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Abstract: The movement of linear stepper motors is characterized by a highly oscillatory translation, which is 

troublesome for the positional accuracy and the speed constant (often required by many industrial 

applications such as the syringe pump). These oscillations can lead to loss of synchronism and stall risk. Thus, 

in order to attenuate the amplitudes of these oscillations and to guarantee the positioning of the actuator 

without errors, solutions exploiting open-loop and closed-loop control techniques are proposed in this paper 

for the purpose of improve the performance of the actuator. 
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1. Introduction

The syringe pump is a conventional biomedical system hospital emergency service. It is mainly used for 

intravenous, intra-arterial infusions, anesthetic infusions and chemotherapy. It is essential in the various 

departments of general surgery and the internal department of medicine for child ren, adults, pediatrics, the 

emergency department, gynecology, etc. 

In the case of diseases affecting the patient's therapeutic area, such as renal insufficiency, the frequent 

administration of drugs leads according to the dose administered to two possible  cases, [1]: 

• If the dose is low, the drug becomes useless although there is a residual concentration maintained in the 

body. Thus, the mean value of the drug concentration is included in the ineffective zone, Figure.1.  

• When the dose is too high, the average evolution of the concentration is carried in the toxic zone; the 

undesirable effects then become very important compared to the efficiency.  

The pharmacokinetics of these two oral administration cases is illustrated in Figure.1.  
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Fig.1- Pharmacokinetics of oral administration. 

 

Therapeutic zone

 



Computer Reviews Journal Vol 5 (2019) ISSN: 2581-6640                                             http://purkh.com/index.php/tocomp 

95 
 

For such cases of diseases where the therapeutic zone is reduced, the maintenance of a concentration 

evolving without exceeding in this zone cannot be guaranteed by use of an oral administration. The use of an 

infusion is then a necessity. 

Perfusion is a drug delivery method continuously over a constant rate. The plasma concentration increases 

until, for the same unit of time, the dissipated amount equates which is administered by infusion. This results 

in a plateau whose height at steady state depends on the rate of infusion and the concentration of the drug in 

the administered solution, Figure 2. Maintaining this equilibrium state is conditioned by the nature of the 

infusion solution, the infusion rate and duration of care. Moreover, they are in dependence on the patient's 

condition, age and weight, [2]. 
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Fig.2- Pharmacokinetics of an infusion. 

In the case of diseases with renal or cardiovascular insufficiency, the patient is subjected to treatment 

requiring infusions at high concentrations over a long period, with adjustable speed and precise rhythm, [1]. 

Therefore, it was necessary to set up the programmable automatic syringe (time, flow, period) whose 

technology is constantly evolving for the search for performance improvement. The block diagram of the all 

biomedical system (syringe pump), to be modelled, is illustrated by Figure 3 where all geometrical parameters 

are defined. 

 

Fig.3- The proposed motorization solution. 

Some significant characteristics of the actuator and syringe are given in table 1 and 2. 
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Table 1. Motor mechanical and electrical parameters 

 

Table 2. Dimensions of the used syringe. 

 

The movement of a stepper motor presents oscillations often generating vibrations and acoustic noise and 

can even, at certain operating frequencies, induce synchronism losses and chaotic operation cases. This 

unwanted operation is manifested by a start in jerky motion causing danger, a loss of synchronism leading to 

an eminent stall. These oscillations influence the evolution of the drug in the body. Therefore, the effectiveness 

of the drug that is on the patient's health. 

Conventionally, when incremental displacement without vibrations or oscillations is required, two 

technological concepts are generally used for movement smoothing. The first involves improving the 

mechanical manufacture of the motor itself. The contributions in this case are often difficult, cumbersome and 

expensive. The second concept uses damping techniques ensured by the adaptation of laws and adequate 

control systems. Moreover, the research results obtained have shown that the characteristics of the thrust 

force developed by the linear actuator cannot be assimilated to sinusoids  and that they are strongly 

influenced by the magnetic state and the geometries of the actuator.  

Number of modules  4 

Tooth width  3mm 

Slot width  3mm 

Tooth pitch  6mm 

Phase separation  1.5mm 

Mover length  135 mm 

stator length  40.5 mm 

Air gap width  0.1mm 

Height of  the  stator  

teeth 
17mm 

Height of  the mover 

teeth  
4mm 

Depth of the actuator 30mm 

Number of turns per 

phase 
520 

 

volume of the syringe 60 ml 

Piston mass 15 g  

Length of the cylinder 118 mm  

External diameter of the cylinder 30.11 mm  

Internal diameter of the cylinder 27.48 mm  

Tube length 1600 mm  

Inner diameter of the tube 3.7 mm  

Needle length 69.7 mm  

Needle  diameter    0.8 mm  

Required thrust force    4N 

rated voltage 14 V 

rated current 1 A 
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The approach in this paper is to suggest control approaches taking into account the dynamic behavior 

ensuring precise positioning and without overshoot for different medication infusion rates. 

2. Open loop control method (Bang Bang) 

The oscillation damping of a stepping motor can be ensured by the successive excitation of two adjacent 

stator phases. Indeed, by exciting phase B until time t1, the rotor is brought to a position close to its natural 

equilibrium, figure.4. At this time, a power supply switch is turned on to energize phase A and de-energize 

phase B. This power configuration where the coil of phase B is de-energized and the coil of phase A is 

energized remains locked until at time t2. If the interval [t1-t2] is well adjusted, the amount of energy produced 

by phase A compensates exactly the kinetic energy accumulated during the movement. Then, to keep the 

rotor in the targeted position, the supply of phase B is restored at time t2. Thus, the braking force imposed by 

the excitation of phase A attenuates the oscillations and allows the rotor to reach its equilibrium position 

without overtaking. 

