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Abstract 

In this review paper, generally known results on a version of global Newton’s method for convex increasing or 

decreasing functions and operators, as well as afferent examples and applications, are recalled. Connection with 

the contraction principle is discussed in detail and applied to approximate 𝐴𝐴1 𝑝𝑝⁄ , Where 𝐴𝐴 is a positive 

invertible symmetric operator acting on a finite-dimensional Hilbert space, and 𝑝𝑝 > 1 is a real number. Two 

numerical examples for 2 × 2 symmetric matrices with real coefficients are given. Some other nonlinear matrix 

or scalar equations are solved approximately.  

Keywords: global Newton method; convex operators; symmetric operators; contraction principle; successive 

approximations. 

1. Introduction  

The aim of this review paper is to emphasize a global Newton like method, which works only for increasing (as 

well as for decreasing) convex functions and operators. The theoretical results are recalled and numerous 

examples are illustrating the way of applying them. The connection wit contraction principle plays a central role. 

Namely, we approximate the positive root 𝐴1 𝑝⁄  of an arbitrary symmetric operator 𝐴 acting on the finite 

dimensional Hilbert space 𝐻, with the spectrum 𝜎(𝐴) ⊂ (0, ∞), when 𝑝𝑝 ∈ (1, ∞) (see [4]). The approximation of 

the solution under attention is done by means of contraction principle, applied to a contraction operator 

(defined by means of Newton’s method), having the contraction constant equal to (𝑝𝑝 − 1) 𝑝𝑝⁄ .  If 𝑈 is the 

positive solution under attention, then clearly 𝑈 verifies the equation 𝑃(𝑈) ≔ 𝑈𝑝 − 𝐴 = 𝟎𝟎. Some related 

numerical examples are given as well. Recall that Newton’s method can be used to approximate iteratively the 

solution of the equation  

               𝑃𝑃(𝑥) = 0                                                                             
 

where P is  a function or operator satisfying certain conditions (see the following results and examples). In some 

cases, the iteration 𝑥𝑥𝑛𝑛+1 = 𝜑𝜑(𝑥𝑛𝑥𝑛), 𝑛𝑛 ∈ ℕℕ of Newton’s method can be done by means of a contraction 

mapping 𝜑𝜑. In such cases, the evaluations of the norms of the errors given by contraction principle could be 

better than those ensured by Newton’s method. For example, if 𝑝𝑝 from the above example is close to 1, then 

the second approximation of the solution furnished by contraction principle is good enough (see the last result 

and example in the end of the paper).  For other types of equations see [7]. Completions and modern approaches 

are outlined in [1], [2], [3], [6], [8]. Being given a Hilbert space 𝐻𝐻, and a symmetric linear operator 𝐴𝐴 from 𝐻 

𝐻 to 𝐻𝐻, the construction of a commutative algebra 𝑌𝑌 = 𝑌(𝐴), (which is also an order complete Banach 

lattice) of symmetric operators acting on 𝐻, is 𝐻studied in detail (see Section 2 and the monograph [5]). This 

space of symmetric operators (in particular of symmetric matrices) plays a central role in the present work. The 

rest of this article is organized as follows. Section 2 mentions briefly the methods applied in the sequel. Section 

3 is devoted to the main known results on the subject and is divided in subsections. Section 4 concludes the 

paper.  

2. Methods 

The following methods are used along this paper 

1) Newton method for convex increasing (or decreasing) functions and operators. 

2) Elements of theory of symmetric operators acting on a Hilbert space. Namely, let 𝐻𝐻 be an 

arbitrary Hilbert space and 𝐴𝐴 a symmetric (linear) operator acting on 𝐻𝐻. Define 
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𝑌1 = {𝑉 ∈ 𝒮; 𝐴𝑉 = 𝑉𝐴}, 𝑌 = 𝑌(𝐴) = {𝑈 ∈ 𝑌1; 𝑈𝑉 = 𝑉𝑈  ∀𝑉 ∈ 𝑌1} 

𝑌+ = {𝑈 ∈ 𝑌; < 𝑈ℎ, ℎ > ≥ 0 ∀ℎ ∈ 𝐻} 

Then 𝑌 is clearly a commutative real algebra of symmetric operators. It is also an order complete real 

Banach lattice (for details, see [5]). Here 𝒮 is the real ordered space of all symmetric operators acting 

on 𝐻. 

