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Abstract 

Radial Basis Function neural networks (RBFNNs) represent an attractive alternative to other neural network 

models. One reason is that they form a unifying link between function approximation, regularization, noisy 

interpolation, classification and density estimation. It is also the case that training RBF neural networks is 

faster than training multi-layer perceptron networks. RBFNN learning is usually split into an unsupervised 

part, where center and widths of the Gaussian basis functions are set, and a linear supervised part for weight 

computation. This paper reviews various learning methods for determining centers, widths, and synaptic 

weights of RBFNN. In addition, we will point to some applications of RBFNN in various fields. In the end, we 

name software that can be used for implementing RBFNNs. 

Keywords: Radial Basis Function Neural Networks (Rbfnns), Learning Algorithm, Center of Gaussian Function, 

Width of The Gaussian Function.   

1. Introduction 

 Artificial neural networks are an attempt to emulate the processing capabilities of biological neural systems. 

The basic idea is to realize systems capable of performing complex processing tasks by interconnecting a 

high number of very simple processing elements which might even work in parallel. They solve cumbersome 

and intractable problems by learning directly from data. An artificial neural network usually consists of a large 

amount of simple processing units, i.e., neurons, with mutual interconnections. It learns to solve problems by 

adequately adjusting the strength of the interconnections according to input data. Moreover, it can be easily 

adapted to new environments by learning. At the same time, it can deal with information that is noisy, 

inconsistent, vague, or probabilistic. These features motivate extensive research and developments in artificial 

neural networks.  

 The main features of artificial neural networks are their massive parallel processing architectures and the 

capabilities of learning from the presented inputs. They can be utilized to perform a specific task only by 

means of adequately adjusting the connection weights, i.e., by training them with the presented data. For 

each type of artificial neural network, there exists a corresponding learning algorithm by which we can train 

the network in an iterative updating manner. Those learning algorithms fit into two main categories: 

supervised learning and unsupervised learning.  

 For supervised learning, not only the input data but also the corresponding target answers are presented to 

the network. Learning is done by the direct comparison of the actual output of the network with known 
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correct answers. This is also referred to as learning with a teacher. In contrast, if only input data without the 

corresponding target answers are presented to the network for learning, we have unsupervised learning. In 

fact, the learning goal is not defined at all in terms of specific correct examples. The available information is 

in the correlations of the input data. The network is expected to create categories from these correlations and 

to produce output signals corresponding to the input category.  

  Neural networks have been successfully employed to solve a variety of problems. They are systems of 

interconnected, simple processing elements. A neural network aims to learn the nonlinear mapping from an 

input space describing the sensor information onto an output space describing the classes to which the 

inputs belong. In between, radial basis function neural networks are one of the most popular and high 

performance neural networks [1]. 

 RBFNNs were first introduced by Powell [25] to solve the interpolation problem in a multi-dimensional space 

requiring as many centers as data points. Later Broom head and Lowe [1] removed the ‘strict’ restriction and 

used less centers than data samples, so allowing many 

practical RBFNNs applications in which the number of samples is very high. An important feature of RBFNNs 

is the existence of a fast, linear learning algorithm in a network capable of representing complex non-linear 

mapping. At the same time, it is also important to improve the generalization properties of RBFNNs [2,26]. 

Today RBFNNs have been a focus of study not only in numerical analysis but also in machine learning 

researchers. Being inherited from the concept of biological receptive field [27] and followed, Park and 

Sandberg prove, “RBFNNs were capable to build any non-linear mappings between stimulus and response” 

[28]. 

 In the last decade, different RBF learning methods have been proposed to reduce the number of hidden 

neurons by means of smarter selection of neuron centers and widths. Determination of required number of 

hidden units, their centers and spreads are the main parts of an RBF learning rule.  In this paper we briefly 

study various learning algorithm proposed for training radial basis function neural networks.  

 The rest of the paper is organized as following. In Section 2, radial basis function neural network is 

introduced. Section 3 discusses different radial basis function neural networks learning algorithms. Finally, the 

paper is concluded in Section 4. 

2. RBF neural network architecture   

 The idea of RBFNNs is derived from the theory of function approximation. The Euclidean distance is 

computed from the point being evaluated to the center of each neuron, and 

a radial basis function (RBF) (also called a kernel function or Gaussian function) is applied to the distance to 

compute the weight (influence) for each neuron. The radial basis function is so named because the radius 

distance is the argument to the function. In other words, RBFs represent local receptors; its output depends 

on the distance of the input from a given stored vector. That means, if the distance from the input vector 𝑥⃗ to 

the center 𝑐𝑖⃗⃗⃗ of each RBF 𝜑𝑗 i.e., ‖𝑥⃗ − 𝑐𝑖⃗⃗⃗‖ is 

equal to 0 then the contribution of this point is 1, whereas the contribution tends to 0 if the distance ‖𝑥⃗ − 𝑐𝑖⃗⃗⃗‖ 

increases. 

 A radial basis function neural network is a three-layer network. As it is depicted in Fig. 1., the layers include: 

input layer, hidden layer and output layer (summation layer).  
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Figure 1. Architecture of a radial basis function network 

The input layer can have more than one predictor variable where each variable is associated 

with one independent neuron. The function of the input layer is to propagate input vectors to the hidden 

layer. The hidden layer includes a number of radial basis function units (𝑛ℎ) with Gaussian kernels and bias 

(𝑏𝑘). The j-th Gaussian function is determined by a center (𝑐𝑗) and a width (𝜎𝑗). The RBFNN classifier starts by 

comparing the Euclidean distance between the input vector (x) and the center of the Gaussian function (𝑐𝑗) 

and performs the nonlinear transformation in the hidden layer as follows: 

ℎ𝑗(𝑥) = exp (− ‖𝑥 − 𝑐𝑗‖
2

𝜎𝑗
2⁄ ), (1) 

where ℎ𝑗 is the notation for the output of the j-th neuron in the hidden layer? The linear operation of the 

output layer is given as follows: 

𝑦𝑘(𝑥) = ∑ 𝑤𝑘𝑗 . ℎ𝑗(𝑥) + 𝑏𝑘 ,

𝑛ℎ

𝑗=1

 

(2) 

 

where 𝑦𝑘 is the k-th output unit for the input vector x, 𝑤𝑘𝑗 is the weight connection between the k-th output 

unit and the j-th hidden layer unit, and 𝑏𝑘 is the bias. So, in the output layer k-th neuron is associated with 

weights (𝑤𝑘1, 𝑤𝑘2, … , 𝑤𝑘𝑛ℎ
). The value coming out of a neuron in the hidden layers is multiplied by the weight 

associated with the neuron and passed to the summation which adds up the weighted values and presents 

this sum as the output of the network. A bias value is multiplied by a weight 𝑏𝑘 and fed into the output layer. 

