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Abstract

This article continues the exploration of methods based on that of Gian-Carlo Rota that involve
apolar invariants used for solving cubic and quintic polynomial equations.These polynomial invariants
were disclosed previously as an alternative to and to clarify the umbral method of Rota.Theorems
are proved regarding quintic, cubic, and quadratic polynomials that are pairwise apolar in that they
satisfy particular polynomial apolar invariants.
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1. Introduction

Let p(x) = a0x
3 + 3a1x

2 + 3a2x + a3 and q(x) = b0x
2 + 2b1x + b2 represent typical cubic and

quadratic polynomials, respectively, each with complex coefficients ai, bj, written in binomial form.
In [3], it is shown that if the coefficients of p and q satisfy the polynomial equation

A2,3 (q (x) , p (x)) = (a0b2 − 2a1b1 + b0a2)x− (a1b2 − 2a2b1 + b0a3) = 0

for all x in which case p(x) and q(x) are said to be “apolar”, or “A2,3− apolar”, then this

provides a method for finding the roots of p(x). This expression for A2,3 (q (x) , p (x)) appears in
[5] for the case in which q and p are monic; that is, a0 = 1 = b0 . These strategies for finding
the roots of an arbitrary cubic open an avenue to be explored whereby these “apolar methods” are
extended to solve for the roots of an arbitrary quintic polynomial. Given a general cubic p(x), one
may solve for a quadratic q(x) which is A2,3− apolar to p(x). In the case where this q(x) has 2
distinct roots r1 and r2, it is shown in [3] that the cubic p(x) may be written

(1) p(x) =
(
a0r2+a1
r2−r1

)
(x− r1)3 −

(
a0r1+a1
r2−r1

)
(x− r2)3

which allows for a solution of p(x) = 0 using algebraic methods [3, Cor. 1]. As Gian-Carlo Rota
remarks in [5]: “This method of solving a cubic equation is the only one I can remember”. This
method is alluded to also in [4]. In this paper, it will be proved that if such a cubic p(x) has more
than 1 root, then such a p(x) will have 3 distinct roots. Alternately, if the quadratic q(x)
has one repeated root r, then this r will also be a repeated root of p(x). This fact along with
division allows for the complete solution of p(x) = 0. So, in either case, whether the roots of the
quadratic q(x) are distinct or repeated, the roots of the cubic p(x) may be found algebraically [3,
Th. 2]. An example of this method of apolar polynomials used to solve a cubic equation appears in
Sec. 3 of this paper.

The preceding methods are then extended to the case of a general quintic polynomial

s(x) = d0x
5 + 5d1x

4 + 10d2x
3 + 10d3x

2 + 5d4x+ d5
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also written in binomial form. A system of 3 linear equations in 4 unknowns is used to solve for a
cubic p(x) = a0x

3 + 3a1x
2 + 3a2x+ a3 whose coefficients satisfy the polynomial equation

A3,5 (p (x) , s (x)) = 0 for all x, where

A3,5 (p (x) , s (x)) = x2 (d0a3 − 3d1a2 + 3d2a1 − d3a0)
−2x (d1a3 − 3d2a2 + 3d3a1 − d4a0)
+d2a3 − 3d3a2 + 3d4a1 − d5a0 .

Such polynomials p (x) and s (x) are said to be “apolar” or “A3,5− apolar” in that they are zeroes
of the apolar invariant A3,5 (p (x) , s (x)). It was shown in [3], that if the cubic p (x) has 3 distinct
roots r1, r2, and r3, then

s(x) = k1 (x− r1)5 + k2 (x− r2)5 + k3 (x− r3)5

for constants k1, k2, k3. This fact is mentioned also in [5]. Similar to Equation (1), explicit
formulas for each ki that depend on the roots of p(x) and the coefficients of s(x) will be found
in Sec. 3.
The general apolar polynomial Ak,n (q (x) , p (x)) is defined in [3] and is proved to be an invariant
under translation in the cases for which (k, n) = (2, 3), (3, 5), (2, 5). What “invariant under
translation” means in the case of Ak,n (q (x) , p (x)) is that

Ak,n (q (x+ c) , p (x+ c)) = Ak,n (q (x) , p (x))

for all x and for any complex constant c . In other words, substituting in x+c for x (which forces
the coefficients with respect to x of q(x+ c) and p(x+ c) to equal corresponding polynomials in
c ) results, after simplification, in c disappearing completely via cancellation. So in the 3 cases
(k, n) = (2, 3), (3, 5), (2, 5), the polynomial Ak,n (q (x) , p (x)) may be referred as an “apolar
invariant”.
As shown in [3, Sec. 5], for integers k and n with 1 ≤ k ≤ n, the general apolar expression is
a polynomial of degree n − k in x for which the coefficients with respect to x are divisible by
polynomials in ai and bj , which define the coefficients of p and q, respectively. Explicitly

Ak, n(q(x), p(x)) =
n−k∑
i=0

Ti where

Ti = (−1)i
(
n− k
i

)
xn−k−i

(
aibk −

(
k
1

)
ai+1bk−1 + · · ·+ (−1)k−1

(
k

k − 1

)
ak+i−1b1 + (−1)k ak+ib0

)
The degree n − k term of Ak, n(q(x), p(x)), that is, T0, is divisible by a polynomial in ai and
bj, that appears in [1, Equation 1.1].

Also it is proved in [3, Th. 3] if a is a root of a degree k polynomial q(x), then q(x) is
Ak,n− apolar to the degree n polynomial (x− a)n, where n ≥ k, as long as the polynomial
Ak,n(q(x), p(x)) is invariant under translation. This result appears in [5, Th. 1].

We will now look to extend these results.
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2. Apolar Cubics and Quadratics

We concentrate now on connections between repeated roots of apolar polynomials of degrees 2, 3,
and 5. The following is an update of [3, Th. 2] that contributes to the goal of providing a more
complete picture of the relationship between apolar 2nd and 3rd degree polynomials with regard to
repeated roots.

Theorem 1 Let q(x) = b0x
2 + 2b1x+ b2 and p(x) = a0x

3 + 3a1x
2 + 3a2x+ a3 represent a general

quadratic and cubic polynomial, respectively.

(a) If q(x) has a root x = r of multiplicity 2, then any p(x) which is

A2, 3− apolar to q(x) has a root x = r of multiplicity at least 2.

(b) If p(x) has a root x = r of multiplicity 2, then any q(x) which is

A2, 3− apolar to p(x) has a root x = r of multiplicity 2.

