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 Introduction  

Spectral Analysis  Is One Of The Important Directions Of Functional Analysis. The Development Of Physical 

Sciences Is Becoming More And More A Challenge To Mathematicians. In Particular, The Resolution Of The 

Problems Associated With The Physical Processes And, Consequently, The Study Of Partial Differential Equations 

And Mathematical Physics Equations, Requires A New Approach. The Method Of Separation Of Variables In 

Many Cases Turns Out To Be The Only Acceptable, Since It Reduces Finding A Solution To A Complex Equation 

With Many Variables To Find A Solution To A System Of Ordinary Differential Equations, Which Are Much Easier 

To Study. In This Paper We Use Tensor Products To Characterize Elementary Operators Which We Describe In 

This Section In Details. The Field Of Analysis Has Been Very Interesting Especially On The Study Of Elementary 

Operators For Many Decades. Sylvester In 1880s [10], Computed The Eigenvalues Of The Matrix Operators On 

A Square Matrix. This Work Has Been Of Great Concern Especially In The Applications Of Operator Theory And 

Functional Analysis. Later, Lumer And Rosenblum [5] Described The Elementary Operator From A Mapping T : A 

→ A If It Can Be Expressed As T : B(H) → B(H) By Tai ,Bi(X ) =∑N
i=1Ai X Bi  ∀ X ∈ B(H) And  ∀ Ai , Bi Fixed In B(H) And 

1 ≤ I < N. The Study Of Operator Theory Has Been Significant Dating Back Many Decades Ago. Some Research 

Has Been Done Though Not Exhaustive. Studies About Elementary Operators Have Been Of Much Concern. We 

Define An Elementary Operator T : B(H) → B(H)  [6]  By Tai ,Bi(X ) =∑N
i=1Ai X Bi  ∀ X ∈ B(H) And   ∀ Ai , Bi Fixed In 

B(H) Where I = 1, . . . , N. [3] From This Operator, We Can Define The Generalized Adjoint By Tai ,Bi(X ) =∑N
i=1Ai* X 

Bi* And We Say That T Is Normal If And Only If T T*= T*T. Now AC = CA, BD = DB, Together With AA*= A*A, 

BB*= B*B, CC*= C*C And DD*= D*D Ensures That The Operator Tai ,Bi(X) = AXC + BXD Is Normal. Some Of Our 

Results Show That; If T ∈ B(H) Be A P-Hyponormal And T = U |T | Be Polar Decomposition Of T Such That Un0= 

U* For Some Positive Integer N0 Then T Is Normal.  Moreover, If T ∈ B(H) Be A P-Hyponormal Ant T = U |T | Be 

The Polar Decomposition Of T Such That U*N→1 Or Un→ 1 As N → ∞, Where Limits Are Taken In The Strong 

Operator Topology. Then T Is Normal. For An Operator A To Be Normal, It Is Also Necessary That A = A*. It Is 

Sufficient That For An Operator A To Be Normal Then The Condition AA* = A*A Holds.  This  Knowledge Is 

Important Especially In Quantum Physics Especially The Formulation Of Heisenberg Uncertainty Principle For 

Linear Transformations And Non-Zero Scalars Such That AX − XA = Αi. The Study Can Also Be Used In The 

Solutions Of Schr ¨Ondinger Wave Equations Since The Infimum Of The Hamiltonian Operator Is Always An 

Eigenvalue And Its Corresponding Eigenvector Are Called The Ground State Energies E Giving Us A Formulation 

Of E As (EC3, H8). Over The Past Years, Several Scholars Have Joined In Research To Describe Several Properties 

Related To The Structure Of The Elementary Operators. In [11] They Described Sylvester And Lyapunov Operators 

In Real And Complex Matrices Which Included In Particular Cases Operators Arising From The Theory Of Linear 

Time Invariant System. Fanqyan [30] Described The Multiplicative Mappings Of Operator Algebras. They 

Described The Nest Algebra As Being The Natural Analogues Of Upper Triangular Matrix Algebra In The Infinite 
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Dimensional Hilbert Space. Gheondea [1], Described The Normality Of Elementary Operators Based On The 