3. RBFNN training algorithms 

Learning or training a neural network is a process by means of which the network adapts itself to a stimulus 

by making proper parameter adjustment, resulting in the production of desired response. Hence, to get the 

simila        approximation/classification accuracy and in 
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addition to the required number of RBF units, the following parameters are determined by the training 

process of RBFNNs [1]:  

1. The number of neurons in the hidden layer. [Ideally the number of neurons (M) in the hidden layer 

should be much less than data points (N)]; The number of hidden neurons in each RBFNN is determined by 

conducting different experiments. 

2. The coordinates of the center of each hidden node, determined by the training algorithm; 

3.  The width (spread) of each RBF in each dimension, determined by the training algorithm; and  

4. The weights applied to the RBF outputs as they are passed to the output layer. 

3.1. RBF Kernels 

     The Gaussian kernel is a usual choice for kernel functions. The commonly used RBFs are expressed in Table 

1.  

Kernel Mathematical representation 

Generalized multi-quadric function Φ(𝑟) = (𝑟2 + 𝑐2)𝛽 , 𝑐 > 0, 0 < 𝛽 < 1 

Generalized inverse multi-quadric function Φ(𝑟) = (𝑟2 + 𝑐2)−𝛼 ,   0 < 𝛼 < 𝑐 

Thin plate spline basis function Φ(𝑟) = 𝑟2ln (𝑟) 

Cubic function Φ(𝑟) = 𝑟3 

Linear function Φ(𝑟) = 𝑟 

     

 In multi-quadric function the matrix representation of basis function has an important spectral property: it is 

almost negative definite. Franke [29] has found that this radial basis function provides the most accurate 

interpolation surface in two dimensions. Also, he found that the inverse multi-quadric basis function can 

provide excellent approximations, even when the number of centers is small. However, author presents that 

sometimes a large value of 𝜎 can be useful [30]. In contrast, there is no good choice of 𝜎 known at present in 

the case of multi-quadric basis function.  

The thin plate spline basis function has more global nature than the Gaussian function i.e., a small 

perturbation of one of the control points always affect the coefficients corresponding to all other points as 

well. Similarly, the polynomial basis functions like cubic and linear has some degree of influence in certain 

applications.  

An overview of RBFs and its corresponding models are described in [31]. It is observed that in most of the 

neural network literature that the Gaussian RBFs is widely used in diversified domain such as 

medical/biological science, control systems, engineering, etc. 

  3.2. Computing centers, widths and weights of a RBFNN 

 A main advantage of RBF networks is choosing suitable hidden unit/basis function parameters without 

having to perform a full non-linear optimization of the whole network. The coordinates of center of each 

hidden-layer in RBF function can be calculated by using any of the following unsupervised methods. 



Computer Reviews Journal Vol 1 No 1 (2018) ISSN: 2581-6640          http://purkh.com/index.php/tocomp                                     

56 
 

3.2.1 Fixed centers selected at random 

  This is a simple and fast approach for setting the RBF parameters, where the centers are kept fixed at M 

points selected at random from the N data points. Specifically, we can use normalized RBFs centered at {𝑐𝑗} 

defined by 

𝜙𝑗(𝑥) = 𝑒𝑥𝑝 (−
‖𝑥−𝑐𝑗‖

2

2𝜎𝑗
2 ),                                                                                                          (3) 

where {𝑐𝑗} ⊆ {𝑋𝑃} and 𝜎𝑗 is width of the Gaussian functions [3,6]. 

3.2.2 Clustering 

     Clustering techniques can be used to find a set of centers which more accurately reflect the distribution of 

the data points. The K-means clustering algorithm [32] selects the number K of centers in advance, and then 

follows a simple re-computation procedure to divide the data points {𝑋𝑃} into K disjoint subsets Sj and Nj 

data points in order to minimize the sum of squared clustering function. 

𝐽 = ∑ ∑ ‖𝑋𝑝 − 𝑐𝑗‖
2

,𝑝∈𝑆𝑗

𝐾
𝑗=1                                                                                                        (4) 

where, 𝑐𝑗 is the mean/centroid of the data points in set Sj given by the Equation (5): 

𝑐𝑗 =
1

𝑁
∑ 𝑋𝑝

𝑝∈𝑆𝑗
,                                                                                                                        (5)  

     There are, however, two intrinsic disadvantages associated with the use of K-means. The first is due to its 

iterative nature, which can lead to long convergence times, and the 

second originates from its inability to automatically determine the number of RBF centers, thus resulting in a 

time consuming trial-and-error procedure for establishing the size of the hidden layer.  

A multitude of alternative techniques have been proposed to tackle these disadvantages. One way is to use 

some improved unsupervised methods [33] such as: fuzzy clustering [34-37], self organizing map (SOM) [38], 

particle swarm optimization (PSO)-based subtractive clustering [9-12], dynamic K-means clustering algorithm 

[39], improved K-means algorithm [33], K-harmonic clustering [40], and self-additive clustering [41], have 

been used for center selection in RBFNNs. 

