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Abstract

In the present article, the reference temperature dependency Lord—Shulman model of generalized thermoelasticity
with voids subjected to a continuous heat source in a half-space is discussed. The Laplace transform together with
eigenvalue approach technique is applied to find a closed-form solution for the physical variables viz. distribution
of temperature, volume fraction field, deformation and stress field in the Laplace transform domain. The numerical
inversions of those physical variables in the space-time domain are carried out by using the Zakian algorithm for the
inversion of the Laplace transform. Numerical results are shown graphically and the results obtained are analyzed.
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Introduction

The investigations in the theory of thermoelastic materials with voids were first initiated by Nunziato and Cowin
(1983) and Iesan (1986) to develop a nonlinear theory of elastic materials. The linear theory of elastic material with
voids has been developed by Cowin and Nunziato (1983). The intended applications of the theory of elastic materials
with voids are to geological materials such as rock and soils and manufactured porous materials. Ciarlatta and Chirita
(2006) have pointed out that the basic concept underlying this theory is that of a material for which the bulk density
is written as the product of two fields, the density field of the matrix material and the volume fraction field. Other
relevant works in this field are Chirita and Scalia (2001) and Scalia et al. (2004) who enriched the theory under
the assumption that the constitutive coefficients are positive definite. Lakes (1987), Lee and Lakes (1997), Caddock
and Evans (1989) have outlined some of the applications of the elastic material with voids where the Poisson ratio
is negative, such as, foam structures which expand laterally when stretched, in contrast to ordinary material. Some
anisotropic polymer foams (which exhibit Poisson ratio exceeding 1) which can withstand high energy absorption and
fracture resistance, have also been prepared. Puri and Cowin (1985) studied the propagation of plane waves in a linear
elastic material with voids. Dhaliwal and Wang (1995) developed a heat-flux dependent theory of thermoelasticity
in the porous material. Kumar and Leena Rani (2005) investigated the temperature and other field variables in a
homogeneous isotropic, generalized thermoelastic half-space with voids due to normal, tangential force, and thermal
source. Biswas (2019) studied the propagation of plane waves in an isotropic thermoelastic medium for porous materials
with the linear theory of micropolar thermoelasticity. Abbas (2015a, 2015b, 2017) solved some problems in generalized
thermoelasticity in Fiber—Reinforced Anisotropic Medium (2015a), hollow sphere (2015b) and hollow cylinder (2017).
Some recent research considering void material has been studied by the following researchers. Hilal and Othman (2016)
examined the effect of the gravity field in the propagation of plane waves. Othman and Abd-Elaziz (2015) studied
the effect of thermal loading due to laser pulse on the thermoelastic medium with voids in the dual-phase lag model
(DPL). Othman and Atwa (2012) discussed the deformation of micropolar thermoelastic solid with voids considering
the influence of various sources acting on the plane surface. A study in the two-dimensional problem of thermoelastic
rotating material with voids under the effect of the gravity and the temperature-dependent properties employing
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the two-temperature generalized thermoelasticity in the context of Lord—Shulman (LS) theory has been studied by
Othman and Hilal (2015). Othman and Lotfy (2010) examined a problem in micropolar generalized thermoelastic
medium with voids under the influence of various sources formulated in the context of the Lord—Shulman theories.
Bachhar et al. (2014) studied on the fractional-order GreenLindsay model of generalized thermoelasticity with voids
subjected to instantaneous heat sources.

The present paper is devoted to formulating a reference temperature-dependent Lord-Shulman model of generalized
thermoelasticity with voids subjected to a continuous heat source in a half-space. We applied this model to solve a
problem of determining the distribution of temperature, the volume fraction field, the deformation and the stress field
in a semi-infinite elastic medium. Laplace transforms together with eigenvalue approach is applied to find a closed-
form solution in the Laplace transform domain. The numerical inversions of the physical variables in the space-time
domain are carried out with the help of the Zakian algorithm (1969, 1970). Numerical results are shown graphically
and the results obtained are analyzed.