3) Contraction principle and related successive approximation method. 

3. Main Text  

3.1. General type results 

Let 𝑋 be a −  order complete vector lattice, endowed with a solid ( )yxyx   and −o  continuous 

norm ( ).0→−→ xxxx norderinn  Let Y  be a normed vector space, endowed with an order relation 

defined by a closed convex cone. For ,,, baXba   we denote    .,, bxaXxba =  Pet 

 ( ).,,1 YbaCP  In most of our applications, we have ,YX =  where Y  is an order complete Banach lattice 

of selfadjoint operators, that is also a commutative algebra (see [5], p. 303-305) and Section 2 above). 

Theorem 3.1 Additionally assume that for each 𝑥 𝑥 ∈ [𝑎, 𝑏], ∃ [𝑃′(𝑥)]
−1

∈ 𝐿+(𝑌, 𝑋) and that 

( ) ( ) ( ).bPxPaPbxa  If ( ) ( ) ,0,0  bPaP  then there exists a unique solution 
x  of the 

equation ( ) ,0=xP  where 

( )  ( )  .,,:,liminf:
1

10 NkxPxPxxbxxxx kkkkkk −====
−

+


                        (1) 

Moreover, we have  

( )  ( ) .0,
1

→−
−

kk xPaPxxbxa                                           (2) 

Proof. Using induction upon ,k  we prove that 

( ) .,,0 1 NkxxxP kkk  +                                                           (3) 

The last relations (1) and the convexity of ,P  yield 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0,0 110 =−=−+= ++ kkkkkkk xPxPxxxPxPxPbPxP
 

Hence ( ) .0 NkxP k   These relations lead to 

( )  ( )  .0 1
1

1 NkxxxPxPxx kkkkkk −=− +
−

+  

We derive the following useful relations 

( ) ( ) ( )  ( ) ( )( )

( )  ( ) ( )( ) .,

00,0

1

1

NkaxxaxaxPxP

xPaPxPxPaP

kkkkk

kkk

−=−

−−

−

−

 

Using the hypothesis on the space ,X  there exists 
x  defined by the first relations (1), and from (3) we infer 

that the sequence ( )
kkx  is decreasing. Passing through the limit in the recurrence relations (1) one obtains 

( )  ( )  ( ) .00
1

== − xPxPxP
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From the assumptions on the positivity of ( ) ( ),, aPbP −  and from the definition of ,x  we infer that 

.bxa  
 In order to prove (2), one uses the convexity once more 

( ) ( ) ( ) ( )( ) ( )( )
( )  ( )( ) ( )  ( )( ) .,0

11
NkxPaPxxxxxPaP

xxaPxxxPxPxPxP

kkkk

kkkk

−−

−−−=

−−



 

The uniqueness of the solution follows quite easily: 

( ) ( ) ( )( ) ( )  ( )( )( ) .00 21212

1

221221
− −=−−−= xxxxxPxPxxxPxPxP

 

Similarly, we can write: ,0 12
 − xx  hence .21

 = xx                                                      □ 

The corresponding statement for convex decreasing operators holds. 

Theorem 3.2 Assume that for any  bax ,  there exists ( )  1− xP  such that 

( )  ( ) ( )  ( )  .,
111 −−

++
− − bPxPbxaXYxP  If ( ) ( ) ,0,0  bPaP  then there exists an 

unique solution [,] bax   of the equation ( ) ,0=xP  
x  being given by 

( )  ( )( ) .,,,limsup
1

10 NkxPxPxxaxxxx kkkkkk −====
−

+


 

Moreover, the sequence ( )
kkx  is increasing and the convergence rate is given by the inequalities 

( )  ( ) .,
1

NkxPbPxx kk −
−

 

3.2. Direct consequences 

During this Section we mention some applications of the general theorems of Section 2. The difficulties consist 

only in technical details concerning verifying conditions from general theorems. That is why we do not prove all 

the statements. 