In [6], the Optimum Steepest Decent (OSD) method was introduced for calculating the connection weights in 

the hidden layer of the RBFNN classifier. This method uses an optimum learning rate in each epoch of the 

training process. The proposed method used RBF neural network to design a helicopter identification system. 

In spite of its fast learning process and high performance, it suffers from random selection of the centers and 

widths of the RBF units, which decreases the efficiency of the proposed RBFNN. As a follow-up work, authors 

in [7] proposed a three-phase learning algorithm to improve the performance of the OSD. This method uses 

k-means and p-nearest neighbor algorithms to determine the centers and the widths of RBF units, 

respectively, which results in a greater precision in initializing RBF unit centers and widths. This algorithm 

guarantees reaching the global minimum in the weight space, however, the sensitivity of k-means to the 

center initialization can lead the algorithm to get stuck in a local minimum which results in a suboptimal 

solution. As a result, Montazer et al. [8] proposed using fuzzy c-means clustering instead of k-means 

clustering. They believe that using fuzzy c-means the center of the Gaussian functions can more accurately be 

determined. Although the proposed method could achieve high performance, it was very slow and sensitive 

to center initialization of centers. Hence, it cannot be applicable to feature vectors of high dimensional. 

Therefore, Fathi and Montazer [9] investigated particle swarm optimization (PSO) technique for adjusting the 

centers of the Gaussian functions while p-nearest neighbor algorithm was used for width adjustment. 
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In [9], the velocity and position updating rules are given by:  

( )

1
1 1 2 2

1 1

max max min

max

( ) ( ) (6)

, 1,2,..., (7)

(8)

k k k k k k
id id id id d id

k k k
id id id

v v c r pbest x c r gbest x

x x v i n

k

k



   

+

+ +


 = + − + −


= + =

 = − −


  

where the current position of the particle i in the k-th iteration is 𝑥𝑖𝑑
𝑘  and 𝑣𝑖𝑑

𝑘  is the current velocity of the 

particle which is used to determine the new velocity 𝑣𝑖𝑑
𝑘+1. The  𝑐1 and 𝑐2 are acceleration coefficients. The 𝑟1 

and 𝑟2 are two independent random numbers uniformly distributed in the range of [0,1]. In addition, 

max max[ , ]iv v v − , where maxv  is a problem-dependent constant defined to clamp the excessive roaming of 

particles. The
k

idpbest  is the best previous position along the d-th dimension of the particle i in the iteration k 

(memorized by every particle);
k

dgbest  is the best previous position among all the particles along the d-th 

dimension in the iteration k (memorized in a common repository). The 𝜔𝑚𝑎𝑥  and 𝜔𝑚𝑖𝑛 are the maximum and 

the minimum of 𝜔, respectively. The 𝑘𝑚𝑎𝑥 is the maximum number of iterations. 

In spite of its high optimization ability, PSO can get trapped in a local optimum which slows down the 

convergence speed. In addition, using p-nearest neighbor algorithm for computing the widths of RBF units, 

results in a loss of information about the spatial distribution of the training dataset; and as a consequence, 

the computed widths do not make a major contribution in the classification performance of very complicated 

data such as images. To alleviate this drawback, Montazer and Giveki [10] proposed a new adaptive version of 

particle swarm optimizer capable of working with high dimensional data. The obtained results show fast 

convergence speed, better and same network response in fewer train data which states the generalization 

power of the improved neural network proposed in [10].  

     The proposed adaptive strategy works as follows: 

1

1 1 2 2

1 1

( ) ( ) (9)

, 1,2,..., (10)

k k k k k k k

id i id id id d id

k k k k

id id i id

v v c r pbest x c r gbest x

x x v i n





+

+ +

 = + − + −


= + =

     

The adaptive strategy is a method to dynamically adjust the inertia weight factor 𝜔 and the new velocity 𝑣𝑖𝑑
𝑘+1 

by introducing the coefficient 𝜇. 

The inertia weight 𝜔 has a great influence on the optimal performance. Empirical studies of PSO with inertia 

weight have shown that a relatively large 𝜔 has more global search ability while a relatively small 𝜔 results in 

a faster convergence. Although in Equation (6), 𝜔 is adaptive, it is updated using the linear updating strategy 

of Equation (8). As a result, 𝜔 is just relevant to the current iteration and maximum number of iterations (k 

and 𝑘𝑚𝑎𝑥) and cannot adapt to the characteristics of complexity and high nonlinearity. If the problem is 

extremely complex, the global search ability is insufficient in the later iteration. Therefore, in order to 

overcome the above defects, an improved method for updating 𝜔 is proposed in [10]. 

 Generally, we expect particles to have strong global search ability in the early evolutionary search while 

strong local search ability in the late evolutionary search. This  makes particles find the global optimal 

solution.  

In order to get better search performance, the dynamic adjustment strategy for 𝜔 and 𝜇 is proposed as 

follows [10]: 
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𝜔𝑖
𝑘 = 𝑘1ℎ𝑖

𝑘 + 𝑘2𝑏𝑖
𝑘 + 𝜔0                                     (11) 

ℎ𝑖
𝑘 = |(max{𝐹𝑖𝑑

𝑘 , 𝐹𝑖𝑑
𝑘−1} − 𝑚𝑖𝑛 {𝐹𝑖𝑑

𝑘 , 𝐹𝑖𝑑
𝑘−1})/𝑓1|                           (12) 

𝑏𝑖
𝑘 = 1/𝑛 ∗ ∑ (𝐹𝑖

𝑘 − 𝐹𝑎𝑣𝑔)/𝑓2
𝑛
𝑖=1                         (13) 

2

max

2

max

max
max

min max

min
min

1

k
k k

k i
i

k k

i i

k
k k

k i
i

v
e if v v

v

if v v v

v
e if v v

v



 − 
 

 − 
 

 
 

 


=  

    

                      (14) 

where 0 (0,1]  is the inertia factor which manipulates the impact of the previous velocity history on the 

current velocity (in most cases is set to 1). In Equation (11), coefficients 𝑘1 and 𝑘2 are typically selected 

experimentally within the range of [0,1]. In Equation (14), the parameter 𝜇 adaptively adjust the value of 𝑣𝑘+1 

by considering the value of 𝑣𝑘 . 

