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Abstract

A highly efficient method is derived and analyzed in this paper for the
approximation of Quadratic Riccati Equations (QREs) using interpolation and
collocation procedure. The derivation is carried out within a two-step
integration interval [z, T,+2]. We are motivated to derive a method that
approximates QREs (which are nonlinear differential equations that have a
great deal of applications in science and engineering). Furthermore, the basic
properties of the newly derived method, which include the order of accuracy,
convergence, zero-stability, consistence and region of absolute stability were
analyzed. The method derived was also applied to solve some QREs and from
the results generated, it was clear that the new method performed better than
the ones with which we juxtaposed our results with.
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1 INTRODUCTION

The QDEs are nonlinear differential equations that find applications in finan-
cial mathematics [1], robust stabilization, stochastic realization theory, network
synthesis and optimal control [2], random processes, optimal control and diffu-
sion problem [3] . The QREs is also an essential tool used in modeling many
physical situations such as spring mass systems, resistor-capacitor-induction cir-
cuits, bending of beams, chemical reactions, pendulum, the motion of rotating
mass around body and so on, [4].The QRE was named after an Italian, Riccati
Francesco Jacopo (1676 — 1754).

In this paper, we shall derive and analyze a highly efficient method for the
approximation of QREs of the form;

y' = a(t) +b(t)y(t) + ct)y*(t), y(to) =yo, 0<t<T (L.1)
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We assume that equation (1.1) satisfies the hypotheses of the existence the-
orem below.

Theorem 1.1 [5]

Let f(t,y), where f: R xR — R, be defined and continuous for all (t,y) in
the region D defined by a <t < b, —oo <y < oo, where a and b are finite
and let there exist a constant L such that,

1f(t,y) = fFEy )< Ly —y*| (1.2)

holds for every (t,y),(t,y*) € D. Then for n € R there exists a unique
solution y(t) of the problem (1.1), where y(t) is continuous and differentiable
for all (t,y*) € D. The requirement (1.2) is known as Lipchitz condition and
the constant L as a Lipchitz constant.

Definition 1.2 [6]

A numerical method is called A(a)-stable for some o € [O, %] if the wedge

S ={z:|Arg(—2)| < a, 2 # 0} (1.3)

is contained in its stability region. The largest o (i.e. aumax) 18 called the
angle of absolute stability.

Definition 1.3 [6]

A numerical method is called A(0)-stable if it is A(a)-stable for some for
some « € (O, %) .Note that A (%)-stabz'lity = A-stability

Over the years, some scholars have developed different methods for approx-
imating QREs of the form (1.1). These methods range from predictor-corretor
to hybrid methods. Inspite of the successes the predictor-corrector methods
recorded, they have some shortcoming. This is because the predictors usually
occur in reducing order of accuracy, another disadvantage is that there is high
cost involved in developing separate predictor for the corrector, high cost of
computer time and human efforts are also involved, [7].This led to the devel-
opment of block methods to carter for some of these shortcomings. The first
set of block methods were developed in 1953 by Milne basically to serve as
predictors for predictor-corrector algorithms. Later, the block methods were
adopted as full methods. One of the advantages of block methods is that they
generate simultaneous numerical approximations at different grid points within
an integration interval, [8]. The block methods are less expensive in terms of
the number of function evaluations compared to the linear multistep and the
Runge-Kutta methods. We must hoever state that despite all these advantage,
the block method also have a major setback. The setback is that the order of in-
terpolation points must not exceed that of the differential equations. This led to
the development of highly effcient methods called the hybrid methods. These
methods allow for the incorporation of function evaluation at off-step points,
thus; affording the opportunity to circumvent the "Dahlquist zero-stabilty bar-
rier". Thus, with hybrid methods, it is possible to obtain convergent k—step
methods with order 2k + 1 up to k = 7.The hybrid method helps in reducing
the step number of a method and still maintain its zero-stability property, [9].