Spectral Theorem For The Normal Operators. This Study Postulated That If N ∈ B(H) Is A Normal Arbitrary Such 

That AN = NA Then AN∗= N∗A As Well Is Normal. This Shows That That If A, B ∈ B(H ) Are Two Normal Operators 

That Commute And Each Commutes With Its Adjoint, Then Their Product Is AB Is Normal. The Study Further 

States That If   A And B Are Bounded Operators Such That AB Is Normal And Compact, Then BA Is Normal And 

Compact As Well And Sk(AB) = Sk(BA) For All K = 1, 2, . . . In This Paper We Describe Operator Systems And 

Elementary Operators Via Tensor Products. We Also Discuss Norms Of Elementary Operators. 

Preliminaries 

In This Section We Give The Preliminary Concepts Which Are Useful In The Sequel. 

Definition 1. A Norm Is A Non-Negative Real Valued Function That Takes The Elements Of A Vector Space To A 

Field Of Real Numbers Denoted By ∥.∥: V → R Satisfying The Following Conditions: 

(I.) Non-Negativity: ∥X∥ ≥ 0, ∀ X ∈ V. 

(Ii.) Zero Property: ∥X∥ = 0, If And Only If X=0, For All X ∈ V. 

(Iii.) Homogeneity: ∥Αx∥ ≤ |Α|∥X∥, ∀ X ∈ V And Α ∈ F 

(Iv.) Triangle Inequality: ∥X + Y∥ ≤ ∥X∥ + ∥Y∥, ∀ X And Y ∈ V 

The Pair (V, ∥.∥) Is Called A Normed Linear Space. 

Definition 2. Let H Be An Infinite Dimensional Complex Hilbert Space And B(H) Be An Algebra Of All Bounded 

Linear Operators On The H . We Define An Elementary Operator T : B(H) → B(H) By Tai ,Bi(X ) =∑N
i=1Ai X Bi  ∀ X ∈ 

B(H) And   ∀ Ai , Bi Fixed In B(H) Where I = 1, . . . , N. Examples Of Elementary Operators Include: 

(I). The Left Multiplication Operator LA: B(H) By: LA(X) = AX , ∀X ∈ B(H). 

(Ii). The Right Multiplication Operator RB: B(H) By: RB (X)=BX , ∀X ∈ B(H). 

(Iii). The Basic Elementary Operator (Implemented By A, B) By: MA, B (H) = AXB, ∀X ∈ B(H). 

(Iv). The Jordan Elementary Operator (Implemented By A, B) By: UA,B (X)=AXB + BXA,             ∀X ∈B(H). 

(V). The Generalized Derivation (Implemented By A, B) By: Δa,B = LA − RB. 

(Vi).The Inner Derivation (Implemented By A, B) By: Δa = AX – XA. 

Definition 3. Let H Be An Infinite Dimensional Complex Hilbert Space And B(H) Be The Algebra Of All Bounded 

Linear Operators On H. We Define An Elementary Operator, T : B(H) → B(H) By Tai ,Bi(X ) =∑N
i=1Ai X Bi  ∀ X ∈ B(H) 

And   ∀ Ai , Bi Fixed In B(H) Where I = 1, . . . , N. From This Operator, We Can Define The Generalized Adjoint By 

Tai ,Bi(X ) =∑N
i=1Ai* X Bi* And We Say That T Is Normal If And Only If         T T*= T*T. Now AC = CA, BD = DB, 

Together With AA*= A*A, BB*= B*B, CC*= C*C And DD*= D*D Ensures That The Operator Tai ,Bi(X ) = AXC + BXD 

Is Normal. Therefore, The Elementary Operator Of The Form: Tai ,Bi(X ) =∑N
i=1Ai X Bi  Where Ai And Bi Are 

Commuting Families Of Normal Operators Are Called Normally Represented Elementary Operator. 

Next We Give In Details Some Definitions And Concepts From The Theory Of Multiparameter Operator Systems 

Necessary For Understanding Of The Further Considerations. 