1 Basic equations and formulation of the problem

Following, Iesan (1986), Sherief et al. (2010), and Lord & Shulman (1967), the governing equations for an isotropic
homogeneous generalized thermoelastic material (possessing a centre of symmetry) with voids can be put in the
following form:

Constitutive equations:

Oij = 2,ueij + [)\ekk +bP — ﬁ@](‘)‘”, (1)
hi = a®;, (2)
g = —begr — P+ mO, (3)
g+ _ ke, (4)

i ot Jio
pTon = pCgO + Bekr + mP, (5)
(6)

The energy equation for the linear theory of thermoelastic material with voids in the presence of heat sources is

pTon = —qii + pQ, (7)
Equations of motion:
045, + pFy = piiy, (8)
Equations of equilibrated forces:
hii+ 9+ pl = px®, 9)

where o;; are the components of the stress tensor, e;; are the components of strain tensor, h; are the components of
equilibrated stress tensor, ® is the change in volume fraction field, p is the density, 7 is the entropy per unit mass, g is the
intrinsic equilibrated body force, b is the measure of diffusion effects, a, m, £ are void material parameters, g; are the
components of heat flux vector, K is the coefficient of thermal conductivity, © = T — T}, T is the absolute temperature,
Ty is the temperature of the medium in its natural state assumed to be such that |0/Ty| << 1, F;, (i = 1,2, 3) are the
components of body forces, [ is the extrinsic equilibrated force, x is the equilibrated inertia, A, u are Lame’s constants,
B = (83X +2p)ay, o is the coefficient of linear thermal expansion, d;; is the Kronecker delta, u; are the components of
the displacement vector, Cg is the specific heat at constant strain, 7y are relaxation time parameters, @ is the internal
heat sources.

From Egs. (1)-(9), the field equations in terms of the displacement, volume fraction and temperature field, for an
isotropic homogeneous generalized thermoelastic material with voids and heat transfer subjected to a heat source in
the absence of body forces, and extrinsic equilibrated body forces are

pu g+ (A + pugig + 0@ — 8O ; = pii, (10)
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9 . .
KO ; = (1 + 708t> (pCEG + BTotg ) +mTp® — PQ) ; (11)

a® ;i — buy i, — E® +mO = pxd, (12)

The homogeneous and isotropic infinite thermoelastic solid body is unstrained and unstressed initially but has a
uniform temperature distribution T . Let x = 0 represents the plane area over which the heat sources Q are situated
and the solid occupies the infinite space —oo < z < co. From the symmetry of the problem, all the physical variables
considered depending only on the space variable x and time-variable ¢t and thus it follows that for one-dimensional
problem u; = u(z,t), us =0, uz =0. Egs. (10)-(12), and Eq. (1) maybe put in the following forms:

0%u oo 00 0%u
A+ 2m) 5 b ~ B, = ae (13)
0 . . .
KO;=[1+ o5 (pCE@ + BTotu,k + mTy® — PQ) (14)
9%d ou 0%
ou
Ooe = A+ 2p1) 5 +b® — 50, (16)

The aim is to investigate the effect of the temperature dependence of modulus of elasticity keeping the other elastic
and thermal parameters as constant. Therefore we may assume Othman (2013) that

[>‘7/1'7ﬁ7aa£vXam7Ka b] = P‘OvﬂOvﬁOaaOagOaX07m07K0ab0}f(T) (17)

where Ao, o, Bo, @0, €05 X0, Mo, Ko, bo are constants, f(7T) is a given non—dimensional function of temperature. In
case of a temperature-independent modulus of elasticity, f(T) = 1, such that f(T) = (1 — «*Ty) where o* is called
empirical material constant, in the case of the reference temperature independent of modulus of elasticity and thermal
conductivity a* = 0.