The Adomian Decomposition Method (ADM) could be cumbersome at time
because the Adomian polynomials may be very complicated to construct. The
Variational Iteration Method (VIM) also has a major disadvantage because
identifying the Lagrange multipliers usually yield an underlying accuracy. The
formation of linear functional equations (which is needed in each iteration) could
be very difficult when applying the Homotopy Perturbation Method (HPM).
The performance of Homotopy Analysis Method (HAM) largely depends on
the choice of the auxiliary parameter of the zero-order deformation equation.
Furthermore, the implemnetation and convergence region method is very small.

Different methods have been adopted by researchers in approximating QREs.
These methods include the Non-Standard Finite Difference Method (NSFDM)
[2], ADM [10,11,12,13], VIM [14,15,16,17,18,19,20], Runge-Kutta method
[21], Chebyshev wavelets [22], hybrid function and Tau method [23], Differential
Transformation Method (DTM) [24,25], HAM [26,27], HPM [28,29], among
others.

It is in view of the short-comings of these methods that we were motivated to
develop a highly efficient method for the approximation of QREs. It is expected
that this method will perform better than the existing ones.

2 DERIVATION OF THE METHOD

We shall employ a basis function given by,

r4+s—1

yt)= 3 a4t (2.4)
=0
in the derivation of a method of the form

AOY,. = Ey, + hdf(y,) + hbF(Y,,) (2.5)

for the solution of QREs of the form (1.1), where A®), E, dand b arerx
r matrices (r is the number of collocation points), s is also the number of
interpolation points. Also note that Y,,, y., F(Y,,) and f(y,) are vector
matrices with r entries.

Differentiating equation (2.4), we obtain

r+s—1 )
()= et (26)
j=0
Equation (2.4) is interpolated at point 15, § = % and equation (2.6) is

collocated at points x4, 7 =10 (%) 2. This leads to the system of equatons,

TA=U (2.7)

where
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Solving (2.7), for a’s,j = 0(1)7 and substituting back into
gives a continuous linear multistep method of the form,

1

y(t) = a 3

2
%(t)yn-i-% + hZ/Bj(t)fn-i-j; J=0

j=0
where

ap(t) =1
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and t is given by

)2
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equation (2.4)
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We then evaluate equation (2.8) at t = % (%) 2, thus obtaining a new method
of the the form (2.5) given by,

(2.11)

Equation (2.11) is the new method capable of approximating QREs of the

form (1.1). Note however, that the method is implicit in nature; this means

that, it requires some starting values before it can be efficiently implemented.

Thus, starting values for y,,1;, j = % (%) 2 are predicted with the aid of Taylor
series up to the order of each individual method.

3 ANALYSIS OF BASIC PROPERTIES OF THE

METHOD

In this section, the analysis of basic properties of the newly derived method
shall be carried out. These properties include; order of accuracy, consistency,
root condition, convergence, symmetry and region of absolute stability.

3.1 Order of Accuracy and Error Constant of the Method

Let the linear operator £{y(t) : h} be defined on the method (2.5) when ¢ = 0
by the expression,

2 (i@
(y(t) by = A0Y, -y (Jf;)

=0

It is evident from equation (3.12), that expanding Y, and F(Y,,) in Taylor’s
series and comparing the coefficients of h gives

C{y(t) : b} =Coy(t) + Cohy/ (t) + ... +CphPyP (t) +Cpr1 WP TP (t) + ... (3.13)
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Definition 3.4 [5].
The linear operator £ and the associated block method (2.5) are said to be
of accurate order p if 9 =1 =Cy =...=7Cp =0, o1 # 0.

The parameter ¢,11is called the error constant and implies that the trunca-
tion error is given by,

Tk = Cpr hPHyP () + O(RPH?) (3.14)
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Therefore, if we compare the coefficients of h, the order and the error con-
stant of the method are given by

Cy)=C] =Co=C3=Cq=Cs5 = Cg

and

¢ = [3.5672 x 1076 4.9438 x 1076 4.7926 x 1076 4.8807 x 1076 4.7663 x 106 5.1121 x 10_6]T

respectively. Thus, the newly derived method (2.11) is of accurate uniform
sixth order.