(c) If p(x) has a root x = r of multiplicity 3, then any q(x) that is

A2, 3− apolar to p(x) has a root x = r. And there exists a particular q(x)

that is A2, 3− apolar to p(x) with a root of multiplicity 2 at x = r.

Proof : (a) Assume first that q(x) = b0x
2 + 2b1x + b2 has a root x = r of multiplicity 2. It

follows that q(x) = b0 (x− r)2 = b0x
2 − 2b0rx+ b0r

2 . Then b1 = −b0r and b2 = b0r
2.

Solve the equation A2, 3(q(x), p(x)) = (a0b2 − 2a1b1 + b0a2)x− (a1b2 − 2a2b1 + b0a3) = 0 for all x

for a cubic p(x) = a0x
3 + 3a1x

2 + 3a2x+ a3 through use of the matrix
[
b2 −2b1 b0 0 0
0 b2 −2b1 b0 0

]
in which the columns, left-to-right, display the coefficients for a0, a1, a2, a3, respectively.

This yields for q(x) = b0x
2 − 2b0rx+ b0r

2 the augmented matrix
[
b0r

2 2b0r b0 0 0
0 b0r

2 2b0r b0 0

]
.

Since we assume b0 6= 0, it follows that this system is equivalent to one with augmented matrix[
r2 2r 1 0 0
0 r2 2r 1 0

]
Case 1: r = 0

Then
[
r2 2r 1 0 0
0 r2 2r 1 0

]
=
[

0 0 1 0 0
0 0 0 1 0

]
which implies that a2 = 0 = a3 .

Therefore p(x) = a0x
3+3a1x

2 = x2 (a0x+ 3a1), which means that p has root r = 0 of multiplicity
at least 2.

Case 2: r 6= 0

Then
[
r2 2r 1 0 0
0 r2 2r 1 0

]
, row reduces to

[
1 0 − 3

r2
− 2
r3

0
0 1 2

r
1
r2

0

]
.

This implies that a0 = a2
3
r2

+ a3
2
r3

= 3ra2+2a3
r3

and a1 = −a2 2r − a3
1
r2

= −2ra2−a3
r2

.

Therefore p(x) must have the form

p(x) =
(
3ra2+2a3

r3

)
x3 + 3

(−2ra2−a3
r2

)
x2 + 3a2x+ a3 .

Since
(

(3a2r+2a3)x+ra3
r3

)
(x− r)2 =

(
3ra2+2a3

r3

)
x3 + 3

(−2ra2−a3
r2

)
x2 + 3a2x+ a3

then p(x) =
(

(3a2r+2a3)x+ra3
r3

)
(x− r)2, so p(x) has a root r of multiplicity at least 2.
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Therefore, in either case, p has a root at x = r of multiplicity at least 2.

(b) If p(x) has a root x = r of multiplicity 2 or more, then

p(x) = a0 (x− r)2 (x− a) = a0x
3 + (−2a0r − a0a)x2 + (a0r

2 + 2a0ra)x − a0r
2a, where a is a

complex root of p(x).

So then a3 = −a0r2a, a2 =
a0(r2+2ra)

3
, and a1 = −a0(2r+a)

3
.

To solve the equation A2, 3(q(x), p(x)) = (a0b2 − 2a1b1 + b0a2)x− (a1b2 − 2a2b1 + b0a3) = 0 for all
x for the quadratic q(x) = b0x

2 + 2b1x + b2, it is sufficient to solve the system with augmented

matrix
[
a0 −2a1 a2 0
a1 −2a2 a3 0

]
in which the first 3 columns, left-to-right, display the coefficients for

b2, b1, and b0, respectively.

This yields for p(x) = a0x
3 + (−2a0r − a0a)x2 + (a0r

2 + 2a0ra)x − a0r
2a, the system with

augmented matrix[
a0 −2a1 a2 0
a1 −2a2 a3 0

]
=

[
a0

2a0(2r+a)
3

a0(r2+2ra)
3

0

−a0(2r+a)
3

−2a0(r2+2ra)
3

−a0r2a 0

]
.

Since the leading coefficient of p is a0 6= 0, this last matrix is equivalent to[
1 2(2r+a)

3

(r2+2ra)
3

0

− (2r+a)
3

−2(r2+2ra)
3

−r2a 0

]
,

which can be row-reduced to

[
3 2 (2r + a) r2 + 2ra 0
0 (a− r)2 r(a− r)2 0

]
( ] ).

If x = r is a multiplicity 2 root of p(x), then a 6= r, so this last matrix ( ] ) reduces to[
1 0 −r2 0
0 1 r 0

]
, which means that b2 = b0r

2 and b1 = −b0r. Therefore q(x) = b0x
2−2b0rx+b0r

2.

Since b0 (x− r)2 = b0x
2− 2b0xr+ b0r

2, then q(x) = b0 (x− r)2, and q(x) has a multiplicity 2 root
at x = r also.

(c) If p(x) has a multiplicity 3 root at r, then using the same notation as in the proof of Part

(b), a = r, so the matrix ( ] )

[
3 2 (2r + a) r2 + 2ra 0
0 (a− r)2 r(a− r)2 0

]
becomes

[
3 6r 3r2 0
0 0 0 0

]
which

is equivalent to
[

1 2r r2 0
0 0 0 0

]
.

Therefore b2 = −2rb1 − r2b0, so that q(x) = b0x
2 + 2b1x− 2rb1 − r2b0.

Using division, q(x) = b0(x−r)(x+2 b1
b0

+r), so q(x) has a root at x = r. In this last expression for

q(x), choosing b1 = −b0r provides that q(x) = b0(x− r)(x+ 2 b1
b0

+ r) = b0(x− r)(x+ 2 (−b0r)
b0

+ r) =

b0 (x− r)2. Therefore there exists a q(x) A2, 3− apolar to the given p(x) with a root at x = r
of multiplicity 2. �

Corollary 1 Let p(x) = a0x
3 + 3a1x

2 + 3a2x + a3 be a given cubic polynomial. If q(x) =
b0x

2 + 2b1x+ b2 is A2, 3− apolar to p(x) and q(x) has 2 distinct roots, then either p(x) has 3
distinct roots all different from those of q(x), or p(x) has 1 triple root that q and p share.