Theorem  3.3 (see also [7]). Let H  be a finite dimensional Hilbert space and 𝑋 = 𝑌  the commutative algebra 

defined in [5], p. 303-305 and in Section 2 of the present paper. Let  

 

  0,0,,...,1,0, 0  + nj BBnjXB
 

be such that 


=


n

j

jBB

1

0

 

and 𝑛𝐵𝑛𝑈𝑛−1 + ⋯ + 2𝐵2𝑈 + 𝐵1   is invertible for all 𝑈𝑈 ∈ [0, 𝐼𝐼]. Then there exists a unique 

,0, IUU   such that 

𝐵𝑛𝐵𝑛𝑈̅𝑛 + ⋯ + 𝐵1𝑈̅ − 𝐵0 = 0, 
 

and this solution verifies in particular the relation 


=

−−
n

j

j BBUI

1

0

 



MathLAB Journal Vol 6 (2020) ISSN: 2582-0389                                   http://www.purkh.com/index.php/mathlab 

56 

Proof. The space X  is an order-complete Banach lattice and a commutative algebra of symmetric operators. 

Let 

  XXIP → +,0:
 

be defined by 

𝑃(𝑈) = 𝐵𝑛𝑈𝑛 + ⋯ + 𝐵1𝑈 − 𝐵0 

One can show that the operator ( ) n
n UUP =  is convex on +X  (see [7] for details). Now it follows easily that 

P  is also convex on ,+X  since all the coefficients + XBk  and all the operators in X  are permutable. On 

the other hand, we have 

 

𝑃′(𝑈)(𝑉) = (𝑛𝐵𝑛𝑈𝑛−1 + ⋯ + 2𝐵2𝑈 + 𝐵1)𝑉 ⟹ 
 

[𝑃′(𝑈)]−1(𝑉̃) = (𝑛𝐵𝑛𝑈𝑛−1 + ⋯ + 2𝐵2𝑈 + 𝐵1)−1𝑉̃, ∀𝑉̃,  𝑈 ∈ [𝟎, 𝑰] 
 

 

We also have 

[𝑃′(𝑈)]−1 ≥ 0, 0 ≤ 𝑈 ≤ 𝐼 ⟹ 𝑃′(0)𝑉 = 𝐵1𝑉 ≤ 

 
(𝑛𝐵𝑛𝑈𝑛−1 + ⋯ + 2𝐵2𝑈 + 𝐵1)𝑉 ≤ (𝑛𝐵𝑛 + ⋯ + 2𝐵2 + 𝐵1)𝑉 ⟹ 

 

𝑃′(0) ≤ 𝑃′(𝑈) ≤ 𝑃′(𝐼)  ∀𝑈 ∈ [0, 𝐼] 

 

Due to the hypothesis, we infer that 

( ) ( ) ,0,00 0

1

0 −=−= 
=

BBIPBP
n

k

k

 

so that all requirements of Theorem 3.1 are accomplished. It follows that there exists a unique solution 

[,0] IU   of the equation ( ) ,0=UP  that verifies the following relation (for 𝑘𝑘 = 0 in Theorem 3.1) 

 

‖𝐼 − 𝑈‖ ≤ ‖[𝑃′(0)]−1‖ ∙ ‖𝑃(𝐼)‖ = ‖𝐵1
−1‖ ∙ ‖𝐵𝑛 + ⋯ + 𝐵1 + 𝐵0‖ 

 

Now the proof is complete.                                                                                              □  

Theorem 3.4. Let XH ,  be as in the preceding theorem, XB ,1  such that the spectrum  

( ) ( ) [.,ln]  BS  There is a unique solution XIU  [,0]  of the equation 

( ) 0exp =− IBU 
 

and this solution verifies in particular the relation 

.exp1 IBBUI −− −

 