ℎ𝑖
𝑘 is the speed of evolution, 

𝑏𝑖
𝑘 is the average fitness variance of the particle swarms, 

𝐹𝑖𝑑
𝑘  is the fitness value of 

k

idpbest  namely ( )k

idF pbest , 

𝐹𝑖𝑑
𝑘−1 is the fitness value of 

1k

idpbest −
 namely 

1( )k

idF pbest −
, 

f1 is the normalization function, f1= max { ΔF1, ΔF2,…, ΔFn}, Δ𝐹𝑖 = |𝐹𝑖𝑑
𝑘 − 𝐹𝑖𝑑

𝑘−1|, 

n is the size of the particle swarms, 

𝐹𝑖
𝑘 is the current fitness of the i-th particle, 

𝐹𝑎𝑣𝑔 is the mean fitness of all particles in the swarm at the k-th iteration, 

𝑓2 is the normalization function,𝑓2=max{|𝐹1
𝑘 − 𝐹𝑎𝑣𝑔|,|𝐹2

𝑘 − 𝐹𝑎𝑣𝑔|,…,|𝐹𝑛
𝑘 − 𝐹𝑎𝑣𝑔|}. 

     The dynamic adjustment helps PSO not only to avoid the local optimums, but also to enhance the 

population diversity, which in turn improves the quality of solutions. 

In order to compute the RBFNN centers using the improved PSO algorithms such as the method proposed in 

[9], suppose that a single particle represents a set of k cluster centroid vectors 1 2( , ,..., )kX M M M= , where 

1( ,..., ,..., )j j jl jfM s s s= refers to the j-th cluster centroid vector of a particle. The
jM has f columns 

representing the number of features for each pattern of the dataset. Each swarm contains a number of data 

clustering solutions. The Euclidean distance between each feature of the input pattern and the corresponding 

cluster centroids is measured by: 

2

1

( , ) ( ) 1 ,1 ,1
f

jl rl jl rl

l

d M P S t for j k r n l f
=

= −       .         (15) 
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After computing all distances for each particle, feature l of the pattern r is compared with the corresponding 

feature of the cluster j, and then assigns 1 to 1jrlZ = when the Euclidean distance for each feature l of the 

pattern r is minimum: 

1 ( , ) min

0

jl rl

jrl

d M P is
Z

eslewhere


= 


              

(16) 

     In a next step, the mean of the data
jlN is computed for each particle according to: 

1

1

1 ,1

n

rl jrl

r
jl n

jrl

r

t Z

N for j k l f

Z

=

=



=    



                                                                                (17) 

     Moreover, for each feature l of the cluster j, the Euclidean distances between mean of data 
jlN and the 

centroid 
jlS are computed by: 

2( , ) ( ) 1 ,1jl jl jl jld N S N S for j k l f= −                (18) 

     Now, the fitness function for each cluster is obtained by summing the calculated distances as follows: 

1

( ) ( , ) 1
f

j jl jl

l

F M d N S for j k
=

=               (19) 

    The proposed method in [10] has been shown in Algorithm 1. Using this algorithm, one can adjust RBF unit 

centers with gbest by iterating for a maxk  number of iterations. 

Algorithm 1. The pseudocode of the proposed PSO clustering for RBF unit center 

For each Particle [i] Do 

 Initialize Position vector X[i] in the range of maximum and minimum of dataset patterns 

 Initialize Velocity vector V[i] in the range of [-a,a] (a = max(data)-min(data)) 

 Put initial Particle[i] into [ ]idpbest i  

Next i 

While maximum iteration is not attained Do 

 For each Particle[i] Do 

  For each Cluster[j] Do 

   Compute the Fitness Function using Equations (17), (18) and (19) 
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  Next j 

 Next i 

 if run number is greater than 1 Then 

  For each Particle[i] Do 

   For each Cluster[j] Do 

    if Fitness Function of Particle[i]'S Cluster[j] is better than Fitness Function 

of 

    [ ]idpbest i 'S Cluster [j] Then 

    Put Cluster[j] of Particle[i] into Cluster[j] of [ ]idpbest i  

    Endif 

   Next j 

  Next i 

 Endif 

 For each Cluster[j] Do 

  For each Particle[i] Do 

   Put the best of pbests  in terms of Fitness Function into gbest  

  Next i  

 Next j 

 Compute inertia weight  using Equation (11) 

                Compute 𝝁 using Equation (14) 

 For each Particle [i] Do 

  Update Velocity vector V[i] using Equation (9) 

  Update Position vector X[i] using Equation (10) 

 Next i 

Endwhile 

Having processes algorithm, RBF unit centers are adjusted with gbest  

     Moreover, Montazer and Giveki discuss the effect of width adjustment in the performance of the RBFNN 

in both classification and function approximation problems. Consequently, they proposed a new width 

adjustment method. Being aware of the high importance of the spatial distribution of the training dataset 
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and the nonlinearity of the function, whose approximation is desired, they took into account them for the 

classification problem. Thus, the Euclidean distances between center nodes and the second derivative of the 

approximated function is used to measure these two factors. Since the width of the center nodes within 

highly nonlinear areas should be smaller than those of the center nodes in flat areas, Montazer and Giveki 

proposed to compute the widths of the RBFNN according to Algorithm 2. 

Algorithm 2. The Algorithm of the proposed width adjustment 

Step 1. Compute the centers of the radial basis functions using our improved PSO clustering 

Step 2. Compute mean of squared distances between the centre of cluster j and p-nearest neighbors 

Step 3. Compute coefficient factor: 𝒄𝒐𝒆𝒇𝒇 =
𝒅𝒎𝒂𝒙

√𝑵
,where N is the number of hidden units and 𝒅𝒎𝒂𝒙 is the 

maximum distance between those centers. 