Let The Linear Multiparameter System Be In The Form: 

0, ,

1

( ) ( ) 0,

1,2,...,

n

k k k i i k k

i

B x B B x

k n

 
=

= + =

=


 (1) 
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Where Operators ,k iB  Act In The Hilbert Space iH  

Definition 4. [1,2,11] 1 2( , ,..., ) n

n C   =   Is An Eigenvalue Of The System (1) If There Are Non-Zero Elements

, 1, 2,...,i ix H i n =  Such That (1) Is Satisfied, And Decomposable Tensor 1 2 ... nx x x x=    Is Called The 

Eigenvector Corresponding To Eigenvalue 1 2( , ,..., ) n

n C   =  . 

Definition 5. The Operator
,s iB+  Is Induced By An Operator ,s iB ,Acting In The Space iH , Into The Tensor Space

1 ... nH H H=   , If On Each Decomposable Tensor 1 ... nx x x=    Of Tensor Product Space 1 ... nH H H=   We 

Have
, 1 1 , 1... ...s i i s i i i nB x x x B x x x+

− +=        And On All The Other Elements Of 1 ... nH H H=    The Operator

,s iB+  Is Defined On Linearity And Continuity. 

Definition 5 ([5], [6]). Let 0,...,0 1 2 ... nx x x x=    Be An Eigenvector Of The System (1), Corresponding To Its 

Eigenvalue 1 2( , ,..., )n   = ; Then
1 ...., nm mx Is 1 2, ,..., nm m m - Th Associated Vector (See[4]) To An Eigenvector 0,0,...,0x

Of The System (1) If There Is A Set Of Vectors  
1 2, ,..., 1ni i ii nx H H  , Satisfying To Conditions 

2 1 2 1 10, , ,,,, 1, 1, ,..., , ,..., , 1( ) ... 0
n n n ni is s s i s s s n i s s sB x B x B x

−

+ + +

− −+ + + = . 1 2, ,..., 0
s ni s sx =   ,   When  0is    (2) 

0 , 1,2,..., , 1,...,r rs m r n i n  = =  

For The Indices 1 2, ,..., ns s s In Element
1 2, ,..., 1( )

ni i i nx H H 
,
There Are Various Arrangements From Set Of 

Integers On With 0 , 1,2,..., ,r rs m r n  = . 

Definition 6. In [1,3, 11]  The System (1) Is An Analogue Of The Cramer’s Determinants, When The Number Of 

Equations Is Equal To The Number Of Variables, And Is Defined As Follows: On Decomposable Tensor

1 ... nx x x=    Operators i  Are Defined With Help The Matrices  

0 1 2

0,1 1 1,1 1 2,1 1 ,1 1

0,2 2 1,2 2 2,2 2 ,2 2

0 0,3 3 1,3 3 2,3 3 ,3 3

0, 1, 2, ,

....

...

...

...

... ... ... ... ...

...

n

n

n
n

i i

i n

n n n n n n n

B x B x B x B x

B x B x B x B x
x

B x B x B x B x

B x B x B B

   


=

 
 
 
 

 = =  
 
 
 
 
 

  (3) 

Where 0 1, ,..., n    Are Arbitrary Complex Numbers, Under The Expansion Of The Determinant Means Its 

Formal Expansion, When The  Element 1 2 ... nx x x x=    Is The Tensor Products Of Elements 1 2, ,..., nx x x  If

1, 0,k i i k = =  , ,Then Right Side Of (10) Equal To k x , Where 1 2 ... nx x x x=     On All The Other Elements 

Of The Space H  Operators i Are Defined By Linearity And Continuity. ( 1,2,..., )sE s n= Is The Identity Operator 

Of The Space iH .Suppose That For All 0x   , 0( , ) ( , ), 0x x x x    , And All ,i kB  Are Self adjoint Operators In 

The Space iH . Inner Product [.,.] Is Defined As Follows; If 1 2 ... nx x x x=     And 1 2 ... ny y y y=    Are 