The next result is an application of the scalar version of Theorem 3.2, when .RYX ==  
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Proposition 3.1 Let 0,,   be such that 

( ) .1exp1 −−− 
 

Then there exists a unique solution [1,0]x  of the equation 

( ) 0exp =−−−  xx
 

and we have 

( )
.1,0

exp

1
0 →

+−

−
  




x

 

Theorem 3.5. Let H  be a finite dimensional Hilbert space, and X  the space defined in [5], p. 303-305. Let 

XCBA ,,
~

 be such the spectrums of A
~

 and B  are contained in [.,0]   Assume also that 

( ) .
~

exp ICBA −−
 

Then there exists a unique solution [,0] IU   of the equation 

( ) 0
~

exp =−−− CBUUA
 

and the following estimation holds true 

( )  ICCIBAAU →→−+−
−

,0
~

exp
~~ 1

 

Proposition 3.2. There is a unique solution [2,2/3]x  of the equation 

,0142 23 =+− xx
 

and this solution verifies 

.2
152

27
2 − x

 

Theorem 3.6. Let A  be a symmetric operator acting on a finite dimensional Hilbert space, with the spectrum 

( )  .2,2/3AS  Let ( )AXYX ==  be the space defined in Section 2.  Then there exists a unique operator 

XU   such that 

042 23 =+− IUU  

and the spectrum of this operator verifies the following relation 

( ) [2,
152

27
2] −US

 

3.3. Approximating ;1,/1 pA p
 connection to contraction principle 

Let H be a finite dimensional Hilbert space, A  a symmetric operator acting on ,H  with the spectrum 

( ) )([,,0] AXXAS =  is defined in Section 2, as being the associated commutative algebra and order 

complete Banach lattice dicussed in [5], p. 303-305. We denote 

== == hAhhAh hAhA ,sup,,inf 11  
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Theorem 3.7. Let A  be as above,   .,1, RppISpA   There exists a unique operator 

[,]
/1/1

IIU
p

A
p

Ap   such that 

,0=− AU p
p  

and this solution verifies the relations 

( )

( )

.,
1 11

/1
/1

/1

/1 −−
+

−
−


−−− AI

p
IUAI

p
UI A

pp
Ap

ApApp
A

p
p

A 


 

Corollary 3.1 With the above notations and assumptions, we have 

.
1

lnln 11 −− −+−− AIAI AAA
A

AA 


  

Remark 3.1 If in the recurrence relation of Newton’s method 

( ) ( ) ( )  ( )( )xPxPxxxx kk
1

1 :,
−

+ −==   

the mapping   is a contraction, the rate of convergence of the sequence ( )
kkx  is given by contraction 

principle. Next, we show that this is the case of the operator ( ) ,AUUP p −=  which leads to the positive 

solution ./1 p
p AU =  

Theorem 3.8. (see also [4]). Let XAp ,,  be as above. Then the Newton recurrence for the equation  

( ) 0=−= AUUP p
 

is 

( ) .,
11

,
1

1
/1

0 NkAU
p

U
p

p
UUIU

p
kkkk

p
A +

−
===

+−
+   

The convergence rate for 
p

k AU /1→  is given by 

.,
1 1/1/1 NkAI

p

p
AU A

p
A

k
p

k −






 −
− −

 

Proof. Newton’s sequence for the convex operator P  is 

( ) ( )

( ) .,
1111

,

111

11
1

/1
0

NkUAU
p

U
p

p
AU

p
U

p
U

AUpUUUIbU

k
p

kk
p

k
pp

kk

p
k

p
kkk

p
A

=+
−

=+−

=−−===

+−+−++−

−−
+


 

Let 

 ,;: /1 pAUXUM =  

here the root is obtained by the aid of functional calculus for .A  Clearly, M  is closed in ,X  hence it is complete. 