Under the above assumption equation (13)-(16) becomes,

0?%u 0 00 0%u
[(Ao+2uo>8x2+boax ﬁoax} f(T) =P oa (18)
920 d : , .
Ko | D) = (14705 ) (pC86 + B Toiin i f(T) + moTod (T) = pQ) (19)
0?°® ou 0?®
Aoy ~ g~ &P + mpO = PX0 577 (20)
ou
oex = | o+ 210) g + o~ 500 £D) (21)

To transform Eqs. (18)-(21) in non-dimensional forms, we will use the following non-dimensional variables

w _~ g
(x/au/) = a(x’U), (tlvT(/)) = w(tﬂ—@)a J;z = BOI;O’
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~9 2
w « S} KyQ c
(b/_ ;CO(ZS’ O/: 2 ’ 6/: ) Q/: 202 ’E/: ﬁoia
c1 PCTX0 To pclceTo Kow
Ao+2p0 )

~ Cpcs
where @ = % and ¢ = -

Using the above defined non—dimensional variables, Egs. (18)-(21) take the following forms (omitting the primes for
convenience):

0%u 0P 00  J%u

2 g—= = 22
Ox? o ar  %or ~ o2 (22)
9?0 9 ) o : Q
S = (147 | |[——— e g — —F 23
Ox? ( +T08t) 1—ao*Ty +€6m+g7 1—ao*Ty (23)
9°d ou 9°d
— gy — — =D = _— 24
93 gz ~9an, ~ 9P+ 960 = o5 (24)
ou
o = 08 — d— 6. 25
g g8 oz + 99 (25)
where
_bo _ BoTo B by RS
9= "—=502= "5, 93=0, g4= —5, §5 = — =5,
pPXow pPcy PCy PXow
moTo moc} pc? boc?
g6 = ——5 g1 = ~3, 98 = oy 99 = o =5 -
¢ pci T Koxoo® T BoTo’ T Boxo@? Ty

If the heat source is continuous and acts on the surface © = 0, we may represent it as Q(x,t) = Qod(x)H (t), where
d(x) is the Dirac delta function, H(t) is the Heaviside unit step function, and @ is a constant.

2 Solution in the Laplace transform domain: Eigenvalue approach

Taking the Laplace transform of parameter s, defined by

LUf(e.)] = [ exp(-st)f(a,t)d = Flas)  (Re(s) >0). (26)
0
on both sides of the Eqs. (17)-(20) (assuming the homogeneous initial conditions), we get
D?i = 5% — g1 D® + g2 DO, (27)
2
D26 = %pay (2E1)5- Mg, (25)
93 93 93
— _ = (:) Qoé(.’L‘)
D*6 = s(1 D ® - 29
s(1+ 798) {5 U+ g7 P + (—aTy $2(-aTy))’ (29)

Fre = gg DU + go® — O. (30)

Following Sarkar and Lahiri (2012) and Sarkar (2013) , Eqs. (27)-(29) can be written in a vector-matriz differential
equation as follows:

Do(z,s) = A(s)o(x, s) + f(z,s), (31)
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where
u 0 0 0 1 0 0 0
P 0 0 0 0 1 0 0
d ¢) 0 0 0 0 0 1 = 0
b= dz’ B e) = Du {~ Als) = Cy O 0 0 Cy Cy |’ flas) = 0 |’
D‘? 0 Cso Cs3 Csy 0 0 07
D 0 Cs2 Cez3 Cea O 0 -Q
+ 52
Cu =% Cis=—g1, Cig=gs, Csz =2 , Os=—-2 g5 =2,
g3 g3 g3
s(1 + 705) ~ Qo1 +798)d(x)
Coz = grs(1 Cos = 2108 gy = es(1 = x0TSO
62 = g7s(1 + 70s), Ces 1o, 6 es(1+798), Q SA—aTy)

Following the solution methodology through eigenvalue approach Sarkar and Lahiri (2012, 2013) and Sarkar (2013),
we now proceed to solve the vector-matrize differential equation (31). The characteristic equation of the matrix A(s)
can be written as

kS — Pk* + Qk* — R=0, (32)
where
P = Cyy + Csz + Cpz + Cy5C54 + CysC4,
Q = Cy1 (Cs2 + Cg3) + C52063 — C53C62 + Ci6 (C52C64 — C54C62)
— C45(C53C64 — C54C53),
R = C41(C52C63 — C53Cs2).

Let k%, k3 and k2 be the roots of the above characteristic Eq. (32) with positive real parts. Then all the six roots of
the above characteristic equation which are also the eigenvalues of the matrix A(s) are of the form

k ==k, £ko, *£ks,

where
k2 = %(2psinq + P),
k2 = %1 (p[\/gcosq + sing] — P) ,
k2 = % (p[\/gcosq — sing] + P) ,
and
o= VPE 30, q-— singlr’ . 9PQ—;;3 —27R.