Step 4. Find the maximum distance from each center and normalize the distance vector 

Step 5. Multiply the distance vector obtained from step 4 by the coefficient factor 

Step6. Sum the vector obtained from step 5 with the vector obtained from step 2 as the widths of the 

improved PSO-OSD RBFNN.  

     In the case of having a function approximation problem, the widths can be computed using Equation (20)  

as follows: 

1

4
max 1

. .
1 (c )

i
i

i

d r

r fN


 
=  

+                                                                                                        (20) 

     For center node ic , the average distance between this node and its p-nearest neighbor nodes is used to 

measure the spatial distribution feature at this center node, which is defined as following: 

1
2

2

1

1
( )

p

i j i

j

r c c
p =

= −
                                                                                                                 (21) 

where 
jc  are the p-nearest neighboring nodes of ic . The ir  is the reference dense distance at ic  and the r  

is the average of reference dense distances of all the center nodes and it is computed as follows: 

1

1
( )

N

i

i

r r
N =

= 
                                                                                                                              (22) 

(c )if   is the second derivative of function f  and in point ci  and can be computed using the  central finite 

difference method. As the second derivative is used to measure the curvature of the function, the absolute 

value of the second derivative is used to compare the nonlinearity of different regions in the dataset. 

     The proposed radial basis function was employed to solve image retrieval problems on large datasets. A 

more powerful version of the particle swarm optimizer was later proposed in [11]. The proposed PSO was 

used for adjusting the center of the Gaussian functions in the hidden layer of the RBFNN. The improved 

RBFNN was employed for solving image classification problem.  
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The other way of center adjustment in RBFNN that includes a significant portion of these methodologies uses 

a constructive approach, building the hidden layer incrementally until a criterion is met. Within this context, 

the application of the orthogonal least squares algorithm has been thoroughly explored [51–54]. 

3.2.3 Growing RBFNN using orthogonal least squares (OLS) 

One of the fine tuned approaches to selecting a subset of data points as the basis function centers is based 

on the technique of orthogonal least squares. OLS is a forward stepwise regression procedure, where OLS 

sequentially selects the center that results in the largest reduction of sum-of-square-error at the output. OLS 

constructs a set of orthogonal vectors Q for the space spanned by the candidate centers. In this orthogonal 

subspace, computation of pseudo-inverse is avoided since Q′Q becomes diagonal. OLS construct a set of 

orthogonal vectors Q for the space spanned by basis vectors 𝜙𝑘 such that Φ = 𝑄𝐴 where, A is an upper 

triangular matrix. Using this orthogonal representation, the RBF solution is expressed as: 

𝑇 = Φ𝑊 = 𝑄𝐺                           (23) 

and the LS solution for the weight vector G in the orthogonal space is given as: 

𝐺 = (𝑄′𝑄)−1𝑄′𝑇                          (24) 

The above discussions are restricted with center and width selection mechanism except the one in respect to 

Gaussian kernel. However, there are abundant of proposals developed with their own merits and demerits 

such as constructive decay [42], resource allocating networks [43], and the minimum description length 

principle [44]. Recently, Alexandridis et al., [12], introduced a nonsymmetric approach for partitioning the 

input space. Their experimental outcomes have shown that the nonsymmetric partition can lead to the 

development of more accurate RBF models, with a smaller number of hidden layer nodes. More elaborate 

methods have been suggested [45-48] for optimizing the RBF widths in order to improve approximation 

accuracy. 

  Taking advantage of the linear connection between the hidden and output layer, most training algorithms 

calculate the synaptic weights of RBF networks by applying linear regression of the output of the hidden units 

on the target values. Alternative approaches for calculating the weights include gradient descent methods [6], 

fuzzy logic [49], and the expectation-maximization algorithm [50].  

     A few algorithms aspiring to determine all the RBF training parameters in one step have also been 

proposed in the literature. In [51], a hierarchical Bayesian model is introduced for training RBFs. The model 

treats all the training parameters as unknown random variables and 

Bayesian calculation is performed through a reversible jump Markov chain Monte Carlo method, whereas the 

networks are optimized using a simulated annealing algorithm. In [52], RBF parameters are determined in a 

one-step algorithm in interpolation problems with equally 

spaced nodes, after replacing the Euclidean norm associated to Gaussian RBF with a Mahalanobis norm. In 

[53], all the RBF network parameters, including input weights 

on the connections between input and hidden layers, are adjusted by a second-order update rule. 

 Computing optimal values for all the RBF parameters is a rather cumbersome task. Viewing the RBF network 

training procedure as an optimization problem, one realizes that the objective function usually presents some 

rather unwelcome properties including, multimodality, non-differentiability and high levels of noise. As these 

characteristics make use of standard optimization methods inefficient, it is no surprise that a signicant 

number of studies have focused on optimizing the RBF training procedure through the use of alternative 

approaches, such as evolutionary-based computation techniques [54]. The resulting methodologies include a 

genetic algorithm for optimizing the number and coordinates of RBF centers [55], a hybrid multi-logistic 

methodology applying evolutionary programming for producing RBFs with simpler structures [42], a multi-

objective evolutionary algorithm to optimize RBF networks including some new genetic operators in the 
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evolutionary process [56], and an evolutionary algorithm that performs feature and model selection 

simultaneously for RBF classiers in reduced computational times [57]. Similarly, PSO is a powerful stochastic 

optimization algorithm that has been used successfully in conjunction with other computational intelligence 

tools [58-59]. A PSO-aided orthogonal forward regression algorithm based on leave-one-out criteria is 

developed in [60] to construct parsimonious RBF networks with tunable nodes. A recursive orthogonal least 

squares algorithm has been combined with PSO in a novel heuristic structure optimization method for RBF 

probabilistic networks [61].  