Proof : In [3], in the paragraphs immediately preceding and following
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[3, Cor. 1], it is argued that given a cubic p(x) and a quadratic q(x) derived as A2, 3− apolar to
the given p, that if q has 2 distinct roots r1 and r2, then the set of cubics that are apolar to
q(x) (and which contains p(x)) has the form

{
c1 (x− r1)3 + c2 (x− r2)3 | c1, c2 ∈ C

}
,

where C is understood to be the set of complex numbers.

There are 2 cases: Either p shares 1 or more roots with q, or not.

Case 1: p and q share a root. Without loss of generality, assume that p(r1) = 0. Since
p(x) = c1 (x− r1)3 + c2 (x− r2)3 for some c1, c2 ∈ C not both zero (since p is of degree 3), it
follows that p(r1) = c2 (r1 − r2)3 = 0. Since r1 6= r2, this can only be true if c2 = 0 in which
case it follows that p(x) = c1 (x− r1)3. This means that p has one root of multiplicity 3 that
p and q share. Therefore, if p and q share a root, they share only 1 root, which is a root of
multiplicity 3 of p(x).

Case 2: On the other hand, if p and q have no roots in common, then Th. 1 would preclude p(x)
from having a root of multiplicity 2 or 3. If p has a root of multiplicity 2, then Th. 1(b) implies
that q(x) would have the same root with multiplicity 2, which contradicts the assumption that
q(x) has distinct roots and that p and q have no common roots. Likewise, if p has a root of
multiplicity 3, Th. 1(c) implies that q would share this root, which contradicts our assumption.
Therefore p must have 3 distinct roots all different from those of q(x). �

3. Apolar Quintics and Cubics

Before applying apolar methods to quintics, it is worth mentioning certain classes of quintics that
will be left out of our discussion either because their roots may be found easily, or they are not A3, 5−
polar to any cubic polynomial.

First, any quintic with only 1 or 2 terms (including the 5th-degree term) such as x5−3, 2x5 +5x,
−3x5 + 20x2, x5− 140x3, 61x5 + 2x4, or −15x5 may be solved using algebraic methods, and thus
do not warrant apolar methods.

Consider now quintics with exactly 3 nonzero terms and for which coefficients of 3 consecutive
powers of x are 0. These are of the form s(x) = d0x

5 + 5d1x
4 + 10d2x

3, s(x) = d0x
5 + 5d1x

4 + d5
or s(x) = d0x

5 + 5d4x+ d5, which have 0 coefficients in the consecutive powers of x: 2, 1, 0; 3,
2, 1; and 4, 3, 2, respectively. The first, of course, may be solved easily by factoring and solving
the remaining quadratic. The remaining 2 are discussed below.

Definition: A quintic polynomial of the form s(x) = d0x
5 + 5d1x

4 +d5 or s(x) = d0x
5 + 5d4x+d5

whereby the coefficients d0, d1, d4, and d5 are all nonzero, is each termed a trivial A3, 5−
apolar quintic.

The previous definition and the next theorem concern quintics that are A3, 5− polar to polynomials
of degree less than 3 for which 0 is the only root.

Theorem 2 Trivial A3, 5− apolar quintics are A3, 5− apolar only to polynomials of the form
p(x) = 3a2x or p(x) = 3a1x

2.

Proof : To solve for a cubic p(x) = a0x
3 +3a1x

2 +3a2x+a3 that is A3, 5− apolar to a given quintic,
having the form s(x) = d0x

5 + 5d1x
4 + 10d2x

3 + 10d3x
2 + 5d4x + d5, involves solving a system of

equations represented by the matrix[
d0 −3d1 3d2 −d3 0
d1 −3d2 3d3 −d4 0
d2 −3d3 3d4 −d5 0

]
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in which the first 4 columns represent the coefficients of the variables a3, a2, a1, and a0 respectively.

Case 1: s(x) = d0x
5 + 5d1x

4 + d5 . In this case d2 = d3 = d4 = 0, and by definition, d0, d1, and
d5 are all nonzero. In this case, the above matrix becomes[

d0 −3d1 0 0 0
d1 0 0 0 0
0 0 0 −d5 0

]
from which it can be seen that a3d0− 3a2d1 = 0, a3d1 = 0, and −a0d5 = 0. With the assumption
that d1 6= 0, the 2nd equation implies that a3 = 0. This means the 1st equation along with d1 6= 0
implies that a2 = 0. The 3rd equation along with the assumption that d5 6= 0 yields that a0 = 0.
Therefore p(x) = 3a1x

2.

Case 2: s(x) = d0x
5 + 5d4x + d5 . In this case d1 = d2 = d3 = 0, and by definition, d0, d4, and

d5 are all nonzero. The above matrix[
d0 −3d1 3d2 −d3 0
d1 −3d2 3d3 −d4 0
d2 −3d3 3d4 −d5 0

]
becomes

[
d0 0 0 0 0
0 0 0 −d4 0
0 0 3d4 −d5 0

]
.

The 1st row of this matrix implies that a3d0 = 0, and with d0 6= 0 implies that a3 = 0. Next
the 2nd row implies that −a0d4 = 0, which means that a0 = 0 since d4 6= 0. These conclusions
along with the equation 3a1d4 − a0d5 = 0 implies that a1 = 0. Therefore p(x) = 3a2x.

In either case, these trivial A3, 5− apolar quintic polynomials are apolar only to polynomials of the
form p(x) = 3a2x or p(x) = 3a1x

2, which only have 0 as a root. �

Corollary 2 If a quintic polynomial s(x) is A3, 5− apolar to a cubic polynomial p(x), then s(x)
cannot be of either form d0x

5 + 5d1x
4 + d5 or d0x

5 + 5d4x+ d5.

Proof : This is a direct result of Theorem 2. �

Lemma 3 Let s(x) = d0x
5 + 5d1x

4 + 10d2x
3 + 10d3x

2 + 5d4x + d5 be a quintic polynomial and
p(x) = a0x

3 + 3a1x
2 + 3a2x+ a3, a cubic polynomial that is apolar to s(x). Then s(x) has a root

x = t of multiplicity at least 3 if and only if t is a root of p(x) of multiplicity 3 .