=0

3.2 Root Condition and Zero Stability of the Method

Definition 3.5 [5]

The block method (2.5) is said to satisfy root condition, if the roots zs,s =

2, ...,k of the first characteristic polynomial p(z) defined by p(z) = det(zA©) —

E) satisfies |zs| < 1 and every root satisfying |zs| = 1 have multiplicity not

exceeding the order of the differential equation. The method (2.5) is said to

be zero-stable if it satisfies the root condition. Moreover, as h — 0,p(z) =

2" M (z — 1)*, where p is the order of the differential equation, v is the order of
the matrices A and E .

We shall now verify whether or not the new method (2.11) satisfies root
condition.



=0 (3.16)
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Fron equation (3.16), p(2) = 2°(z — 1) =0 =21 = 20 = 23 = 24 = 25 =
0, z¢ = 1. Hence, the method (2.11) is said to satisfy root condition.

Theorem 3.6 [5]

The necessary and sufficient condition for the method given by (2.5) to be
zero-stable is that it satisfies the root condition.

This therefore implies that the new method (2.11) is zero-stable.

3.3 Consistency of the Method

Suffice to say that the consistency of a method controls the magnitude of the
local truncation error which is committed at each stage of the computation,
[30].Thus, the method (2.11) is consistent since it has uniform order p =6 > 1.

3.4 Convergence of the Method

The method (2.11) is convergent by consequence of Dahlquist theorem below.
Theorem 3.7 [31]
The necessary and sufficient conditions that a continuous LMM be conver-
gent are that it be consistent and zero-stable.

3.5 Stability Region of the Method

Definition 3.8 [5]
The linear multistep method (2.5) is said to have region of absolute stability

R4, where Ry is a region of the complex h—plane, if it is absolutely stable for

all h € Ry. The intersection of R4 with the real axis is called the interval of
absolute stability.

The stability region of the new method (2.11) is given by the expression,

h(w) = hS (555 ws — ;1348847 5) B3 (22§ 4 ATIBLS89 45

B 45%%%5 5 g gaé%% 5 §§§g§§§§%)
e (Be BT o)

(3.17)
The stability region is shown in Figure 3.1.
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The region of absolute stability in Figure 3.1 above is A(0)-stable. The
stable region is the interior of the curve while the unstable region consists of
the complex plane outside the enclosed figure.

4 RESULTS AND DISCUSSION

4.1 Numerical Experiments

The newly derived two-step method (2.11) shall be applied in the approximation
of QREs of the form (1.1).The results obtained shall be juxtaposed along other
results obtained by some authors. This is aimed at showing that the newly
derived method performs better than some existing methods. We shall employ
the notations below in the result tables.

ERR=|Exact Solution - Computed Solution|

Exec.t/ sec- Execution time per seconds

EBN-Error in [28]

EJS-Error in [32]

Problem 4.9

Consider the QRE of the form,

y'(t) =1+ 2y(t) — y*(t), y(0) =0 (4.18)

whose exact solution is given by,

1 V2 -1
y(t) =1+ v2tanh <\/§+ 5 log <\/§+1>> (4.19)
Source: [32]
Applying the newly derived method on the Problem 4.9, we obtain the result
presented in Table 4.14 below.
Problem 4.10
Consider the QRE of the form,

y'(t) =1-42(t), y(0)=0 (4.20)

whose exact solution is given by,

et —1

y(t)
Source: [32]
Applying the newly derived method on the Problem 4.10, we obtain the
result presented in Table 4.15 below.
Problem 4.11
Consider the QRE of the form,



y(t)=-—= y0)=1 (4.22)

y(t) = —— (4.23)

Source: [32]
Applying the newly derived method on the Problem 4.11, we obtain the
result presented in Table 4.16 below.

