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Abstract

The aim of this paper, we offer a new class of sets called ngµ-closed sets in nano topological spaces and we study some
of its basic properties. We introduce and study ngµ-continuous, ngµ-irresolute and contra ngµ-continuous. Moreover,
we obtain their properties and characterizations.
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1 Introduction

Bhuvaneswari and Mythili Gnanapriya [1] introduced and studied nano generalised closed sets. S. Ganesan et al [4]
introduced and studied n*g-closed sets. In this paper, we introduce and study some basic properties of ngµ-closed sets
and ngµ-open sets. We introduce and study ngµ-continuous, ngµ-irresolute and contra ngµ-continuous. Moreover, we
obtain their properties and characterizations.

2 Preliminaries

2.1 Definition

[7] If (K, τR(X)) is the nano topological space with respect to X where X ⊆ K and if M ⊆ K, then

1. The nano interior of the set M is defined as the union of all nano open subsets contained in M and it is denoted
by ninte(M). That is, ninte(M) is the largest nano open subset of M.

2. The nano closure of the set M is defined as the intersection of all nano closed sets containing M and it is denoted
by nclo(M). That is, nclo(M) is the smallest nano closed set containing M.
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2.2 Definition

A subset M of a space (K, τR(X)) is called:

1. nano α-open set [7] if M ⊆ ninte(nclo(ninte(M))).

2. nano pre-open set [7] if M ⊆ ninte(nclo(M)).

The complements of the above mentioned nano open sets are called their respective nano closed sets.
The nano α-closure [5] (resp. nano pre-closure [3]) of a subset M of U, denoted by nαclo(M) (resp. npclo(M)) is defined
to be the intersection of all nano α-closed (resp. nano pre closed) sets of (K, τR(X)) containing M.

2.3 Definition

A subset M of a space (K, τR(X)) is called

1. ng-closed set [1] if nclo(M) ⊆ T whenever M ⊆ T and T is nano open in (K, τR(X)).

2. an nαg-closed set [10] if nαclo(M) ⊆ T whenever M ⊆ T and T is nano open in (K, τR(X)).

The complements of above nano closed sets is called nano open sets.

2.4 Definition

A map f : (K, τR(X)) → (L, τ ′R(Y )) is called:

1. nano continuous [8] if f−1(W) is a nano closed set of K for every nano closed set W of L.

2. nano α-continuous [9] if f−1(W) is an nano α-closed set in K for every nano closed set W of L.

3. ng-continuous [2] if f−1(W) is a ng-closed set of K for every nano closed set W of L.

4. nαg-continuous [11] if f−1(W) is a nαg-closed set of K for every nano closed set W of L.

2.5 Definition

[6] A map f : (K, τR(X)) → (L, τ ′R(Y )) is called contra nano continuous if f−1(W) is a nano closed set of (K, τR(X))
for every nano open set W of (L, τ ′R(Y )).

2.6 Definition

[12] A function f: (O, N ) → (P, N ′) is said to be nano contra g-continuous if f−1(V) is a ng-closed set of (O, N ) for
every n-open set V of (P, N ′).
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3 ngµ-Closed and ngµ-Open sets

We introduce the definitions

3.1 Definition

A subset M of a space (K, τR(X)) is called

1. a ngα*-closed set if nαclo(M) ⊆ ninte(T) whenever M ⊆ T and T is nα-open in (K, τR(X)). The complement of
ngα*-closed set is called ngα*-open set.

2. a nµ-closed set if nclo(M) ⊆ T whenever M ⊆ T and T is ngα*-open in (K, τR(X)). The complement of nµ-closed
set is called nµ-open set.

3. a generalized nµ-closed (briefly ngµ-closed) set if nclo(M) ⊆ T whenever M ⊆ T and T is nµ-open in (K, τR(X)).
The complement of ngµ-closed set is called ngµ-open set.