Proof : We know that a quintic polynomial s(x) = d0x
5 + 5d1x

4 + 10d2x
3 + 10d3x

2 + 5d4x+ d5 and
cubic p(x) = a0x

3 + 3a1x
2 + 3a2x+ a3 are apolar if

A3,5 (p (x) , s (x)) = 0, where

A3,5 (p (x) , s (x)) = x2 (d0a3 − 3d1a2 + 3d2a1 − d3a0)
−2x (d1a3 − 3d2a2 + 3d3a1 − d4a0)

+d2a3 − 3d3a2 + 3d4a1 − d5a0
So given s(x) we may solve for an A3,5− apolar p(x) by solving the linear system

d0a3 − 3d1a2 + 3d2a1 − d3a0 = 0
d1a3 − 3d2a2 + 3d3a1 − d4a0 = 0
d2a3 − 3d3a2 + 3d4a1 − d5a0 = 0

for the coefficients a3, a2, a1, and a0, of p(x), which can be found by row-reducing the matrix[
d0 −3d1 3d2 −d3 0
d1 −3d2 3d3 −d4 0
d2 −3d3 3d4 −d5 0

]

If s(x) has a repeated root t of multiplicity at least 3, then
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s(x) = d0 (x− t)3 (x− u) (x− v)

= d0x
5 + (−3td0 − ud0 − vd0)x4 + (3t2d0 + 3tud0 + 3tvd0 + uvd0)x

3

+ (−t3d0 − 3t2ud0 − 3t2vd0 − 3tuvd0)x
2

+ (t3ud0 + t3vd0 + 3t2uvd0)x− t3uvd0

which means that d1 = (−3td0 − ud0 − vd0) /5,

d2 = (3t2d0 + 3tud0 + 3tvd0 + uvd0) /10,

d3 = (−t3d0 − 3t2ud0 − 3t2vd0 − 3tuvd0) /10,

d4 = (t3ud0 + t3vd0 + 3t2uvd0) /5, and d5 = −t3uvd0 .

To solve for the a3, a2, a1, a0 that define the cubic p(x) apolar to this s(x) we row-reduce the
previous augmented matrix that now becomes with these substitutions d0

3
5
d0 (3t+ u+ v)

−1
5
d0 (3t+ u+ v) − 9

10
t2d0 − 9

10
tud0 − 9

10
tvd0 − 3

10
uvd0

3
10
t2d0 + 3

10
tud0 + 3

10
tvd0 + 1

10
uvd0

3
10
td0 (3tu+ 3tv + 3uv + t2)

· · ·

· · ·
9
10
t2d0 + 9

10
tud0 + 9

10
tvd0 + 3

10
uvd0

1
10
td0 (3tu+ 3tv + 3uv + t2) 0

− 3
10
td0 (3tu+ 3tv + 3uv + t2) −1

5
t2d0 (tu+ tv + 3uv) 0

3
5
t2d0 (tu+ tv + 3uv) t3uvd0 0


⇒
[

1 0 0 t3 0
0 1 0 −t2 0
0 0 1 t 0

]
.

Then a3 = −t3a0, a2 = t2a0, and a1 = −ta0, so that p(x) = a0x
3 − 3ta0x

2 + 3t2a0x − t3a0 =
a0 (x− t)3 . Therefore p(x) has a root of multiplicity 3 at x = t also.

On the other hand, if p(x) has a root t of multiplicity 3, then p(x) = a0 (x− t)3 = a0x
3 −

3ta0x
2 + 3t2a0x− t3a0, so that a1 = −ta0, a2 = t2a0, and a3 = −t3a0 . To find the vector space

of quintics s(x) = d0x
5 + 5d1x

4 + 10d2x
3 + 10d3x

2 + 5d4x+ d5 apolar to p(x) requires the solving
of the linear system used in the first part of this proof for the di rather than the ai, which was
the essence of the proof of the “forward argument” of the biconditional statement in question. The
system of equations

d0a3 − 3d1a2 + 3d2a1 − d3a0 = 0
d1a3 − 3d2a2 + 3d3a1 − d4a0 = 0
d2a3 − 3d3a2 + 3d4a1 − d5a0 = 0

which can be rewritten

♣
d0a3 −3d1a2 +3d2a1 −d3a0 = 0

d1a3 −3d2a2 +3d3a1 −d4a0 = 0
d2a3 −3d3a2 +3d4a1 −d5a0 = 0

can be represented by the 3× 7 matrix

[
a3 −3a2 3a1 −a0 0 0 0
0 a3 −3a2 3a1 −a0 0 0
0 0 a3 −3a2 3a1 −a0 0

]
.

With a1 = −ta0, a2 = t2a0, and a3 = −t3a0, this becomes[
−t3a0 −3t2a0 −3ta0 −a0 0 0 0

0 −t3a0 −3t2a0 −3ta0 −a0 0 0
0 0 −t3a0 −3t2a0 −3ta0 −a0 0

]

which is equivalent to
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[
t3 3t2 3t 1 0 0 0
0 t3 3t2 3t 1 0 0
0 0 t3 3t2 3t 1 0

]
since it’s assumed that a0 6= 0 as p is degree 3.

We consider two cases.
Case 1: t = 0 Then we have[

0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0

]
This implies that d3 = d4 = d5 = 0 .

Therefore, s(x) = d0x
5 + 5d1x

4 + 10d2x
3 = (d0x

2 + 5d1x+ 10d2)x
3, which implies that s(x) has

the root t = 0 with multiplicity at least 3.

Case 2: t 6= 0 Then[
t3 3t2 3t 1 0 0 0
0 t3 3t2 3t 1 0 0
0 0 t3 3t2 3t 1 0

]

⇒

 1 0 0 10
t3

15
t4

6
t5

0
0 1 0 − 6

t2
− 8
t3
− 3
t4

0
0 0 1 3

t
3
t2

1
t3

0


Therefore d0 = −10

t3
d3 − 15

t4
d4 − 6

t5
d5, d1 = 6

t2
d3 + 8

t3
d4 + 3

t4
d5, and d2 = −3

t
d3 − 3

t2
d4 − 1

t3
d5 .

This gives for s(x) = d0x
5 + 5d1x

4 + 10d2x
3 + 10d3x

2 + 5d4x + d5, which is apolar to p(x) =
a0 (x− t)3, that

s(x) =

(
−10

t3
d3 −

15

t4
d4 −

6

t5
d5

)
x5 + 5

(
6

t2
d3 +

8

t3
d4 +

3

t4
d5

)
x4

+10

(
−3

t
d3 −

3

t2
d4 −

1

t3
d5

)
x3 + 10d3x

2 + 5d4x+ d5

By repeated division by (x− t), it can be shown that

s(x) = (x− t)3
[(
−10

t3
d3 −

15

t4
d4 −

6

t5
d5

)
x2 +− 1

t4
(3d5 + 5td4)x−

1

t3
d5

]
and that t is a root of s(x) of multiplicity at least 3 . �

The following example shows how previous results may be combined to find the roots of a given
quintic.