     In most practical applications, especially in medical diagnosis, the complete training data describing the 

input-output relationship may not available a priori. For these problems, classical batch-learning algorithms 

are rather infeasible and instead sequential learning is employed. In a sequential learning framework, the 

training samples arrive one-by-one and the samples are discarded after the learning process. Hence, it 

requires less memory and computational time for the learning process. In addition, sequential learning 

algorithms automatically determine the minimal architecture that can accurately approximate the true 

decision function described by stream of the training samples [33]. Radial basis function (RBF) networks have 

been extensively used in a sequential learning framework because of their universal approximation ability and 

simplicity of architecture [62-64]. Recently, there has been renewed interest in single hidden-layered RBF 

networks with least-square error training criterion, partly due to their modeling ability and partly due to the 

existence of efficient learning algorithms such as extreme learning machine (ELM) [65], and second-order 

training methods [6,53]. In recent years, researchers have been focusing on sequential learning algorithms for 

RBF networks through streams of data. 

3.2.4 Training algorithms 

     Artificial neural networks (ANNs) are considered as universal approximators and applied to solve various 

problems in different fields, such as image classification [10-11], helicopter sound identification [7-9], and 

medical diagnosis [12] like diagnosis of heart disease [13], mammograms classification [14], and Parkinson's 

disease diagnosis [15] . There are two long time discussed issues in ANNs.  

1. How large should the network architecture should be?  

2. How is a proper training algorithm created or selected?      

 Issue 1) coincides with a common mistake in neural networks. It is quite easy to obtain error convergence 

when training larger than required networks, but these networks in most of the cases will respond very poorly 

to patterns not used for training. Therefore, to avoid overfitting problems, the networks should be as 

compact as possible [16]. Also, it is often the case that first-order gradient methods are not able to find 

solutions for these compact networks. In these situations, second-order algorithms are superior [17]. 

For issue 2), there is no doubt that gradient-based methods are the most straightforward ways to train neural 

networks. First-order gradient methods [18] are very stable if the learning constant is small, but a tradeoff for 

good stability is long training time, especially for very accurate approximation. 

 Usually, second-order algorithms show faster convergence and more powerful search ability than first-order 

algorithms [6,19-21].  

For radial basis function (RBF) networks, issue 1) becomes more complex than neural networks. This is 

because results depend not only on network weights, but also on the locations and widths of RBF units  as 

discussed before [11].  

 Regarding issue 2), there are a wide variety of learning strategies that have been proposed in literatures for 

computing the synaptic weights of an RBF network, including : 

1) The pseudoinvers (minimum-norm) method [1]. 
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2) The least-mean-square (LMS) method [22]. 

3) The steepest descent (SD) method [23]. 

4) The quick propagation (QP) method [6]. 

The pseudoinvers method is the most direct learning algorithm used in RBF neural networks. This method 

finds solutions in which results the minimum-norm weight for a given data. A variation of this method, which 

could be considered as regularization, is that of Poggio and Girosi [24]. The only disadvantage of this method 

is the need of inversing an N×N matrix, where N is the number of nodes in the RBF network that is often a 

large number. Thus, this method has high computational and memory usage costs. The LMS method is 

another method that does not need such vast memory. The most noticeable disadvantage of the LMS 

algorithm is that using this learning method, the network convergence is not promising. And if it goes to 

convergence, this process would be very slow. The SD method uses the gradient of error function for each 

stage of learning process to produce weights of the next stage. The disadvantage of this method is also the 

slow rate of convergence. The QP method is a way to optimize the SD method. It uses the gradients of the 

error function in learning process: the current gradient, and the former gradients (quantum). This method 

excels the learning procedure, although it is still slow. 

     Substantial amounts of research have been done in the literature to increase the functionality of these 

base methods. For instance in [6], a set of modified steepest descent methods is presented. Optimum 

steepest descent (OSD) uses an optimum learning rate in each iteration of the training process [6] as follows: 

 Let us consider the following definitions: 

[y ], i 1,...,Md diY = =
               

(25) 

where dY  is the data sample vector and M is the number of samples. 

[ ], 1,...,j hW w j N= =
              (26) 

where W is the weight vector and hN  is the number of hidden neurons. 

𝛷 = [𝜙𝑗(𝑥𝑖)],    i = 1,2, … , M, j = 1,2, … , Nh                       (27) 

where   is the general RBF value matrix, which for the Gaussian RBFs we have 

𝜙j(xi) = e−(xi−cj)2 σij
2⁄
               (28) 

In a RBF neural network we have : 

[ ] W , 1,...,MT

iY y i= = =
              (29) 

where Y is the estimated output vector. It is obvious that the error vector is 

W ,T

d dE Y Y Y = − = −
              (30) 

and the sum squared error, which should be minimized through the learning process, will be 
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1

2

TJ EE=
                (31) 

In the conventional SD method, the new weights are computed using the gradient of J in the W space: 

((1 2)EE ) (W )
(Y Y)

T T

d

J Y
OJ E E

W W W W




   
= = = − = =
              

(32) 

W OJ E = =
               (33) 

,new oldW W W= + 
               (34) 

where the coefficient   is called learning rate (LR), and remains constant through the learning process. It is 

clear that although the Equation (33) shows the optimum direction of delta weight vector, in the sense of first 

order estimation, but it still does not specify the optimum length of this vector; and therefore, the optimum 

learning rate (OLR). To achieve the OLR, the sum-squared error of the new weights should be computed 

employing Equations (30), (31) and (34): 

2 2

1 1
( ) [Y ( ) ][Y ( ) ] (E )(E )

2 2

1 1
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2 2

T T T T T T
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  (35) 

where 
1

2

TA EE= , 
TB E W= −   and 

1

2

T TC W W =    

are scalar constants. Thus, ( )J W W+   is a quadratic function of   with coefficients A, B and C. Now, 

considering these coefficients in detail 
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         (36) 

( )J   will define a quadratic function of   with positive coefficients of second order term. Thus, it would 

have a minimum which can be found computing the derivative of ( )J  : 

2

min

(A B C ) (E )(E )
2 0

2 (E )(E )

T
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This LR minimizes the ( )J  , and so we can call it the OLR: 
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              (38) 
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Now the optimum delta weight vector (ODWV) can be determined as 

∆𝑊𝑜𝑝𝑡 = 𝜆𝑜𝑝𝑡∆𝑊 =
(𝐸𝜙)(𝐸𝜙)𝑇(𝐸𝜙)

(𝐸𝜙𝜙𝑇)(𝐸𝜙𝜙𝑇)𝑇             (39) 

hence 

𝑊𝑛𝑒𝑤 = 𝑊𝑜𝑙𝑑 +
(𝐸𝜙)(𝐸𝜙)𝑇(𝐸𝜙)

(𝐸𝜙𝜙𝑇)(𝐸𝜙𝜙𝑇)𝑇              (40) 

which the initial value for 𝑊 is chosen randomly. 