Let XM →:  be defined by 
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( ) .,
11 1 MUAU
p

U
p

p
U p +

−
= +−  

A straightforward computation shows that ( ) ./1/1 pp AA =  First we show that 

( ) ( ) ;[,0] MUUS    

(in particular this proves that ( ) MM  ). One can show that   is convex on the subset of all operators in 

X  having the spectrum contained in the positive semiaxis. In particular,   is convex on .M  Direct 

computations yield 

( ) ( ) ( )( ) ./1/1/1/1 pppp AAUAAU =−+   

Thus ( ) MU   for all U  with spectrum ( ) [.,0] US  Now we prove that MM →:  is a contraction, 

with contraction constant .
1

p

p
q

−
=  Precisely we prove that 

( ) .,
1

MU
p

p
U 

−
  

Indeed, we have 

( )

( ) .,
1

1

0;
1

MU
p

p
UIAUI

AUIAUMUAUI
p

p
U

p

ppp


−

=−

−−
−

=

−

−−





 

Now the conclusion on   being a contraction follows by a standard differential calculus argument. Application 

of contraction theorem and an elementary computation shows that 

( ) .,
1

1

1/1
00

/1 NkAI
p

p
UU

q

q
AU A

p
A

kk
p

k −






 −
=−

−
− −  

This concludes the proof.                                                                                                      □ 

Numerical examples 

1) We approximate 

)6/(ln1

52

22








, evaluating the norm of the error. Notice that )6ln(  is not an integer. 

Therefore, simple recurring approximating sequences of the matrix from above might be difficult to find. We 

apply the previous Theorem 3.8. Consider the linear symmetric operator A defined by the matrix 








52

22
, 

applying 
2R  onto itself. The spectrum of A is [,0]}6,1{)( =A ,  and A is not contained in }Span{I , so 

that all conditions of theorem 3.8 are accomplished. Applying the latter theorem to  𝑝 = 𝑙𝑛(6), one obtains the 

following two approximations of 
)6/(ln1A : 

.
16ln62

246ln6

)6(ln66ln

1

6ln

16ln

,6

6ln1
001

0

)6/(ln1)6/(ln1










−

−


=+

−
=

===

− e
AUUU

eIIU A
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For the evaluation of the norm of the error corresponding to the second approximation 1U , the last relation in 

the statement of Theorem 3.8 is applied, where 1=k , 6ln=p . One deduces 

.
6/13/1

3/13/2

6

1
:||,||

6ln

1
1

||)6/1(||6
6ln

16ln
|||| )6/(ln1)6/(ln1

1










−

−
=








−=








−=

=−
−

−

AIBBe

AIAU

 

The spectrum of the matrix B is [,0[}6/5,0{ =B  and B is symmetric, so that 
6

5
|||| == BB . Thus  

135

1
1

6

5
72.2

8.1

1
1

6

5

6ln

1
1|||| )6/(ln1

1 +=







−








−− eAU

 . 

The conclusion is  

1

)6/(ln1

)6/(ln1

16ln62

246ln6

)6(ln652

22
U

e
A =









−

−











=

 

and the norm of the error in the latter approximation is smaller than 
135

1
1+ . 

2) Next we approximate 

)/(1 /1

52

22
nn









, ,2,N  nn  evaluating the norm of the error. Using the notations 

and some of the results for preceding Example 1), and applying Theorem 3.8 to the 𝑋 = 𝑌 = 𝑌(𝐴) defined in 

Section 2, associated to the operator (or matrix) A, we find: 

.

656)1(62

62626)1(1

6
1

6
1

)(,6)(

/1

/1

)/1/(1/1

/1

/1

/1

/1

/1

)/1/(1

/1

)/1/(1)/1/(1)/1/(1

1

/1

1

11

/1

/1

1

/1/1
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Applying the result from Example 1) for ‖𝐼 −
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The conclusion is that for large 𝑛, the second approximation )(1 nU  is good enough. 
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4. Conclusions 

We have reviewed and applied some of our earlier results on Newton like method for convex increasing (or 

decreasing) operators (and, in particular, for convex monotone functions), having continuous first derivatives. 

The method is illustrated by means of examples involving concrete equations. The strength of the method 

consists in its global character, while the weakness is that is applicable only for convex functions and operators. 

This is a review paper, completed by two new numerical examples. 
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