Example: Given the quintic polynomial

s(x) = x5 + (−14− 9i)x4 + (44 + 108i)x3 + (100− 396i)x2 + (−533 + 468i)x+ 506− 99i

using the binomial notation s(x) = d0x
5 + 5d1x

4 + 10d2x
3 + 10d3x

2 + 5d4x+ d5 we identify d0 = 1,
d1 = (−14− 9i) /5 = −14

5
− 9

5
i, d2 = (44 + 108i) /10 = 22

5
+ 54

5
i, d3 = (100− 396i) /10 = 10− 198

5
i,

d4 = (−533 + 468i) /5 = −533
5

+ 468
5
i, and d5 = 506− 99i .
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An apolar cubic p(x) may be found by row-reducing the matrix[
d0 −3d1 3d2 −d3 0
d1 −3d2 3d3 −d4 0
d2 −3d3 3d4 −d5 0

]

=

 1 3
(
14
5

+ 9
5
i
)

3
(
22
5

+ 54
5
i
)

−
(
10− 198

5
i
)

0
−14

5
− 9

5
i −3

(
22
5

+ 54
5
i
)

3
(
10− 198

5
i
) (

533
5
− 468

5
i
)

0
22
5

+ 54
5
i −3

(
10− 198

5
i
)

3
(
−533

5
+ 468

5
i
)
− (506− 99i) 0

 .

⇒
[

1 0 0 −46 + 9i 0
0 1 0 5− 12i 0
0 0 1 2 + 3i 0

]
So a3 = (46− 9i) a0, a2 = (−5 + 12i) a0, and a1 = − (2 + 3i) a0, and

p(x) = a0x
3 + 3a1x

2 + 3a2x+ a3

= a0x
3 − 3 ((2 + 3i) a0)x

2 + 3 (−5 + 12i) a0x+ (46− 9i) a0

This p(x) represents a family of cubics which is the null space of the original 3 × 4 matrix[
d0 −3d1 3d2 −d3
d1 −3d2 3d3 −d4
d2 −3d3 3d4 −d5

]
. Next we solve for the family of quadratics q(x) = b0x

2 + 2b1x + b2 that

are A2,3− apolar to this p(x) by solving the system represented by the matrix[
a0 −2a1 a2 0
a1 −2a2 a3 0

]
in which the columns, left-to-right, display the coefficients for b2, b1, and b0, respectively.

With a1 = − (2 + 3i) a0, a2 = (−5 + 12i) a0, and a3 = (46− 9i) a0 ,[
a0 −2a1 a2 0
a1 −2a2 a3 0

]
=

[
a0 2 (2 + 3i) a0 (−5 + 12i) a0 0

− (2 + 3i) a0 2 (5− 12i) a0 (46− 9i) a0 0

]
.

This is equivalent to [
1 2 (2 + 3i) −5 + 12i 0

− (2 + 3i) 2 (5− 12i) 46− 9i 0

]
which row reduces to

[
1 4 + 6i −5 + 12i 0
0 0 0 0

]
which implies that b2 = − (4 + 6i) b1+(5− 12i) b0.

Therefore q(x) = b0x
2 + 2b1x+ b2 = b0x

2 + 2b1x− (4 + 6i) b1 + (5− 12i) b0.

Solving the quadratic equation q(x) = b0x
2 + 2b1x− (4 + 6i) b1 + (5− 12i) b0 = 0 leads to

x = 2 + 3i or x = −2b1
b0
− (2 + 3i)

Therefore q(x) has the root x = 2 + 3i. And for certain choices of b0 and b1 this root is of

multiplicity 2. Choosing b1 = −b0 (2 + 3i) results in x = −2b1
b0
−(2 + 3i) = −2(−b0(2+3i))

b0
−(2 + 3i) =

2 + 3i.

Therefore 2 + 3i is a root of q(x) of multiplicity 2. Theorem 1 implies that p(x) also has a
root at x = 2 + 3i of multiplicity at least 2. Since p(x) = a0f(x) with f(x) = x3− 3 (2 + 3i)x2 +
3 (−5 + 12i)x+ (46− 9i) (synthetic) division results in an f(x) = (x− (2 + 3i))3 in this case.

Therefore p(x) = a0(x − (2 + 3i))3. Lemma 3 implies that s(x) must have a root of multiplicity
at least 3 at x = 2 + 3i as well. In evidence, synthetic division leads to
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s(x) = x5 + (−14− 9i)x4 + (44 + 108i)x3 + (100− 396i)x2

+ (−533 + 468i)x+ 506− 99i

= (x− (2 + 3i))3
(
x2 − 8x+ 11

)
From this all roots of s(x) may be found as x2 − 8x+ 11 = 0⇒ x = 4±

√
5 .

The Method of A3, 5−Apolar Polynomials with Distinct Roots of the Cubic

The following theorem builds upon concepts discussed and shown true at least partially in [3], but
here a more complete result is obtained. The first part of the conclusion, that s(x) = k1 (x− a)5 +
k2 (x− b)5 +k3 (x− c)5 where a, b, and c are roots of an apolar cubic polynomial was mentioned
by Rota in [5].

Theorem 3 If p(x) = a0x
3+3a1x

2+3a2x+a3 and s(x) = d0x
5+5d1x

4+10d2x
3+10d3x

2+5d4x+d5
are polynomials that are A3, 5− apolar, and p(x) has 3 distinct roots denoted by a, b, and c,
then

s(x) = k1 (x− a)5 + k2 (x− b)5 + k3 (x− c)5

in which k1, k2, k3 are constants defined as follows:

k1 =
bd0c+ bd1 + d2 + cd1

(c− a) (b− a)

k2 =
cd1 + cad0 + d2 + ad1

(b− c) (b− a)

k3 =
bd1 + bad0 + d2 + ad1

(b− c) (a− c)

Proof : In [3, Th. 3], it is proved that if q(x) is a degree k polynomial and r is a root of q(x),
then for any integer n ≥ k, if Ak, n is an apolar invariant, then q(x) is Ak, n− apolar to (x− r)n.
This fact is also mentioned in [5]. Since the A3, 5− apolar polynomial is proved to be an invariant

in [3, Sec. 5] we have that the cubic p(x) is A3, 5− apolar to each of the polynomials (x− a)5,

(x− b)5, and (x− c)5. The set of degree 5 polynomials, Sp(x), defined as the set of quintics that
are A3, 5− apolar to p(x) is found as the null space of a system of 3 homogeneous linear equations
in 6 unknowns. This system is given in Section 3 (in the proof of Lemma 3) and is denoted by ( ♣
). One can confirm that the rank of this 3 × 6 coefficient matrix will always be 3. This implies
that the null space of this linear system, Sp(x), is a vector space of dimension at most 3. Following
Rota’s argument in [5], under the assumption that p(x) has 3 distinct roots a, b, and c, then
(x− a)5, (x− b)5, and (x− c)5 are linearly independent elements of Sp(x) so these three degree
5 polynomials span Sp(x) hence form a basis for Sp(x). Therefore,

Sp(x) =
{
k1 (x− a)5 + k2 (x− b)5 + k3 (x− c)5 | k1, k2, k3 ∈ C

}
.