3.2 Proposition

Every nano closed set is ngµ-closed.
Proof Let M be a nano closed set and T be any nµ-open set containing M. Since M is nano closed, we have nclo(M)
= M ⊆ T. Hence M is ngµ-closed. �

3.3 Example

Let K = {1, 2, 3, 4} with K/ R= {{3}, {4}, {1, 2}} and X= {2}. The nano topology τR(X)= {φ, {1, 2}, K}. Then
ngµ-closed sets are φ, {3, 4}, {1, 3, 4}, {2, 3, 4}, K. Here, H = {1, 3, 4} is ngµ-closed set but not nano closed.

3.4 Proposition

Every ngµ-closed set is ng-closed.
Proof Let M be an ngµ-closed set and T be any nano open set containing M. Since every Nano open set is nµ-open,
we have nclo(M) ⊆ T. Hence M is ng-closed. �

3.5 Example

Let K and τR(X) as in the Example 3.3. Then ng-closed sets are φ, {3}, {4}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}, {1,
2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}, K. Here, H = {2, 3} is ng-closed set but not ngµ-closed.

3.6 Definition

A subset M of a space (K, τR(X)) is called
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1. nano gµα-closed (briefly ngµα-closed) set if nαclo(M) ⊆ T whenever M ⊆ T and T is nµ-open in (K, τR(X)).
The complement of ngµα-closed set is called ngµα-open set.

2. nano gµp-closed (briefly ngµp-closed) set if npclo(M) ⊆ T whenever M ⊆ T and T is nµ-open in (K, τR(X)).
The complement of ngµp-closed set is called ngµp-open set.

3.7 Proposition

Every nano α-closed set is ngµα-closed.
Proof Let M be an nano α-closed set and T be any nµ-open set containing M. Since M is nano α-closed, we have
nαclo(M)=M⊆ T. Hence M is ngµα-closed. �

3.8 Example

Let K and τR(X) as in the Example 3.3. Then ngµα-closed sets are φ, {3}, {4}, {3, 4}, {1, 3, 4}, {2, 3, 4}, K and
nα-closed sets are φ, {3}, {4}, {3, 4}, K. Here, H = {2, 3, 4} is ngµα-closed set but not nano α-closed.

3.9 Proposition

Every ngµ-closed set is ngµα-closed.
Proof Let M be an ngµ-closed set and T be any nµ-open set containing M. We have nαclo(M) ⊆ nclo(M) ⊆ T. Hence
M is ngµα-closed. �

3.10 Example

Let K and τR(X) as in the Example 3.8. Here, H = {4} is ngµα-closed but not ngµ-closed.

3.11 Proposition

Every ngµα-closed set is ngµp-closed.
Proof Let M be an ngµα-closed set and T be any nµ-open set containing M. We have npclo(M) ⊆ nαclo(M)⊆ T.
Hence M is ngµp-closed. �

3.12 Example

Let K and τR(X) as in the Example 3.8. Then ngµp-closed sets are φ, {1}, {2}, {3}, {4}, {1, 3}, {1, 4}, {2, 3}, {2, 4},
{3, 4}, {1, 3, 4}, {2, 3, 4}, K. Here, H = {1} is ngµp-closed set but not ngµα-closed.
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3.13 Proposition

Every ngµα-closed set is nαg-closed.
Proof Let M be an ngµα-closed set and T be any nano open set containing M. Since every nano open set is nµ-open,
we have nαclo(M)⊆ nclo(M) ⊆ T. Hence M is nαg-closed. �

3.14 Example

Let K and τR(X) as in the Example 3.8. Then nαg-closed sets are φ, {3}, {4}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}, {1,
2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}, K. Here, H = {1, 4} is nαg-closed set but not ngµα-closed.

3.15 Remark

If S and G are ngµ-closed sets, then S ∪ G is ngµ-closed set. Proof Let S and G be any two ngµ-closed sets in (K,
τR(X)) and T be any nµ-open set containing S and G . We have nclo(S) ⊆ T and nclo(G)⊆ T. Thus, nclo(S ∪ G) =
nclo(S) ∪ nclo(G) ⊆ T. Hence S ∪ G is ngµ-closed set in (K, τR(X)). �

3.16 Remark

If S and G are ngµ-closed sets, then S ∩ G is a ngµ-closed set.