Problem 4.12
Consider the QRE of the form,

y'(t) =10+ 3y(t) — y°(t), y(0) =0 (4.24)
whose exact solution is given by,

14
y(t) = -2+ m (4.25)

Source: [28]

Applying the newly derived method on the Problem 4.12, we obtain the
result presented in Table 4.17 below.

Problem 4.13 :

Consider the QRE of the form,

y(t) =y*(t) —1, y(0) =0 (4.26)

whose exact solution is given by,

y(t) = —tanh(t) (4.27)

Source: [32]
Applying the newly derived method on the Problem 4.13, we obtain the
result presented in Table 4.18 below.

Table 4.14 : Result for Problem 4.9
Exact Solution Computed Solution ERR

0.1000 0.1102951969169624 0.1102951969169602 2.248202¢ — 015 3.201692¢ — 011
0.2000 0.2419767996211095 0.2419767996210897 1.978973e — 014 3.758708e — 010
0.3000 0.3951048486603790 0.3951048486603087 7.033263e — 014 1.438245e — 009
0.4000 0.5678121662929394 0.5678121662927802 1.592060e — 013 3.354903e — 009
0.5000 0.7560143934313766 0.7560143934311164 2.601253e — 013 5.573525¢ — 009
0.6000 0.9535662164719240 0.9535662164716031 3.208545e¢ — 013 6.855140e — 009
0.7000 1.1529489669796247 1.1529489669793307 2.939871le — 013 6.041839e — 009
0.8000 1.3463636553683767 1.3463636553681937 1.829648e — 013 3.168413e — 009
0.9000 1.5269113132806256 1.5269113132805694 5.617729e — 014 1.336715e — 010
1.0000 1.6894983915943844 1.6894983915943751 9.325873e — 015 1.492398e — 009

10

EJS

Exec.t/ sec
0.0578
0.8654
0.9026
1.2517
1.3003
1.3394
1.4128
1.4819
1.5488
1.6019



Table 4.15 : Result for Problem 4.10

t
0.1000
0.2000
0.3000
0.4000
0.5000
0.6000
0.7000
0.8000
0.9000
1.0000

Exact Solution
0.0996679946249559
0.1973753202249041
0.2913126124515911
0.3799489622552251
0.4621171572600101
0.5370495669980355
0.6043677771171638
0.6640367702678492
0.7162978701990248
0.7615941559557653

Computed Solution
0.0996679946249558
0.1973753202249041
0.2913126124515911
0.3799489622552249
0.4621171572600099
0.5370495669980354
0.6043677771171635
0.6640367702678487
0.7162978701990242
0.7615941559557650

Table 4.16 : Result for Problem 4.11

t
0.1000
0.2000
0.3000
0.4000
0.5000
0.6000
0.7000
0.8000
0.9000
1.0000

Exact Solution
0.9090909090909091
0.8333333333333333
0.7692307692307691
0.7142857142857141
0.6666666666666665
0.6249999999999998
0.5882352941176469
0.5555555555555554
0.5263157894736840
0.4999999999999998

Computed Solution
0.9090909090909090
0.8333333333333329
0.7692307692307687
0.7142857142857134
0.6666666666666663
0.6250000000000000
0.5882352941176474
0.5555555555555558
0.5263157894736850
0.5000000000000002

Table 4.17 : Result for Problem 4.12

t
0.1000
0.2000
0.3000
0.4000
0.5000
0.6000
0.7000
0.8000
0.9000
1.0000

Exact Solution
1.1229599550199865
2.3303636672393440
3.3592985913921902
4.0762561998939519
4.5086402379423145
4.7470598637518684
4.8720664654895476
4.9358801511182646
4.9680115179081819
4.9840783622386375

Computed Solution
1.1229599535565202
2.3303636702315602
3.3592986263236813
4.0762562765451094
4.5086403319614563
4.7470599483651021
4.8720665291990306
4.9358801941869093
4.9680115451016569
4.9840783786466476