Since it is assumed that s(x) = d0x
5 + 5d1x

4 + 10d2x
3 + 10d3x

2 + 5d4x + d5 is A3, 5− apolar to
p(x), then s(x) ∈ Sp(x) and so
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s(x) = k1 (x− a)5 + k2 (x− b)5 + k3 (x− c)5

for some constants k1, k2, k3.

Since

s(x) = k1 (x− a)5 + k2 (x− b)5 + k3 (x− c)5

= (k1 + k2 + k3)x
5

+ (−5k1a− 5k2b− 5k3c)x
4

+
(
10k1a

2 + 10k2b
2 + 10k3c

2
)
x3

+
(
−10k1a

3 − 10k2b
3 − 10k3c

3
)
x2

+
(
5k1a

4 + 5k2b
4 + 5k3c

4
)
x

−k1a5 − k2b5 − k3c5

k1, k2, k3 can be found by solving the system of equations

k1 + k2 + k3 = d0
−5k1a− 5k2b− 5k3c = 5d1
10k1a

2 + 10k2b
2 + 10k3c

2 = 10d2
⇒

k1 + k2 + k3 = d0
k1a+ k2b+ k3c = −d1
k1a

2 + k2b
2 + k3c

2 = d2

which is represented by the augmented matrix[
1 1 1 d0
a b c −d1
a2 b2 c2 d2

]
that reduces to

 1 0 0 bd0c+bd1+d2+cd1
(c−a)(b−a)

0 1 0 cd1+cad0+d2+ad1
(b−c)(b−a)

0 0 1 bd1+bad0+d2+ad1
(b−c)(a−c)



Therefore k1 = bd0c+bd1+d2+cd1
(c−a)(b−a) , k2 = cd1+cad0+d2+ad1

(b−c)(b−a) , and k3 = bd1+bad0+d2+ad1
(b−c)(a−c) . �

The following corollary summarizes and synthesizes results of this paper.

Corollary 3 Let s(x) be a given quintic polynomial and assume that p(x) is a cubic polynomial
found to be A3, 5− apolar to s(x). In turn, assume that q(x) is a quadratic polynomial found to
be A2, 3− apolar to this p(x). Then one of the following 4 possibilities is true.

(a) q(x) has 2 distinct roots. One of the following is also true:

(i) p(x) has 3 distinct roots with none in common with q(x), and s(x) can be written in the
form given in the conclusion of Th. 3. Also s(x) has 3-5 roots each of multiplicity 2 or less.

(ii) p(x) has 1 triple root and shares this root with q(x). s(x) will have this same root with
multiplicity 3 or more, and the roots of s(x) can be solved for completely.

(b) q(x) has 1 double root. One of the following is also true:

(i) p(x) has 1 triple root and shares this root with q(x). s(x) will have this same root with
multiplicity 3 or more, and the roots of s(x) can be solved for completely.

(ii) p(x) shares a root with q(x) of multiplicity 2, and s(x) will have 3-5 roots each of
multiplicity 2 or less.

Proof : Clearly q(x) either has 2 distinct roots or 1 repeated root, so we have either cases (a) or
(b).
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(a) Assume that q(x) has 2 distinct roots. Cor. 1 implies that either (i) p(x) has 3 distinct
roots all different from q(x), or (ii) p(x) has 1 triple root that is shared by q. Case a(i): If p(x)

has 3 distinct roots, then Th. 3 implies that s(x) may be written in the form of the conclusion of
Th. 3. Lemma 3 implies that s(x) will not have a root of multiplicity 3 or more. Therefore s(x)
must have 3-5 roots each of multiplicity 2 or less. Case a(ii): If p(x) has 1 triple root shared

with q(x), then Lemma 3 implies that s(x) also has this root with multiplicity at least 3, and the
roots of s(x) may be solved for completely by division.

(b) If we assume that q(x) has only 1 double root, then Th. 1 implies that p(x) shares this root
with multiplicity 2 or 3. Case b(i): If p(x) has 1 root of multiplicity 3, then the conclusion is the

same as Case a(ii): s(x) also has this root with multiplicity at least 3, and the roots of s(x) may
be solved for completely by division. Case b(ii): If p(x) shares a root of q(x) but with multiplicity

2, then by Lemma 3, s(x) will not have a root of multiplicity 3 or more. Therefore s(x) will have
3-5 roots each of multiplicity 2 or less. �

Example: Consider s(x) = x5 − 3x2 + 1. This quintic has no rational roots by the Rational Roots
Test, which allows that the only possible rational roots are x = 1 or −1. However since s(1) = −1
and s(−1) = −3, then s(x) has no rational roots. If s(x) = d0x

5 + 5d1x
4 + 10d2x

3 + 10d3x
2 +

5d4x + d5, then d0 = 1, d3 = − 3
10

, d5 = 1, and d1 = d2 = d4 = 0. As before, to solve for an
A3,5− apolar cubic p(x) = a0x

3 + 3a1x
2 + 3a2x + a3 it is sufficient to solve the linear system with

augmented matrix [
d0 −3d1 3d2 −d3 0
d1 −3d2 3d3 −d4 0
d2 −3d3 3d4 −d5 0

]

for the coefficients of p(x).

Using the particular values di that define s(x) = x5 − 3x2 + 1, we arrive at the matrix 1 0 0 3
10

0
0 0 − 9

10
0 0

0 9
10

0 −1 0

 which reduces to

[
1 0 0 3

10
0

0 1 0 −10
9

0
0 0 1 0 0

]

Therefore a3 = − 3
10
a0, a2 = 10

9
a0, and a1 = 0, so that

p(x) = a0x
3 + 3

(
10
9
a0
)
x− 3

10
a0 = a0x

3 + 10
3
a0x− 3

10
a0 and the space of cubics Ss(x) A3,5− apolar

to s(x) = x5 − 3x2 + 1 using a0 = 30t equals

Ss(x) =
{(

30x3 + 100x− 9
)
t | t ∈ C

}
Consider p(x) = 30x3 + 100x− 9 = 30x3 + 3

(
100
3

)
x− 9 where for p(x) = a0x

3 + 3a1x
2 + 3a2x+ a3,

a0 = 30, a1 = 0, a2 = 100
3

, and a3 = −9.