Decomposable Tensors, Then 0[ , ] ( , )x y x y=   Where ( , )i ix y  Is The Inner Product In The Space. iH .On All The 

Other Elements Of The Space H  The Inner Product Is Defined On Linearity And Continuity. In Space H With 

Such A Metric All Operators 
1

0i i

− =   Are Self adjoin 

Definition 7.( [7],[8] [10]). Let Two Operator Pencils Depending On The Same Parameter And acting In, Generally 

Speaking, In Various Hilbert Spaces Be As Follows 

n
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2

0 1 2

2

0 1 2

( ) ... ,

( ) ...

n

n

m

m

A A A A A

B B B B B

   

   

= + + + +

= + + + +
 

Operator Re ( ( ), ( ))s A B   Is Presented By The Matrix 

0 2 1 2 2

0 2 1 2 2

1 0 1 1 1

1 0 1 1 1

... ... 0

. . ... . ... .

0 0 ... ...

... .. 0

. . ... . ... .

. . ... ....

n

n

m

m

A E A E A E

A E A E A E

E B E B E B

E B E B E B

   
 
 
   
 

   
 
 
    

 

Which acts In The 1 2( )n mH H + - Direct Sum Of n m+ Copies of The Space 1 2H H  In A Matrix (4),The Number Of 

Rows With Operators iA Is Equal To Leading Degree Of The Parameter  In Pencils ( )B  And The Number Of 

Rows With iB  Is Equal To The Leading Degree Of Parameter  In ( ).A  The Notion Of Abstract Analog Of 

Resultant Of Two Operator Pencils Is Considered In The[7] For The Case Of The Same Leading  Degree Of The 

Parameter In Both Pencils And In The [2]For, Generally Speaking, Different Degree Of The Parameters In The 

Operator Pencils. 

Theorem1 [7, 8]. Let For All Operators Bounded In Corresponding Hilbert Spaces, One Of Operators nA  Or mB  

Has Bounded Inverse. Then Operator Pencils ( )A   And ( )B   Have A Common Point Of Spectra If And Only If 

 Re ( ( ), ( ))Ker s A B    

Remark1. If The Hilbert Spaces 1H And 2H Are The Finite Dimensional Spaces Then A Common Points Of Spectra 

Of Operator Pencils ( )A  And ( )B  Are Their Common Eigenvalues.(See [6], [7].) 

 0, 1, ,( ) ... , 1,2,...,i

i

k

i i i k iB B B B i n  = + + + =  

( )iB  - Operator Bundles Acting In A Finite Dimensional Hilbert Space iH Correspondingly. Suppose That

1 2 ... nk k k   . In The Space 1 2k kH +
 (The Direct Sum Of 1 2k k+  Tensor Product 1 ... nH H H=    Of Spaces

1 2, ,..., nH H H ) Are Introduced The Operators ( 1,..., 1)iR i n= − With The Help Of Operational Matrices (3.12) Let

( )iB   Be The Operational Bundles Acting In A Finite Dimensional Hilbert Space iH , Correspondingly. Without 

Loss Of copies With 

1

1 1

1

0,1 1,1 ,1

0,1 1,1 1.1 ,1

0,1 1,1 ,1

1

0, 1, ,

0, 1, ,

0, 1, ,

0

0 0

0 0

0. 0

0 0

0 0

i

i

i

k

k k

k

i

i i k i

i i k i

i i k i

B B B

B B B B

B B B
R

B B B

B B B

B B B

+ + +

+ + + +

−

+ + +

− + + +

+ + +

+ + +

     
 

   
 
         

    
 =

   
 

     
 
         

 
      

, 

2,3,...,i n=  
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The Number Of Rows With Operators ,1 1, 0,1,...,sB s k=  In The Matrix 1iR −  Is Equal To 2k And The Number Of Rows 

With Operators , , 0,1,...,s i iB s k= Is Equal To 1.k  We Designate ( )( )p iB   The Set Of Eigenvalues Of An Operator

( )iB  .From [5] We Have The Result:  

Theorem 2. [9]  
1

( ( ))
n

p i
i

B  
=

  If And Only If  
1

1

1

, ( { }).
n

i k

i

KerR KerB 
−

=

 =  

Tensor Product And Operator Systems 

Consider The System 

1, ,

1 2

1

, , 0, 1 1, , , ,

1 1

1 2 ,...,

( ) ( ...