4. Some applications of RBFNN in medical diagnosis 

 Classification and prediction are two methods of data analysis that can be used to extract models describing 

classes or to predict future trends of underlying data. Such analysis can help provide us with a better 

understanding of the data at large. Mainly, classification predicts categorical (discrete, unordered) labels (that 

uses training data to generate a single complex rule or mathematical equation that assigns data items to one 

of several distinct categories), prediction models continuous-valued functions. For example, we can build a 

classification model to categorize bank loan applications as either safe or risky, a patient has cancer (yes, no) 

based on various medical data, whereas a prediction model to predict the expenditures in dollars of potential 

customers on computer equipment given their income and occupation. Additionally, classification and 

prediction have numerous applications, including fraud detection, target marketing, performance prediction, 

manufacturing, and medical diagnosis. Many classification and prediction methods [33] have been proposed 

by researchers in neural networks community. However, RBFNNs has attracted a lot of attention in last couple 

of years. Some of the proposals in this direction are discussed below. 

 Venkatesan and Anitha [66] have compared RBF neural network with multilayer perceptron network for 

diabetes diagnosis. Their results show that RBF network performs better than other models. Subashini et al. 

[67] have compared the use of polynomial kernel of SVM and RBFNNs in ascertaining the diagnostic accuracy 

of cytological data obtained from the Wisconsin breast cancer database. Their research demonstrates that 

RBFNNs outperformed the polynomial kernel of SVM for correctly classifying the tumors. Chu [68] has 

applied a novel RBFNNs for cancer classification. He has taken three data sets and the results shows that 

RBFN is able to achieve 100% accuracy with much fewer genes. Kayaer and Yıldırım [69] have tested the 

performance of different neural networks for diabetes diagnosis. They concluded that general regression 

neural network (GRNN) performed better than MLP an RBFNN on Pima Indian Diabetes database. Temurtas 

et al. [70] did a comparative study on pima-diabetes disease diagnosis. For this purpose, a multilayer neural 

network structure which was trained by Levenberg–Marquardt (LM) algorithm and a radial basis function 

neural network structure were used. The results of the study were compared with the results of the previous 

studies reported focusing on diabetes disease diagnosis and using the same UCI machine learning database. 

As the conclusion, the following results can be summarized:  

1. It was seen that neural network structures could be successfully used to help diagnosis of pima-

diabetes disease.   

2. The classification accuracy of multilayer neural networks with LM obtained by that study using correct 

training was better than those obtained by other studies for the conventional validation method.  

3. For the 10-fold cross-validation method, the classification accuracy of multilayer neural networks with 

LM obtained by that study using correct training was a bit better than those obtained by other.   

4. The results obtained using radial basis function structures are also quite good for Pima Indian 

diabetes disease diagnostic problem in comparison with the results obtained by the other studies especially 

for 10-fold cross-validation method. 
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 Breast cancer is the second largest cause of cancer deaths among women. Kiyan and Yildirim [71] have 

compared the performance of the statistical neural network structures, radial basis network (RBF), general 

regression neural network (GRNN) and probabilistic neural network (PNN) on the Wisconsin breast cancer 

data (WBCD). This is a well-used database in machine learning, neural network and signal processing. They 

observed that RBF and PNN are the best classifiers in training set, however the most important result must be 

considered with test data since it shows the future performance of the network. GRNN gives the best 

classification accuracy when the test set is considered. According to overall results, it is seen that the most 

suitable neural network model for classifying WBCD data is GRNN. Qasem and Shamsuddin [72] have 

proposed an adaptive evolutionary radial basis function (RBF) network algorithm to evolve accuracy and 

connections (centers and weights) of RBF networks simultaneously. The problem of hybrid learning of RBF 

network has been discussed with the multi-objective optimization methods to improve classification accuracy 

for medical disease diagnosis. In that paper, authors introduce a time variant multi-objective particle swarm 

optimization (TVMOPSO) of radial basis function (RBF) network for diagnosing the medical diseases (Breast 

Cancer, Diabetes and Hepatitis). That study applied RBF network training to determine whether RBF networks 

can be developed using TVMOPSO, and the performance is validated based on accuracy and complexity. Our 

approach is tested on three standard data sets from UCI machine learning repository. The results show that 

the proposed approach is a viable alternative and provides an effective means to solve multi-objective RBF 

network for medical disease diagnosis. It is better than RBF network based on Multi-objective particle swarm 

optimization and NSGA-II, and also competitive with other methods in the literature. Bascil and Oztekin [73] 

have used RBFNN classifier for Hepatitis diagnosis. Wu et al. [74] have investigated the possibility of using a 

radial basis function neural network (RBFNN) to accurately recognize and predict the onset of Parkinson’s 

disease tremors in human subjects. The data for training the RBFNN were obtained by means of deep brain 

electrodes implanted in a Parkinson disease patient’s brain. Wu et al. concluded that a RBFNN can effectively 

be used for Parkinson disease diagnosis. Horng et al. [75] have introduced a new radial basis function neural 

networks using firefly optimization algorithm. They evaluated the functionality of their proposed classifier on 

some medical datasets from the UCI repository. The training procedure involves selecting the optimal values 

of parameters that are the weights between layer and the output layer, the widths parameters, the center 

vectors of the radial functions of hidden nodes; and the bias parameters of the neurons of the output layer. 