3.17 Example

Let K and τR(X) as in the Example 3.3. Here, S = {1, 3, 4} and G = {2, 3, 4} are ngµ-closed sets but S ∩ G = {3, 4}
is a ngµ-closed set.

3.18 Proposition

If A subset M of (K, τR(X)) is a ngµ-closed if and only if nclo(M) − M does not contain any nonempty nµ-closed set.
Proof Necessity. Suppose that M is ngµ-closed. Let S be a nµ-closed subset of nclo(M) − M. Then M ⊆ Sc . Since
M is ngµ-closed, we have nclo(M) ⊆ Sc . Consequently, S ⊆ (nclo(M))c . Hence, S ⊆ nclo(M) ∩ (nclo(M))c = φ.
Therefore S is empty.

Sufficiency. Suppose that nclo(M) − M contains no nonempty nµ-closed set. Let M ⊆ G and G be nµ-closed If nclo(M)
6= G, then nclo(M) ⊆ Gc 6= φ. Since nclo(M) is a nano closed set and Gc is a nµ-closed set, nclo(M) ∩ Gc is a
nonempty nµ-closed subset of nclo(M) − M. This is a contradiction. Therefore, nclo(M) ⊆ G and hence M is ngµ-closed.
�

3.19 Proposition

If A is ngµ-closed in (K, τR(X)) such that A ⊆ B ⊆ nclo(A), then B is also a ngµ-closed set of (K, τR(X)).
Proof Let W be a nµ-open set of (K, τR(X)) such that B ⊆ W. Then A ⊆ W. Since A is ngµ-closed, we get, nclo(A)
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⊆ W. Now nclo(B) ⊆ nclo(nclo(A)) = nclo(A) ⊆ W. Therefore, B is also a ngµ-closed set of (K, τR(X)). �

3.20 Definition

The intersection of all nµ-open subsets of (K, τR(X)) containing M is called the nano µ-kernel of M and denoted by
nµ-ker(M).

3.21 Lemma

A subset M of (K, τR(X)) is ngµ-closed if and only if nclo(M) ⊆ nµ-ker(M).
Proof Suppose that M is ngµ-closed. Then nclo(M) ⊆ T whenever M ⊆ T and T is nµ-open. Let k ∈ nclo(M). If k /∈
nµ-ker(M), then there is a nµ-open set T containing M such that k /∈ T. Since T is a nµ-open set containing M, we
have k /∈ nclo(M) and this is a contradiction. Conversely, let nclo(M) ⊆ nµ-ker(M). If T is any nµ-open set containing
M, then nclo(M) ⊆ nµ-ker(M) ⊆ T. Therefore, M is ngµ-closed. �

3.22 Definition

A subset M of a space K is said to be ngµ-open if MC is ngµ-closed.

3.23 Proposition

1. Every nano open set is ngµ-open set but not conversely.

2. Every ngµ-open set is ng-open set but not conversely.

3. Every nano α-open set is ngµα-open but not conversely.

4. Every ngµ-open set is ngµα-open set but not conversely.

5. Every ngµα-open set is ngµp-open but not conversely.

6. Every ngµα-open set is nαg-open but not conversely.

Proof Omitted. �

3.24 Proposition

A subset M of a nano topological space K is said to ngµ-open if and only if P ⊆ ninto(M) whenever M ⊇ P and P is
nµ-closed in U.
Proof Suppose that M is ngµ-open in K and M ⊇ P, where P is nµ-closed in K. Then M c ⊆ P c , where P c is
nµ-open-open in K. Hence we get nclo (M c ) ⊆ P c implies ( ninte(M))c ⊆ P c . Thus, we have ninte(M) ⊇ P.
conversely, suppose that M c ⊆ T and T is nµ-open in K then M ⊇ T c and T c is nµ-closed then by hypothesis
ninte(M) ⊇ T c implies ( ninte(M))c ⊆ T. Hence nclo (M c) ⊆ T gives M c is ngµ-closed. �

97



MathLAB Journal Vol 6 (2020) ISSN: 2582-0389 http://www.purkh.com/index.php/mathlab

3.25 Proposition

In a nano topological space U, for each u ∈ U, either {u} is nµ-closed or ngµ-open in U.
Proof Suppose that {u} is not nµ-closed in U. Then {u}c is not nµ-open and the only nµ-open set containing {u}C

is the space U itself. Therefore, nclo ({u}C ) ⊆ U and so {u}C is ngµ-closed gives {u} is ngµ-open. �

4 ngµ-Continuous maps and Irresolute maps

We introduce the following definition.

4.1 Definition

A map f : (K, τR(X)) → (L, τ ′R(Y )) is called ngµ-continuous if f−1(W) is a ngµ-closed set of (K, τR(X)) for every
nano closed set W of (L, τ ′R(Y )).

4.2 Proposition

1. Every nano continuous is ngµ-continuous but not conversely.

2. Every ngµ-continuous is ng-continuous but not conversely.

Proof Omitted. �

4.3 Definition

A map f : (K, τR(X)) → (L, τ ′R(Y )) is called ngµα-continuous (resp. ngµp-continuous) if f−1(W) is a ngµα-closed
(resp. ngµp-closed) set of (K, τR(X)) for every nano closed set W of (L, τ ′R(Y )).

4.4 Proposition

1. Every nano α-continuous is ngµα-continuous but not conversely.

2. Every ngµ-continuous is ngµα-continuous but not conversely.

3. Every ngµα-continuous is ngµp-continuous but not conversely.

4. Every ngµα-continuous is nαg-continuous but not conversely.

Proof Omitted. �
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4.5 Theorem

If f : (K, τR(X)) → (L, τ ′R(Y )) is ngµ-continuous and g : (L, τ ′R(Y )) → (M, τ∗R(Z)) is nano continuous then g ◦ f : (K,
τR(X)) → (M, τ∗R(Z)) is ngµ-continuous.
Proof Let G be nano closed set in M. Since g is nano continuous, g−1(G) is nano closed in L. Since f is ngµ-continuous,

(g ◦ f)−1(G) = f−1(g−1(G)) is ngµ-closed in K. Therefore g ◦ f is ngµ-continuous. �

4.6 Proposition

A map f : (K, τR(X)) → (L, τ ′R(Y )) is ngµ-continuous if and only if f−1(W) is ngµ-open in (K, τR(X)) for every nano
open set W in (L, τ ′R(Y )).
Proof Let f : (K, τR(X)) → (L, τ ′R(Y )) be ngµ-continuous and W be an nano open set in (L, τ ′R(Y )). Then Wc

is nano closed in (L, τ ′R(Y )) and since f is ngµ-continuous, f−1(Wc) is ngµ-closed in (K, τR(X)). But f−1(Wc) =
f−1((W))c and so f−1(W) is ngµ-open in (K, τR(X)).
Conversely, assume that f−1(W) is ngµ-open in (K, τR(X)) for each nano open set W in (L, τ ′R(Y )). Let F be a nano
closed set in (L, τ ′R(Y )). Then Fc is nano open in (L, τ ′R(Y )) and by assumption, f−1(Fc) is ngµ-open in (K, τR(X)).
Since f−1(Fc) = f−1((F))c , we have f−1(F) is nano closed in (K, τR(X))and so f is ngµ-continuous. �

4.7 Definition

A space (K, τR(X)) is called a Tngµ-space if every ngµ-closed set in it is nano closed.

