji

jiji

Jji

|)(||)(|||||

0,0,
 



  

Then (b)   (a)   (c) 

Corollary 2.2. Let 

    .,)exp(0,0;),( 2)2,1()2,1(121
2

21 RytttRttT
Zjjjj 


 

Consider the following statements 

(a) there exists a Lebesgue measurable “function” h on T such that 

.;.1),(1

,),(,),(

21

2
21)2,1(2121

2
2

1
1

eatth

Zjjydtdttthtt jj
jj

T



 

 

(b) for any finite subset  
2

0  ZJ  and any RJjjtt  }),(;{ 021)2,1(  we have 

21
2

1
21

2

1
)2,1()2,1(

0)2,1(),2,1(

)2,1()2,1()2,1()2,1(

0)2,1(),2,1(

)1(

!

)1(

!

















jijjii

Jjjii

jjiijjii

Jjjii

j

j

i

i

yy





 

Then (b)   (a) 

Note that T is a closed unbounded and non-semi-algebraic subset. Details can be found in [7]. In the same 

paper [7], the solution of a moment problem on the ellipse is constructed. 

3 Proofs and related methods 

Proof of Theorem 2.3. We propose the following algorithm for approximating the solutions of the system 

of equations (2), and an explanation for the last relations (2) (accompanied by explicit significance of 

notations). 

Step 1. Find an approximation ℎ̃  of the solution h  in terms of the moments ., n
j Njm   To this end, since 

   ,2 ALALh   
 ℎ has a Fourier expansion with respect to the Hilbert base  

0kj
j  associated following 
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Gram-Schmidt procedure to the complete system of linearly independent polynomials   .
0kj

j  The 

Fourier coefficients  jh,  are given by 

,,,

,...,1
,

,...,1
,

l

nk
kjkl

ll

nk
kjkl

lj mhh 






   

where l  are given by the Gram-Schmidt procedure, so that we know h  in terms of the moments. Recall 

that there exists a subsequence of the sequence of Fourier partial sums, which converges pointwise to .h  

This fact is a consequence of the remark that the partial sums of the Fourier series converge in an 𝐿2 − 

space. In the sequel we can write: ,
~
hh   where h

~
 is a partial sum of the Fourier series of .h  Note that all 

these partial sums are polynomials, so that they are continuous.  

Step 2. Let h
~

 be a partial sum of the Fourier series with respect to the orthogonal polynomials   .
0kj

j  

Using Schwarz inequality, and approximation of continuous functions ℎ̃ by simple functions 

   .,...,,...,
~

1,
,

,1 nqpD

Mqp

qpn ttctth 




 

The numbers qpc ,  are the values of h
~

 at some points in  

     ,
2

1
,...,

~

2
;,..., 11







 


p

q
np

q
n

m
tth

m
tt

 

where p  is large and qm  is suitable chosen for approximating .
~
h

 

One deduces 

 

    ,,

,...,
~

),,,,,,,[1),,,1,,,1
[

,

,

,

1,,

































 



Nm A

n
qpmnyqpmnxqpmy

qpmxj

qp

qp

qp

nqpDqp

A

j

A

jj

dttc

dttcdhm







 

where 𝐷𝑝 ,𝑞  are open subsets approximating in measure the subsets    






 


p

q
np

q
n

m
tth

m
tt

2

1
,...,

~

2
;,..., 11 , 

and whose cell decompositions may be written as below 

 

    .
2

1
,...,

~

2
;,...,

),[),[1,0

11

,,,,,,,,,1,,,1,







 



 

p

q
np

q
n

qpmnqpmnqpmqpmmqp
n

m
tth

m
tt

yxyxD 

 

The above arguments yield 
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   

 

   

 
.

11

lnln

|
1

|
1

ln

lnln

1
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1

,,,

1

,,,,,,
1

,,,,,,
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,,,
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,

1
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1
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1
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,
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





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
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

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
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
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
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
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






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







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






















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   
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

 




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n
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qpmk

k

qpmk
kj

qpmkqpmk
kj

qpmk

qp

qp
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n

k

qpmky

qpmkx
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kqpmky

qpmkx
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qp

qp Nm

qpmy

qpmx

qpmny

qpmnx

nn
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n
j

qpj

j

xy

j

yyxx
c

j

t

j
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c
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The conclusion is that we can determinate (approximate) the “unknowns” nkxy qpmkqpmk ,...,1,, ,,,,,,   by 

means of the cell decomposition of the open subsets qpD ,  associated to the known polynomial h
~

 (cf. [18, 

section 2.19]). The basic relations can be summarized as the system of equations (2), where jm  are given, 

qpc ,  are known from Step 1, and the unknowns 𝑥𝑘,𝑚,𝑝,𝑞, 𝑦𝑘 ,𝑚,𝑝,𝑞 are determined in terms of the cell - 

decomposition of the suitable chosen open subsets 𝐷𝑝𝑞 , deduced from the known polynomial h
~

   (the 

measure 𝜈 is outer regular [18]).  The unknowns are the coordinates of the vertices of the cells (see. [18,  

section 2.19]).  Clearly, the solution is not unique.         □ 

Proof of Theorem 2.4. (b)   (a). The following implications hold: 
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On the other hand, the condition (b) can be rewritten as 
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From the preceding relation, we conclude 
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Whence the condition from the statement of Theorem 1.1 are accomplished, so that there exists a linear 

form F on X such that 
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According to representation of continuous linear functionals on 1L  spaces, there exists 
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We also infer that 
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Thus, the proof of the implication (b)   (a) is finished. The implication (a)    (c) is almost obvious 
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Taking the squares of the two members, the inequality is preserved. This concludes the proof.         □                                                                                                            

 Conclusions 

Section 2 refers to some earlier results on truncated and on full Markov moment problem [6], [8], recently 

recalled in [9]. These results suggest the algorithms for the two inverse problems solved in section 2. The 

proofs which are missing in this section make use of various notions and results, such as extreme points, 

bang-bang principle, Krein-Milman theorem, Alaoglu’s theorem, theorem 1.1 recalled above, measure 

theory [18]. Theorem 2.4 gives a sufficient condition for the existence of a solution ℎ ∈ 𝐿𝜈
∞(𝑇), ‖ℎ‖

∞ ≤ 1 for 

the general moment problem, not necessarily involving polynomials. Condition (b) is formulated in terms 

of quadratic forms. Here only theorem 1.1 and measure theory arguments are applied. Corollary 2.2 follows, 

also using Gamma Euler’s function. This corollary gives a sufficient condition for the existence of a solution 

for a classical moment problem on an unbounded closed subset of finite two-dimensional Lebesgue 

measure. Moreover, the classical moments of arbitrary natural orders on this subset, with respect to 

Lebesgue measure, are finite.  
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