...

1,2,...,

s n s

n

n

k k

r r

i j s s s r s n n r s

r r

ii i

n i i

A x A A A

A

s n

  

  

= =

= + + + +

+

=

 


(4) 

The Parameters 1 2, ,..., n    Enter The System Nonlinearly, And The System (4) Contains Also The Products Of 

These Parameters. Divide The System Of Equations (4) Into Groups Of n  In Each Group. If Some Equations 

Remains Outside, These Equations We Add By Other Operators From The System (4). Each Group Contains n

Operators And Will Be Considered Separately. 

In (4) The Coefficients Of The Parameter , , 1,2,...,r

m mr k m n  =  Are The Operators , ,i m jA , Which Act In The Space 

jH , Index i  Indicate On The Parameter i , Index k  - On The Degree Of The Parameter i . 

We Introduce The Notations: 

1 2 1... , , 1,2,...,
m

r

m k k k r mr k m n 
−+ + + +=  =   (5) 

Further , We Numerate The Different Products Of Variables 1 2, ,..., n   In  The System (4) On Increasing Of  The 

Degrees Of The Parameter 1 . Let The Numbers Of Term With The Products Of The Parameters 1 2, ,..., n    Are 

Equal To r  Put Further 

1 2

1 2 ... nii i

n   =  ( 1 2

1 21 2 ...... ) ,n

n

ii i

n t k k k t t r    + + + +=  , 

Where t s  Is The Number Which Correspond The Multiplier At 1 2

1 2 ... nii i

n    The Ordering Of Multiplies Of 

Parameters In The System (4). So In New Notations To The Product 1 2

1 2 ... nii i

n    Correspond The Parameter

1 2 ... ,
nk k k t t r + + + +   (

1 2 ... ,
nk k k t t r + + + +  ), Accordingly, Operators  

1 2 1, , ... , , 1,2,..., ; 1,2,..., ;

1,2,...,

sr s i k k k s i rA D r n s k

i n

−+ + + += = =

=
 

,max , 1,2,...,r r ik k i k= = ,            (6) 

1 2 1 2, ..., ; ... , , 1,2,..., ;; 1,2,...,
n mk k k i k k k t iA D t s i n+ + + += = =  

When s  Is The Number Of Different Products Of Parameters, Entering The System(4). In New Notations The 

System (4) In The Tensor Product Of Spaces 1 2 ... nH H H    Contains 1 2 ... nk k k s+ + + +  Parameters And n

→ni

n

ii  ...21

21
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Equations. Let 1 2 ... nk k k k+ + + =  Then 

1 2 1 1 2 1... ... , , 0

0 1 1

0

[ ] [ ] 0

0; 0; 1,2,...,

r

r r

kn r

k k k k k k k k i i k t k t i i

r k k

i

D x D x

k k i n

 
− −+ + + + + + + + + + =

= = =

−

+ =

= = =

 
  (7) 

Adding The System (7) With Help Of New Equations So Manner That The Connections Between The Parameters, 

Following From The Equations Of The System (4), Satisfy. Introduce The Operators 00 1 2 0, , , ,T T T T T  Acting In The 

Finite Dimensional Space 
2R  And Defining With Help Of The Matrices 

0 1 2

0 1 1 0 0 0
, ,

1 0 0 0 0 1
T T T

     
= = =     
     

, 0

0 1
,

0 0
T

 
=  
 

 

11, ,

1 0 0 ... 0 0 0

0 1 0 ... 0 0 0

0 0 1 ... 0 0 0

0 0 0 ... 0 0 0

. . . ... . . .