To solve for an A2,3− apolar q(x) = b0x
2 +2b1x+ b2, it is sufficient to solve the system of equations

with augmented matrix [
a0 −2a1 a2 0
a1 −2a2 a3 0

]
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for the coefficients of q(x). Using the values a0 = 30, a1 = 0, a2 = 100
3

, and a3 = −9 produces
the matrix [

30 0 100
3

0
0 −200

3
−9 0

]
which row-reduces to

[
1 0 10

9
0

0 1 27
200

0

]

meaning that b2 = −10
9
b0, and b1 = − 27

200
b0, so that generally q (x) = b0x

2 − 27
100
b0x − 10

9
b0.

Therefore the space of quadratic polynomials Sp(x) that are A2,3− apolar to p(x) is defined, with
b0 = 900t, to be

Sp(x) =
{(

900x2 − 243x− 1000
)
t | t ∈ C

}
If we solve 900x2 − 243x − 1000 = 0, we find the solutions r1 = 27

200
+ 1

600

√
406 561 , and

r2 = 27
200
− 1

600

√
406 561 .

Then
30x3 + 100x− 9 = c1 (x− r1)3 + c2 (x− r2)3

for some constants c1 and c2.

Using the formula found in [3, Cor. 1]:

p(x) =

(
a0r2 + a1
r2 − r1

)
(x− r1)3 −

(
a0r1 + a1
r2 − r1

)
(x− r2)3

with a0 = 30 and a1 = 0, we have that

p(x) =

(
30r2
r2 − r1

)
(x− r1)3 −

(
30r1
r2 − r1

)
(x− r2)3

Therefore

30x3 + 100x− 9 =
30r2
r2 − r1

(x− r1)3 −
30r1
r2 − r1

(x− r2)3

=
30

r2 − r1
[
r2 (x− r1)3 − r1 (x− r2)3

]

To now solve 30x3 + 100x− 9 = 0, one need only solve

r2 (x− r1)3 − r1 (x− r2)3 = 0

⇒ r2 (x− r1)3 = r1 (x− r2)3

⇒ (x− r2)3

(x− r1)3
=
r2
r1
⇒
(
x− r2
x− r1

)3

=
r2
r1

Define y = x−r2
x−r1 and d = r2

r1
= −413 122+162

√
406 561

400 000
.

Next solve y3 = d using methods relating to DeMoivre’s Theorem.

149

http://purkh.com/index.php/mathlab


MathLAB Journal Vol 4 (2019) ISSN: 2582-0389 http://purkh.com/index.php/mathlab

Since d = −413 122+162
√
406 561

400 000
is a negative real number, the polar form for d is d = |d| (cos π + i sin π) =

|d| (cos (π + 2πk) + i sin (π + 2πk))

and the solutions for y = yk are yk =
(

413 122−162
√
406 561

400 000

)1/3 (
cos
(
π+2πk

3

)
+ i sin

(
π+2πk

3

))
for k = 0,

1, 2.

Then y0 =
(

413 122−162
√
406 561

400 000

)1/3 (
cos
(
π
3

)
+ i sin

(
π
3

))
=
(

413 122−162
√
406 561

400 000

)1/3 (
1
2

+ i
√
3
2

)
,

y1 =
(

413 122−162
√
406 561

400 000

)1/3
(cos (π) + i sin (π)) = −

(
413 122−162

√
406 561

400 000

)1/3
, and

y2 =
(

413 122−162
√
406 561

400 000

)1/3 (
cos
(
5π
3

)
+ i sin

(
5π
3

))
=
(

413 122−162
√
406 561

400 000

)1/3 (
1
2
− i

√
3
2

)
That is, y0 =

(
413 122−162

√
406 561

400 000

)1/3 (
1
2

+ i
√
3
2

)
, y1 = −

(
413 122−162

√
406 561

400 000

)1/3
,

and y2 =
(

413 122−162
√
406 561

400 000

)1/3 (
1
2
− i

√
3
2

)
With yk = xk−r2

xk−r1
for k = 0, 1, 2, one can solve for xk, which yields xk = ykr1−r2

yk−1
.

Then

x0 =

(
413 122−162

√
406 561

400 000

)1/3 (
1
2

+ i
√
3
2

)
r1 − r2(

413 122−162
√
406 561

400 000

)1/3 (
1
2

+ i
√
3
2

)
− 1

= 1
600

81 3
√

(1032 805−405
√
406 561)+ 3

√
(1032 805−405

√
406 561)

√
406 561+81i 3

√
(1032 805−405

√
406 561)

√
3

3
√

(1032 805−405
√
406 561)+i 3

√
(1032 805−405

√
406 561)

√
3−200

+ 1
600

i 3
√

(1032 805−405
√
406 561)

√
3
√
406 561−16 200+200

√
406 561

3
√

(1032 805−405
√
406 561)+i 3

√
(1032 805−405

√
406 561)

√
3−200

x1 =
−
(

413 122−162
√
406 561

400 000

)1/3
r1 − r2

−
(

413 122−162
√
406 561

400 000

)1/3
− 1

= 1
600

81 3
√

(1032 805−405
√
406 561)+ 3

√
(1032 805−405

√
406 561)

√
406 561+8100−100

√
406 561

3
√

(1032 805−405
√
406 561)+100

and

x2 =

(
413 122−162

√
406 561

400 000

)1/3 (
1
2
− i

√
3
2

)
r1 − r2(

413 122−162
√
406 561

400 000

)1/3 (
1
2
− i

√
3
2

)
− 1

= 1
600

−81 3
√

(1032 805−405
√
406 561)− 3

√
(1032 805−405

√
406 561)

√
406 561+81i 3

√
(1032 805−405

√
406 561)

√
3

− 3
√

(1032 805−405
√
406 561)+i 3

√
(1032 805−405

√
406 561)

√
3+200
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+ 1
600

i 3
√

(1032 805−405
√
406 561)