4.8 Theorem

Let f : (K, τR(X)) → (L, τ ′R(Y )) be an ngµ-continuous map. If (K, τR(X)), the domain of f is an Tngµ-space, then f is
nano continuous.
Proof Let W be a nano closed set of (L, τ ′R(Y )). Then f−1(W) is a ngµ-closed set of (K, τR(X)), since f is

ngµ-continuous. Since (K, τR(X)) is an Tngµ-space, then f−1(W) is a nano closed set of (K, τR(X)). Therefore f is
nano continuous. �

4.9 Definition

A map f : (K, τR(X)) → (L, τ ′R(Y )) is called ngµ-irresolute if f−1(W) is a ngµ-closed set of (K, τR(X)) for every
ngµ-closed set W of (L, τ ′R(Y )).

4.10 Theorem

Every ngµ-irresolute map is ngµ-continuous but not conversely.
Proof Let f : (K, τR(X)) → (L, τ ′R(Y ))be a ngµ-irresolute map. Let W be a nano closed set of (L, τ ′R(Y )). Then
by the Proposition 3.2, W is ngµ-closed. Since f is ngµ-irresolute, then f−1(W) is a ngµ-closed set of (K, τR(X)).
Therefore f is ngµ-continuous. �
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4.11 Theorem

Let f : (K, τR(X)) → (L, τ ′R(Y )) and g : (L, τ ′R(Y )) → (M, τ∗R(Z)) be any two maps. Then

1. g ◦ f is ngµ-continuous if g is nano continuous and f is ngµ-continuous.

2. g ◦ f is ngµ-irresolute if both f and g are ngµ-irresolute.

3. g ◦ f is ngµ-continuous if g is ngµ-continuous and f is ngµ-irresolute.

Proof Omitted. �

4.12 Definition

A map f : (K, τR(X)) → (L, τ ′R(Y )) is called contra ngµ-continuous if f−1(W) is a ngµ-closed set of (K, τR(X)) for
every nano open set W of (L, τ ′R(Y )).

4.13 Proposition

Every contra nano continuous is contra ngµ-continuous but not conversely.
Proof Let f : (K, τR(X)) → (L, τ ′R(Y )) be a contra nano continuous map and let G be any nano open set in (L,
τ ′R(Y )). Then, f−1(G) is nano closed in K. Since every nano closed set is ngµ-closed, f−1(G) is ngµ-closed in K.
Therefore f is contra ngµ-continuous. �

4.14 Example

Let K = {1, 2, 3} with K/R = {{2}, {1, 3}, {3, 1}} and X = {1, 3}. Then nano topology τR(X) = {φ, {1, 3}, K}.
Then ngµ-closed sets are φ, {2}, {1, 2}, {2, 3}, K. Let L = {1, 2, 3} with L/ R’= {{1}, {2, 3}, {3, 2}} and Y= {2,
3}. Then nano topology τ ′R(Y ) = {φ, {2, 3}, L}. Define f : (K, τR(X)) → (L, τ ′R(Y )) be the identity map. Then f is
contra ngµ-continuous but not contra nano continuous, since f−1({2, 3})= {2, 3} is not nano closed in (K, τR(X)).

4.15 Proposition

Every contra ngµ-continuous is nano contra g-continuous but not conversely.
Proof Let f : (K, τR(X)) → (L, τ ′R(Y )) be a contra ngµ-continuous map and let G be any nano open set in (L,
τ ′R(Y )). Then, f−1(G) is ngµ-closed in K. Since every ngµ-closed set is ng-closed, f−1(G) is ng-closed in K. Therefore
f is nano contra g-continuous. �

4.16 Example

Let K = {1, 2, 3} with K/R = {{2}, {1, 3}} and X = {2}. Then nano topology τR(X) = {φ, {2}, K}. Then ngµ-closed
sets are φ, {1, 3}, K and ng-closed sets are φ, {1}, {3}, {1, 2}, {1, 3}, {2, 3}, K. Let L = {1, 2, 3} with L/ R’= {{1},
{2, 3}} and Y= {1, 3}. Then nano topology τ ′R(Y ) = {φ, {1}, {2, 3}, L}. Define f : (K, τR(X)) → (L, τ ′R(Y )) be the

100



MathLAB Journal Vol 6 (2020) ISSN: 2582-0389 http://www.purkh.com/index.php/mathlab

identity map. Then f is nano contra g-continuous but not contra ngµ-continuous, since f−1({2, 3})= {2, 3} is not
ngµ-closed in (K, τR(X)).