0 0 0 ... 0 0 0

0 0 0 ... 0 0 0

s rT

 
 
 
 
 

=  
 
 
 
 
 

,… 1, ,

0 0 0 ... 0 0 0

0 0 0 ... 0 0 0

0 0 0 ... 0 0 0

0 0 0 ... 0 0 0

. . . ... . . .

0 0 0 ... 0 1 0

0 0 0 ... 0 0 1

n nk s rT +

 
 
 
 
 

=  
 
 
 
 
 

1 2( , ,..., )

0 0 0 ... 0 0 1

1 0 0 ... 0 0 0

0 1 0 ... 0 0 0

0 0 1 ... 0 0 0

. . . ... . . .

0 0 0 ... 1 0 0

0 0 0 ... 0 1 0

n rs s sT

 
 
 
 
 

=  
 
 
 
 
 

(8) 

The Number1 Stands On The Diagonal Elements Of The First 1s  Rows Of The Matrix
11, , ;s rT  Diagonal Elements Of 

The Rows 1 2 1 1 2... 1,..., ...i is s s s s s−+ + + + + + +  Of The Matrix 
11, ,i ik s rT
++  Is Equal Also To 1 And So On. Besides, All 

Matrices
1 1 1 21, , 1, , ( , ,..., ),..., ,...,

i i n rs r k s r s s sT T T
++ Have The Order 1 2 ... ns s s+ + + . 

Adding The System (7) By The Following Equations  

1 2 1 2 1 2 1 2

1 2 1 2 1 2

2, 1 1 0, 1 2 1, 1 1

2 2, 2 1 0, 2

1, 2 2

( ) 0

..........................................................

(

) 0

..............................

n n n n

k k n k k k k n k k

k k n k k n k k

T T T x

T T

T x

 

 



+ + + +

+ − + + − + − + + −

+ + + − + + −

+ + =

+ +

+ =

..........................

 

1 1
1 1 1 1 1 1

1 1

... 2 ... 1,0 ... 2
2,1 0,1

( ) 0n n
n n n

i i

i i

k k k k n k k
k k

T T x − −
− − −

= =

+ + − + + − + + + −
+ +

+ =
   

1 1... 2 2 ... 1 0 1

2

( ) 0

,

n nk k k k k k

s

T T T x

x R s n

  + + − + + −+ + =

 
   (9) 

1 1 2 1 1

1 2 1 2

0, 1 , 1 , ... 1 ,

( , ,..., ) ( , ,..., )

( ...

) 0

1,2,...,

n n

n t n

t i t k i t k k i t

k i i i i i i t

T T T T

T x

t r

  



−+ + + +

+

+ + + + −

− =

=

 

Denote
11 2( , ,..., )n rk i i i +

 The Multiplier 1 2

1 2 ... nii i

n   Of   The Parameters, Entering The System (4)  Having The Coefficient

11 2( , ,..., )n ri i iA . System ((4),(9)) Form The Linear Multiparameter System, Containing 1 2 ... nk k k r+ + + +  Equations And 

1 2 ... nk k k s+ + + + Parameters. To This System We May Apply All Results, Given In The Beginning Of This Paper.  
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Theorem3. [4]. Let The Following Conditions: 

А) Operators
1 2, , ,...,, ;,

nk t k k k tA A  In The Space iH  Are Bounded At The All Meanings i  And k . 

B) Operator 1

0

−  Exists  And Bounded satisfy: 

Then The System Of Eigen And Associated Vectors Of (4) Coincides With The System Of Eigen And Associated 

Vectors Of Each Operators  ( 1, 2,..., )i i n = Given Two Equations From (9). Let The Equations Be: 

2 1 0 2 1 1

1 2 2 0 3 1 2

( ) 0

( ) 0

n

n

T T T x

T T T x

 

  

+

+

+ + =

+ + =
  (10) 

Let 1 0  И 1 1 1( , ) 0nx  + =   Is The Component Of The Eigenvector Of The System ((4),(9)). We Have 

1 2

0 0 0 1 1 0

0 1 1 0 0 0
 

      
+ +      

      
( )1 1, 0  = , 

1 1  2 1 0 + = , 1 1 1 0 + = , 
2

2 2 10;   = . 