The other four algorithms that are gradient descent (GD), genetic algorithm (GA), particle swarm optimization 

(PSO) and artificial bee colony algorithms have also been implemented for comparisons. The experimental 

results show that the usage of the firefly algorithm can obtain the satisfactory results over the GD and GA 

algorithm, but it is not apparent superiority to the PSO and ABC methods form exploring the experimental 

results of the classifications of UCI datasets. 

5. RBFNN simulators 

 In this Section, we introduce some state-of-the-art tools for implementing RBFNNs. Except MATLAB, all other 

tools discussed here are open source.  

     KEEL: Knowledge Extraction based on Evolutionary Learning (KEEL) is an open source (GPLv3) Java 

software tool which empowers the user to assess the behavior of evolutionary learning and soft computing 

based techniques for different kinds of DM problems: regression, classification, clustering, pattern mining, 

and so on [76].  

     WEKA: In this open source software a normalized Gaussian radial basis function network has been 

implemented in Java. It uses the k-means clustering algorithm to provide the basis functions and learns either 

a logistic regression (discrete class problems) or linear regression (numeric class problems). Symmetric 

multivariate Gaussians are fit to the data from each cluster. If the class is nominal it uses the given number of 

clusters per class. It standardizes all numeric attributes to zero mean and unit variance. 
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     MATLAB: Two functions have been implemented in MATLAB for radial basis networks. The function newrb 

adds neurons to the hidden layer of a radial basis network until it meets the specified mean squared error 

goal. The syntax and meaning each argument has been described below.  

     net = newrb(P,T,goal,spread,MN,DF);  

     The larger spread is, the smoother the function approximation. Too large a spread means a lot of neurons 

are required to ft a fast-changing function. Too small a spread means many neurons are required to fit a 

smooth function, and the network might not generalize well. Call newrb with different spreads to find the 

best value for a given problem. Similarly newrbe function of MATLAB very quickly designs a radial basis 

network with zero error on the design vectors. The syntax and meaning of arguments are described below.  

     net = newrbe(P,T,spread); 

     The larger the spread is, the smoother the function approximation will be. Too large a spread can cause 

numerical problems.  

DTREG: Software for Predictive Modeling and Forecasting implements the most powerful predictive 

modeling methods that have been developed including, TreeBoost and Decision Tree Forests as well as 

Neural Networks, Support Vector Machine, Gene Expression Programming and Symbolic Regression, K-

Means Clustering, Linear Discriminant Analysis, Linear Regression models and Logistic Regression models. 

Benchmarks have shown these methods to be highly effective for analyzing and modeling many types of 

data.  

NeuralMachine: NeuralMachine is a general purpose neural network modeling tool with the executable code 

generator. There are two versions of NeuralMachine - for MS-Windows and a Web-based version (runs in 

Internet Explorer across the Web). NeuralMachine allows creation of artificial neural networks (ANNs) with 

one hidden layer. Two types of networks, namely Multilayer perceptron and Radial Basis Function networks 

are supported in this version. In the case of Radial Basis Network the mapping function is of Gaussian type 

for the hidden layer and linear for the output layer.  

NeuroXL: The NeuroXL software is easy-to-use and intuitive, does not require any prior knowledge of neural 

networks, and is integrated seamlessly with Microsoft Excel. NeuroXL brings increased precision and accuracy 

to a wide variety of tasks, including: cluster analysis, stock price prediction, sales forecasting, sports 

prediction, and much more.  

Netlab: The Netlab toolbox is designed to provide the central tools necessary for the simulation of 

theoretically well founded neural network algorithms and related models for use in teaching, research, and 

applications development. It consists of a toolbox of MATLAB functions and scripts based on the approach 

and techniques described in [77], but also including more recent developments in the eld. The Netlab library 

includes software implementations of a wide range of data analysis techniques, many of which are not yet 

available in standard neural network simulation packages. Netlab works with MATLAB version 5.0 and higher 

but only needs core MATLAB (i.e., no other toolboxes are required). It is not compatible with earlier versions 

of MATLAB. 

6. Conclusion and future research 

      This paper investigates a review on various methods proposed for designing RBFNNs. Besides, we 

pointed to some applications of this popular and powerful classifier in medical disease diagnosis. At first, the 

architecture of RBFNNs was explained, where the central problems are based on the appropriate centers and 

widths adjustments for Gaussian functions, determination of the number of hidden neurons, and the 

optimization of weights associated between hidden and output layer neurons. As far as the adjustment of the 

centers and the widths are concerned, k-means clustering, methahurestic based clustering (such as PSO-
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Clustering) and p-nearest neighbor algorithm have been widely used for solving these problems. Similarly, 

there are lots of independent proposals have been discussed for solving the problem of selection of hidden 

layer neurons. Since RBFNN expansions are linearly dependents on the weights, therefore, a globally 

optimum least squares interpolation of non-linear maps can be achieved. However, singular value 

decomposition (SVD) is widely used to optimize the weights.   

     Secondly, we have discussed various training algorithms of RBFNNs in classification and prediction that 

have been used for solving wide variety of problems. Additionally some domain specific usage of RBFNNs is 

presented.  

     Thirdly, we have introduced some open source software tools for testing RBFNNs. To the best of our 

knowledge, there is no such report/document has been reported for a fair comparison of tools in connection 

to the successful application of RBFNNs.  

     RBFNNs still open avenues for new kernels along many issues still remain unsolved. In addition RBFNNs 

need to be systematically evaluated and compared with other new and traditional tools. We believe that the 

multidisciplinary nature of RBFNNs will generate more research activities and bring about more fruitful 

outcomes in the future. For instance, there are many new and powerful metaheuristic optimization algorithms 

such as bat optimization that can be used for determining centers, widths and weights of the RBFNN. 
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