4.17 Remark

ngµ-continuity and contra ngµ-continuity are independent.

4.18 Example

Let K, τR(X) and f be as in Example 4.14. Let L = {1, 2, 3} with L/ R’= {{3}, {1, 2}} and Y= {3}. Then nano
topology τ ′R(Y ) = {φ, {3}, L}. Then f is ngµ-continuous but not contra ngµ-continuous, since f−1({3})= {3} is not
ngµ-closed in (K, τR(X)).

4.19 Example

Let K, τR(X), L, τ ′R(Y ) and f be as in Example 4.14. Then f is contra ngµ-continuous but not ngµ-continuous, since
f−1({1})= {1} is not ngµ-closed in (K, τR(X)).

4.20 Remark

The composition of two contra ngµ-continuous maps need not be contra ngµ-continuous.

4.21 Example

Let K, τR(X), L, τ ′R(Y ) and f be as in Example 4.14. Then ngµ-closed sets are φ, {1}, {1, 2}, {1, 3}, L}. Let M =
{1, 2, 3} with M/ R*= {{1}, {2, 3}} and Z= {1}. Then nano topology τ∗R(Z) = {φ, {1}, M}. Define g : (L, τ ′R(Y ))
→ (M, τ∗R(Z)) be the identity map. Clearly f and g are contra ngµ-continuous but their g ◦ f : (K, τR(X)) → (M,
τ∗R(Z)) is not contra ngµ-continuous, because V = {1} is nano open in (M, τ∗R(Z)) but ( g ◦ f −1({1})= f−1(g−1({1}))
= f−1({1}) = {1}, which is not ngµ-closed in (K, τR(X)).

4.22 Theorem

Let f : (K, τR(X)) → (L, τ ′R(Y )) be a map. Then the following conditions are equivalent

1. f is contra ngµ-continuous.

2. The inverse image of each nano open set in P is ngµ-closed in K.

3. The inverse image of each nano closed set in P is ngµ-open in K.

4. For each point k in K and each nano closed set G in P with f(k) ∈ G, there is an ngµ-open set U in K containing
k such that f(U) ⊂ G.
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Proof (1) ⇒ (2). Let G be nano open in L. Then L − G is nano closed in L. By definition of contra ngµ-continuous,
f−1(L − G) is ngµ-open in K. But f−1(L − G) = K - f−1(G). This implies f−1(G) is ngµ-closed in K.
(2) ⇒ (3) Let G be any nano closed set in L. Then L−G is nano open set in L. By the assumption of (2), f−1(L − G)
is ngµ-closed in K. But f−1(L − G) = K - f−1(G). This implies f−1(G) is ngµ-open in K.
(3) ⇒ (4). Let k ∈ K and G be any nano-closed set in L with f(k) ∈ G. By (3), f−1(G) is ngµ-open in K. Set U=
f−1(G). Then there is an ngµ-open set U in K containing k such that f(U) ⊂ G.
(4) ⇒ (1). Let k ∈ K and G be any nano-closed set in L with f(k) ∈ G. Then L − G is nano-open in L with f(k) ∈ G.
By (4), there is an ngµ-open set U in K containing k such that f(U) ⊂ G. This implies U= f−1(G) . Therefore, K − U
= K − f−1(G) = f−1(L−G) which is ngµ-closed in K. �

4.23 Theorem

Let f : (K, τR(X)) → (L, τ ′R(Y )) and g : (L, τ ′R(Y )) → (M, τ∗R(Z)). Then the following properties hold:

1. If f is contra ngµ-continuous and g is nano continuous then g ◦ f is contra ngµ-continuous.

2. If f is contra ngµ-continuous and g is contra nano continuous then g ◦ f is ngµ-continuous.

3. If f is ngµ-continuous and g is contra nano continuous then g ◦ f is contra ngµ-continuous.

Proof (1) Let G be nano closed set in M. Since g is nano continuous, g−1(G) is nano closed in L. Since f is contra
ngµ-continuous, (g ◦ f)−1(G) = f−1(g−1(G)) is ngµ-open in K. Therefore g ◦ f is contra ngµ-continuous.
(2) Let G be any nano closed set in M. Since g is contra nano continuous, g−1(G) is nano open in L. Since f is contra
ngµ-continuous, (g ◦ f)−1(G) = f−1(g−1(G)) is ngµ-closed in K. Therefore g ◦ f is ngµ-continuous.
(3) Let G be any nano closed set in M. Since g is contra nano continuous, g−1(G) is nano open in L. Since f is
ngµ-continuous, (g ◦ f)−1(G) = f−1(g−1(G)) is ngµ-open in K. Therefore g ◦ f is contra ngµ-continuous. �

4.24 Theorem

Let f : (K, τR(X)) → (L, τ ′R(Y )) is ngµ-irresolute map and g : (L, τ ′R(Y )) → (M, τ∗R(Z)) is contra nano continuous
map, then g ◦ f : (K, τR(X)) → (M, τ∗R(Z)) is contra ngµ-continuous map.
Proof Since g is contra nano continuous from (L, τ ′R(Y )) → (M, τ∗R(Z)), for any nano open set in m as a subset of M,
we get, g−1(m) = G is a nano closed set in (L, τ ′R(Y )). By Proposition 3.2, it implies that g−1(m) = G is ngµ-closed
in (L, τ ′R(Y )). As f is ngµ-irresolute map. We get (g ◦ f)−1(m)= f−1(g−1(m)) = f−1(G) = S and S is a ngµ-closed in
(K, τR(X)). Hence g ◦ f is a contra ngµ-continuous map. �

4.25 Theorem

Let f : (K, τR(X)) → (L, τ ′R(Y )) is ngµ-irresolute map and g : (L, τ ′R(Y )) → (M, τ∗R(Z)) is contra ngµ-continuous
map, then g ◦ f : (K, τR(X)) → (M, τ∗R(Z)) is contra ngµ-continuous map.
Proof Since g is contra ngµ-continuous from (L, τ ′R(Y )) → (M, τ∗R(Z)), for any nano open set in m as a subset of M,
we get, g−1(m) = G is a ngµ-closed set in (L, τ ′R(Y )). As f is ngµ-irresolute map. We get (g ◦ f)−1(m)= f−1(g−1(m))
= f−1(G) = S and S is a ngµ-closed in (K, τR(X)). Hence g ◦ f is a contra ngµ-continuous map. �
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4.26 Theorem

Let f : (K, τR(X)) → (L, τ ′R(Y )) be a map and g: (K, τR(X)) → ((K, τR(X)) × (L, τ ′R(Y ))) the graph map of f,
defined by g(k) = ( k, f(k)) for every k ∈ K. If g is contra ngµ-continuous, then f is contra ngµ-continuous.
Proof Let G be an nano open set in (L, τ ′R(Y )). Then ((K, τR(X)) × G) is an nano open set in ((K, τR(X)) × (L,
τ ′R(Y ))). It follows from Theorem 4.22, that f−1(G) = g−1((K, τR(X)) × G) is ngµ-closed in (K, τR(X)). Thus, f is
contra ngµ-continuous. �

Conclusions

In this paper, we offer a new class of sets called ngµ-closed sets in nano topological spaces and we study some of its
basic properties. We introduce and study ngµ-continuous, ngµ-irresolute and contra ngµ-continuous. Moreover, we
obtain their properties and characterizations. In future, we have extended this work in various nano topological fields
with some applications.
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