 

Fig.4-Applied voltage. 

The determination of switching times t1 and t2 are strongly related to the stepper motor controlled, [4-5-6-7-

8-9]. 

In the event of operation, phase B is considered as the driving phase and phase A is used for braking. The 

application by Bang-Bang control simulation, for switching times t1 = 50 ms and t2 = 80 ms and for a voltage 

of 18 V, allows the attenuation of the overruns observed at the position evolution. The determination of the 

appropriate switching times t1 and t2 has been adjusted several simulation tests. Figure.5 shows the evolution 

of the currents in the driving phase and in the braking phase. Consequently, the current generated in phase A 

allowed the motor braking and the damping observed on the position evolution.  
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Fig.5- Amortization of rotor oscillations by application of the "Bang-Bang" method. 

(a) : Mover displacement (b) : Thrust force (c) : Speed (d) : Control current. 
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Comparing these results to those corresponding to full-step operation; it is remarkable that the "Bang-Bang" 

command provides indisputable improvements to the movement of the linear stepper machine. Indeed, the 

rotor has reached its target position virtually without oscillations. 

 

Fig.6- Waiting phase in open loop. 

The control methods proposed in open loop, easy to implement, have greatly reduced oscillations and 

overruns and the mobile positioning accuracy. However, the mobile reaching its equilibrium position with a 

great delay, Figure.6, makes these control methods poorly suited for applications that require rapid 

positioning. 

3. Improvement of the linear stepper motor positioning quality by the closed-loop control 

The actuator-syringe assembly mechanical equation is of the form, [3-10-11-12]: 

 
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02
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With 
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1 2 32

( )c s

dx dx dx dx
F m C x C C

dt dt dtdt
     is the load force developed by the syringe, [13-14-15-16]. 

To synthesize the transfer function, it is considered that the machine operates at a vacuum 
c
F 0 and the 

mobile movement is ahead where   sign V 0 and F
0

0 . Equation (1) becomes: 

 
2

2
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The transfer function between the position x and the thrust force F is given by, [4]. 
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Moreover, the thrust force developed by one phase is expressed by:  
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  2 2
, sin( )F i x ki x




 

 

(5) 

Where 1L
k




 . 

But for each movement sequence, the actuator is incremented by a step of, [10-12-17]: 

4


 x x  (6) 

Whether: 

2 2 2 2
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Since x  is weak then 
2

cos( ) 1x



 ;

 

 

From where: 

  2,F i x ki   (8) 

Following these developments, it is possible to deduce the block diagram given in Figure.7.  This control 

configuration requires two regulators. A proportional regulator (1)R of gain 
1p
k  for evaluating the reference 

speed 
ref
V  and a proportional integral regulator (2)R gains 

2p
k  and integral action iT  which serves to 

determine the reference force 
ref
F . According to the expression (8), the reference current 

ref
i can be calculated 

to control the converter. The load force 
c
F  developed by the syringe is added to the system as a disturbance. 

Regulator gains are determined by the pole compensation method. Let
1

100pk  ,
2

64.935pk   and 

0.0769iT  , [10-11-12-18-19-20-21-22] 
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Simulation results for a time of the order of unity infusion, Figure.8 illustrates the dynamic behavior of the 

assembly from control current, position, speed and thrust force on a whole step. 
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Fig.8– Closed loop control: Dynamic performance of the actuator for 1s infusion time  

(a) : Mover displacement (b) : Control current (c) : Speed (d) : Thrust force. 

In the case of a linear reference, the rotor movement is also perfectly linear. It can be observed that the control 

law functions correctly with a trajectory tracking with a very good precision, figure 8 (a). As expected the 

current is chopped to satisfy the motion linearity, Figure.8 (b). The average speed remains constant around 

1.510-3m/s, figure.8 (c). As for the Thrust force, it remains positive average value canceling at the end of the 

step which is consistent with the principle of operation, Figure.8 (d). On the other hand, the excitation of the 

phase A allows the positioning of the actuator on the first equilibrium position corresponding to 1.5 

millimeters. The successive excitation of the other phases is necessary for the next positions. 

The closed-loop control has therefore brought undeniable improvements to the linear stepper movement and 

the control strategy has led to satisfactory results. 

The dynamic performances of the all biomedical system during an infusion depend on the interaction of 

several parameters characterizing the volume of infusion 
infusion

V , the syringe geometry ( 118cL mm  and 

60cV ml ) and the Tooth pitch of the actuator 6mm  . These parameters are related by the following 

expression:  

c

c

infusion
V V

L


  (9) 

Table 3. Infusion Volume versus infusion time and the number of cycles.  
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Table 3 shows that the infusion time is proportional to the volume of aqueous solution to be infused. For 

instance, an infusion volume of 1.5 ml of sodium chloride corresponds to an infusion time of four seconds 

which requires one power cycle of the actuator. According to the nature of the disease and the patient, the 

infusion volume is increased or decreased and consequently the infusion time.  In this case, it is necessary to 

repeat or split the power cycle of the actuator according to the need. 

4. Conclusion 

The development of control methods for improved motion performance of LSRM is the purpose of this article.  

The first part is devoted to the study of conventional technique commonly used for the damping of rotor 

oscillations. However, this approach does not solve the problem of the movement regularity, an essential 

factor characterizing the medical application. To overcome the limitations and inadequacies of conventional 

control techniques, a control concept based on closed-loop control is developed in the second part. The 

application of this control strategy made it possible to enslave the system and force it to follow rigorously the 

linear reference without overshoots and without oscillations. 
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