√
3
√
406 561+16 200−200

√
406 561

− 3
√

(1032 805−405
√
406 561)+i 3

√
(1032 805−405

√
406 561)

√
3+200

That is, the roots of 30x3 + 100x− 9 = 0 are

a = 1
600

81 3
√

(1032 805−405
√
406 561)+ 3

√
(1032 805−405

√
406 561)

√
406 561+81i 3

√
(1032 805−405

√
406 561)

√
3

3
√

(1032 805−405
√
406 561)+i 3

√
(1032 805−405

√
406 561)

√
3−200

+ 1
600

i 3
√

(1032 805−405
√
406 561)

√
3
√
406 561−16 200+200

√
406 561

3
√

(1032 805−405
√
406 561)+i 3

√
(1032 805−405

√
406 561)

√
3−200

≈ −0.044 891 439 5− 1. 827 396 798i,

b = 1
600

81 3
√

(1032 805−405
√
406 561)+ 3

√
(1032 805−405

√
406 561)

√
406 561+8100−100

√
406 561

3
√

(1032 805−405
√
406 561)+100

≈ 8. 978 287 903× 10−2, and

c = 1
600

−81 3
√

(1032 805−405
√
406 561)− 3

√
(1032 805−405

√
406 561)

√
406 561+81i 3

√
(1032 805−405

√
406 561)

√
3

− 3
√

(1032 805−405
√
406 561)+i 3

√
(1032 805−405

√
406 561)

√
3+200

+ 1
600

i 3
√

(1032 805−405
√
406 561)

√
3
√
406 561+16 200−200

√
406 561

− 3
√

(1032 805−405
√
406 561)+i 3

√
(1032 805−405

√
406 561)

√
3+200

≈ −0.044 891 439 5 + 1. 827 396 798i .

Therefore s(x) = x5 − 3x2 + 1 = k1 (x− a)5 + k2 (x− b)5 + k3 (x− c)5 for some constants k1, k2,
k3 in the complex numbers.

Using the results of Th. 3, with d0 = 1 and d1 = 0 = d2

k1 =
bd0c+ bd1 + d2 + cd1

(c− a) (b− a)
=

bc

(c− a) (b− a)

k2 =
cd1 + cad0 + d2 + ad1

(b− c) (b− a)
=

ca

(b− c) (b− a)

k3 =
bd1 + bad0 + d2 + ad1

(b− c) (a− c)
=

ba

(b− c) (a− c)

So that x5 − 3x2 + 1 = bc
(c−a)(b−a) (x− a)5 + ac

(b−c)(b−a) (x− b)5 + ab
(b−c)(a−c) (x− c)5 .

By Cor. 3, since we know that p(x) = 30x3+100x−9 has 3 distinct roots, then s(x) = x5−3x2+1
has 3 or more roots each of multiplicity 2 or less.

Given the form for s(x) = x5 − 3x2 + 1 found above in terms of the 3 roots of p(x), one must
question whether these 3-5 different roots may be solved for algebraically, or by some method of
exact mathematics.

4. Conclusions and Future Work
Why does anyone care about solving quintic equations or polynomial equations of any degree? Ex-
tending the ancient results of solving quadratic equations by radicals has been a quest of mathemati-
cians for many centuries. The algebraists Cardano and Ferrari extended solutions by radicals to
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the cubic and quartic, respectively in the 1500’s, and it wasn’t until the early 1800’s when someone
(Niels Abel) proved there was no universal formula by radicals for 5th degree equations, and Galois
in the same time period invented group theory to explain the criteria for discerning which quintic
equations were solvable by radicals and which were not. See [2, Ch. 6], [6].

The method of apolar invariants used to solve polynomial equations is flawed in that it definitely
does not work in every case. There are definitely cases in which the process breaks down, such as for
those quintic polynomials that are not apolar to any cubic polynomials. But the method of apolar
invariants does provide a different tool that sheds light on classes of quintic polynomial equations.
This inspires more questions.

Question 1: Can the roots of a quintic polynomial s(x) of the form given in the conclusion of
Th. 3 (as in the last example, s(x) = x5 − 3x2 + 1 ) in which all 3 ki’s are nonzero, be solved for
algebraically? Is there some method of exact mathematics that might be harnessed to find these
roots?
Question 2: How do these methods of apolar polynomials ally with Galois Theory? Can the
specific forms given for the ki’s found in Th. 3 (or other formulas using other of the quintic
coefficients) be manipulated to shed light on which quintic polynomial equations in one variable may
be solved for by radicals? Can a new criteria for solvability by radicals be offered in the language
of apolar polynomials?

Question 3: Another result of [3] provides a very special class of quintics that are A2, 5− apolar
to a quadratic. What light might this shed on questions relating to the solvability of quintics?

Question 4: What more can be learned regarding the roots of a quintic s(x) in the situation in
which a cubic p(x) found as apolar to the given s(x) has a root of multiplicity 2 which is also a
multiplicity 2 root of the corresponding quadratic q(x)?

Question 5: What methods might be brought into action to solve those quintics not apolar to
cubic polynomials such as those of the forms s(x) = d0x

5 + 5d1x
4 + d5 or s(x) = d0x

5 + 5d4x+ d5?
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1. Bakić. R. “On the Apolar Polynomials” Kragujevac Journal of Mathematics, Volume 38, No. 2
(2014) 269-271.

2. Dunham, William Journey Through Genius: The Great Theorems of Mathematics John Wiley
& Sons, Inc. 1990 ISBN 978-0-14-014739-1

3. Jorgenson, K.D. “The Rota Method for Solving Polynomial Equations: A Modern Application
of Invariant Theory”. International Journal of Pure and Applied Mathematics, Volume 89, No. 2
(2013) 153-172. DOI: http://dx.doi.org/10.12732/ijpam.v89i2.4

4. Kung, J.P.S., Rota, G.C., “The Invariant Theory of Binary Forms”, Bulletin (New Series) of the
American Mathematical Society, 10 (1984), 27-85. ISSN: 0273-0979 DOI: http://dx.doi.org/10.1090/
S0273-0979-1984-15188-7.
5. Rota, G.C., “Invariant Theory, Old and New”, Colloquium Lecture delivered at the Annual
Meeting of the American Mathematical Society and Mathematical Association of America, Baltimore
MD, January 8, 1998. Publicly distributed manuscript (but otherwise unpublished).

6. Stewart, Ian, Galois Theory, 3rd Edition Chapman & Hall/CRC 2004 ISBN 1-58488-393-6

152

http://purkh.com/index.php/mathlab

	References