Table 4.18 : Result for Problem 4.13

11

ERR
9.714451e — 017
8.326673e — 017
0.000000e + 000
2.220446e — 016
2.220446e — 016
1.110223e — 016
3.330669¢ — 016
5.551115e — 016
5.551115e — 016
3.330669e — 016

ERR
1.110223e — 016
3.330669¢ — 016
3.330669¢ — 016
6.661338e — 016
2.220446e — 016
2.220446e — 016
5.551115e — 016
4.440892e — 016
9.992007e — 016
4.440892e — 016

ERR
1.463466e — 009
2.992216e — 009
3.493149e — 008
7.665116e — 008
9.401914e — 008
8.461323e — 008
6.370948¢e — 008
4.306864e — 008
2.719348e — 008
1.640801e — 008

EJS Exec.t/ sec
1.149081¢ — 014 0.0536
6.716849¢ — 014 0.3744
1.833533¢ — 013 0.8300
3.386180c — 013 0.8614
48611126 — 013 1.2087
5.798695¢ — 013 1.5045
5.048575¢ — 013 1.5499
5.327960¢ — 013 1.7292
4.161116¢ — 013 1.9368
2.745582¢ — 013 2.0353

EJS Exec.t/ sec
3.8296¢ — 07 0.0586
3.8296¢ — 07 0.3116
5.7951c — 07 0.3475
6.8133¢ — 07 0.3830
7.3394¢ — 07 0.7965
7.6091e — 07 1.2168
77483 — 07 1.4326
7.8257c — 07 1.5336
7.8799¢ — 07 1.5967
7.9326¢ — 07  1.6501

EBN Exec.t/ sec
1.5 x 1076 0.2713
3.2 x 1076 0.4742
8.0 x 1077 0.6429
3.2 x 1076 0.8785
3.7x 1076 1.0359
9.7 x 1077 1.1531
1.0 x 1076 1.1871
8.5 x 107 1.2208
21x1077  1.3892
1.4 %1076 1.5685



t Exact Solution Computed Solution ERR
0.1000 —0.0996679946249559 —0.0996679946249558 6.938894¢ — 017
0.2000 —0.1973753202249041 —0.1973753202249041 8.326673¢ — 017
0.3000 —0.2913126124515911 —0.2913126124515911 0.000000e + 000
0.4000 —0.3799489622552251 —0.3799489622552249 2.220446e — 016
0.5000 —0.4621171572600100 —0.4621171572600099 1.110223e — 016
0.6000 —0.5370495669980356 —0.5370495669980354 2.220446e — 016
0.7000 —0.6043677771171637 —0.6043677771171635 2.220446¢ — 016
0.8000 —0.6640367702678492 —0.6640367702678487 5.551115¢ — 016
0.9000 —0.7162978701990247 —0.7162978701990242 4.440892¢ — 016
1.0000 —0.7615941559557652 —0.7615941559557650 2.220446e — 016

4.2 Discussion of Results

In view of the results obtained in the tables above, it is obvious that the newly
derived method (2.11) performs better than the results of the existing methods
in view of the results obtained. These results further buttress the fact that the
method is convergent because the computed solutions converge toward the exact
solutions at each point of integration. It is also clear from the tables that the
execution time per seconds needed to generate results are micro (very small),
showing that the method generates results very fast. Thus, the method is said
to highly efficient.

5 CONCLUSION

In this paper, a highly efficient uniform sixth-order method (2.11) has been
formulated for the solution of QREs of the form (1.1) via collocation and in-
terpolation procedure. The basic properties of the newly derived method were
also analysed, thus; showing that the method is zero-stable, consistent and con-
vergent. The method developed was found to be A (0)-stable and that is why it
performed extremely well on the nonlinear QREs. The results obtained on the
application of the method clearly shows that it is computationally reliable.
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