Further From The Condition 1 2 2 2 20, 0, ( , ) 0nx   +  =   It Follows 2 2 3 2 0,   + = 1 2 2 1 0   + =  And 

Consequently, 
2

1 3 2  = . Earlier We Proved That
2

2 1 = , Consequently, 
3

3 1 = . 

On Analogy For Other Parameters Of ((4),(9)): If 
1 21 2 ...( , ,..., )

nk k k s   + + + + Is The Eigenvalue Of The System -((4), (9)), 

Then 
4

4 1 = , …,
1

1 1

k

k = , … ,
1 2 ... 1r

s

k k k s r + + + + += , 1,2,..., 1; 1,2,..., .nr n s k= − =  

To Each Multiplier Of Parameters 1 2

1 2
( ) ;jj j k

k

rr r

j j j t k t t r    +   =  It Is Corresponded The Equation 

1 1 2 1 2 1

1 2 1

0, 1 1, , 1 2, , ... 1 , ,

( , ,..., ) ( ,..., ) ,

( ...

) 0

n n

n t n t

t k i k t k i k t k k k n i k t

k i i i i i t k k t

T T T T

T x

  



−+ + + + + + + + +

+ + +

+ + + + −

− =
 

Consider The Last Equation, In Which 

11, ,

1 0 0 ... 0 0 0

0 1 0 ... 0 0 0

0 0 1 ... 0 0 0

0 0 0 ... 0 0 0

. . . ... . . .

0 0 0 ... 0 0 0

0 0 0 ... 0 0 0

s rT

 
 
 
 
 

=  
 
 
 
 
 

,…, 
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1 1... 1, ,

0 0 0 ... 0 0 0

0 0 0 ... 0 0 0

0 0 0 ... 0 0 0

0 0 0 ... 0 0 0

. . . ... . . .

0 0 0 ... 0 1 0

0 0 0 ... 0 0 1

n nk k s rT
−+ + +

 
 
 
 
 

=  
 
 
 
 
 

 

1( ,..., ) ,

0 0 0 ... 0 0 1

0 0 0 ... 0 0 0

0 0 0 ... 0 0 0

0 0 0 ... 0 0 0

. . . ... . . .

0 0 0 ... 0 0 0

0 0 0 ... 0 0 0

n ts s rT

 
 
 
 
 

=  
 
 
 
 
 

 

0,

0 0 0 ... 0 0 0

1 0 0 ... 0 0 0

0 1 0 ... 0 0 0

0 0 1 ... 0 0 0

. . . . . . .

0 0 0 ... 1 0 0

0 0 0 ... 0 1 0

rT

 
 
 
 
 

=  
 
 
 
 
 

 

For Operators, Defining With Help The Matrices
1 21, , 2, , , , 0., ,..., ,

ns k t s k t n s k t k tT T T T+ + + +  Act In Space 1 ... ns s
R
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Hence, 1 2

1 2 ; .nss s

n k s s r    + =   
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For The Obtained Linear Multiparameter System We Construct Operator 0  On Rule (3). The Condition 

 1

0Ker − = Means That Operators 
1

0i i

− =   Are Pair Commute[2]. So Operators i Act In Finite Dimensional 

Space H  And Operators 
1 2 1... 1rk k k −+ + + + Have Not The Zero Eigenvalues Then For The Any Eigenvalue

1 21 2 ...( , ,..., )
nk k k   + + +

Of The System((4),(9)) And From Equation 2.47 And Equation 2.48 In [7] It Follows That There 

Is Such Eigen Element z That The Equalities, , ,i s i sz z = , 1 21,2,..., ... ni k k k= + + + Satisfy. For Analogy Conditions 

We Obtain The Analogy Results For All Groups. We Have The Several Systems Of Operator Polynomials In One 

Parameter. We Apply The Results Of [9]. The System Has The Form  

, , ,i i s o iz z =   

………………….. 

1 2 1... 1, , ,ik k k i i i s o i iz z
−+ + + + =   

Theorem 4. Let The Conditions Of The Theorem1 Be Fulfilled Then Operators ,o i Have Inverses. Moreover, The 

System(4) Has The Common Eigenvalue If And Only If 

1 2 1... 1, , ,( ) 0
ik k k i i s o iKer 
−+ + + + −   . 

Elementary Operators 

We Use Tensor Products To Determine The Norms Of Elementary Operators. Details Can Be Found In[11] And 

The References Therein. Below Is The First Result. 

Theorem 5. Let A, B ∈ B(H) And UA,B =A ⊗H B + B ⊗H A Be Normally Represented Then ∥ UA,B ∥Inj ≥ 2(√2 − 

1)∥A∥∥B∥. 

Proof. Let ∥A∥ = ∥B∥ = 1 And A, B Be Functions On D := (B(H)*), And UA,B As A Function On        D × D. Taking 

Dot Products Of A And B Using A Suitable Scalars Of Modulus 1, We Let A(X0) = 1 And B(Y0) ∀ X0, Y0 ∈ D. Putting 

A1 = A(X0), And B1 = B(Y0). Then It Gives                                 UA,B (X0, Y0) = 2B1, UA,B (Y0, Y0) = 2A, UA,B(X0, Y0) = 1 

+ A1B1  If  |A1| Or|B1| ≥ √(2 – 1). This Completes The Proof. On The Other Hand, If Suppose That |A1| < √(2 – 1) 

And |B1| <√(2 – 1) Then, 

 |1+ A1B1| > |− (√(2 – 1))2|=2(√(2 −1)) ∥A∥∥B∥. 

Corollary 1. Let R =∑N
i=1Ai ⊗ Bi ∈ B(H) ⊗ B(H). Then We Have ∥R∥Inj= Sup{∥Ai ⊗ Bi∥ : X ∈ B(H)}, ∥X ∥ = 1 If And 

Only If X Is Rank One Operator. 

Proof. Let R(X ) =∑N
i=0Ai ×Bi And ∥R∥Β = Sup{∥Rx∥ : X ∈ B(H), ∥X ∥ =1, And, Rank (X ) = 1}. It Is Known [70] That 

Every Rank One Operator X ∈ B(H) Is Of The Form X = V ⊗ ¯Σ  For All V, Σ ∈ H Then This Gives  

∥R∥Β= Sup{| ∑ N
 I=1⟨Ai × Bi⟩ Ξη| : ∥X ∥ = 1, Rank (X ) = 1, ∥Ξ ∥ = ∥Η∥ = 1} 

= Sup{|N ∑I=1⟨Ai, V, Η ⟩⟨B1ξ, Ζ ⟩|: ∥Ζ ∥ = ∥V∥ = ∥Ξ ∥ = ∥Η∥ = 1} 

= Sup{|∑ N
 I=1f (Ai) G(Bi)|}. 

Taking The Last Supremum All Over All Functionals Of The Form F = V ⊗¯Η, G = Ξ ⊗¯Ζ. For All Elements In The 

Product U(H) Of B(H ) Is A Norm Limit Of Convex Combinations Of Elements Of The Form V ⊗ ¯ Η And The Unit 

Ball U(H) Is A Weak Dense In The Unit Ball Of Dual Of B(H). This Implies That ∥R∥Β = ∥R∥Inj. 
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Conclusions 

Tensor Product [10] Is A Very Important Technique Used In Solving Problems Of Norms In Hilbert Spaces. Norms 

Are Very Important Properties Of Operators And Interesting Studies Have Been Directed On Them. The Field Of 

Elementary Operators Has Been So Interesting Over The Past Decades And Much Have Been Done. The Norm 

Property In Particular Has Attracted Many Scholars But A Lot Can Be Done Further. In Our Study, We Considered 

The Normally Represented Elementary Operators. We Recommend That Other Properties Of The Normally 

Represented Elementary Operators Can Be Studied Like Numerical Ranges, Positivity And Spectrum. The Norm 

Property Is Also Not Exhausted. 
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