Suppose X (k) be a right eigenvector corresponding to the eigenvalue k of the matrix A(s). Then after some simple
manipulations, we get

k [Ca5Cs3 — Cag(C2 — k?)]
[k*Cy6Cs4 — Cs3 (Ca1 — k?) ]
[(Cayr — k) (Cs2 — k?) — k*Ca5Cs4]
k? [Cy5C53 — Cu6(Csa — k?)]

k [k*Cu6Csa — Cs3 (Ca1 — k?)]

k [(Ca1 — k?)(Cs2 — k?) — k2Cy5Ch4)

X(k) =

We can easily calculate the eigenvector X; (j = 1,2, 3) corresponding to the eigenvalue +k; (j = 1,2,3) from (33).
For our further reference, we shall use the following notations:

X1 =X(k1), Xo=X(—k1), X3=X(ke),

Xo= X(ha), X = X(ky), Ko = X(—ks). (34
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We assume the inverse of the matrix V = (X;, Xo, X3, Xy, X, Xp) as

V= (wi), 4,j=1,2,..,6.

Hence using the expression for f(s), we can calculate the expression for Q, as (see Sarkar (2013) for details):

6
Qr = Zwrjfj = wrﬁfﬁ, f6 = —M, r = 1,2, ...6. (35)

S
=1

The solution of the vector-matriz differential equation (31) can be written as

v = Xoyz + Xays + Xeys, (36)

where

Yy = ke [yrefkrm]zzioo + ekrm/ Qe Frodx, x> 0. (37)

Since y = V19 and the field variables in ¥ vanish at £ = 400, we neglect the first term on the right-hand side of
(37), and we get

Qo(1 + 3) e Qo(1+5)

— —kox
Y2 = — = waxe s Y4 wyee Y,y = —

7Q0(13+ S)w6667k31 (z > 0), (38)

since y1, y3 and ys are neglected from the physical considerations of the problem.

Thus, we get

—ky [Cu5Cs3 — Cu6(Csz — k)] ¢
14 5%)wae _p, 4
[k3C46Cs54 — Cs3 (Car — k)] Me h
[(041 — ki) (Cs2 — ki) — k%C45C54]
—ky [CusCs3 — Cag(Csz — k3] 14 €
+ — ko
- [k3C46C54 — Cs3 (Car — k3) | M‘f b2
[(Cur — k3)(Cs2 — k3) — k3C45C54]
—ks3 [C15C53 — Cag(Cs2 — k3))] 14 ¢
+ S5 )Wes  _pan
- [k3C46C54 — Cs3 (Caz — k3) | Me ko
[(Cu1 = k3)(Cs2 — k3) — k3045054

@ B2
I

The expressions for @(x, s), ¢(z,s) and O(z, s) can now be written as

u(z, s) M[kl{cﬁt’)c@ — Cy6(Csz — k) pwage ™17
+k2{Cu5Cs3 — Cu(Cs2 — k3) hwage™ 2"
+k3{Cu5Cs3 — Cu(Cs2 — k3) hwese™ 7], (39)
O(x,s) = —M[{k%CMCM — Cs3 (Ca1 — k%)}wgge_klx
+{k3C16C54 — Cs3 (Ca1 — k3) bwage ™"
+{k3C46Cs54 — Cs3 (Ca1 — k3 ) Jwese "7, (40)

_ 1+ s¢ iz
O(z,s) = _M[{(Czﬂ — k?)(Csa — k) — k2Cy5C54 ywage ™

S
+{(C41 - k%)(052 — k%) - k%C45C54}w4667k2w
+{(C41 — kg)(C%g - k‘%) — k§C45054}w6667k3x. (41)
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Using Egs. (39)-(41) in the Eq. (30), the stress component 7, (x, s) can be determined as

1+s¢ —ka
—%Uﬂ%{c’%c@ — Cus(Cs2 — k3) wage ™™

Tox(x,8) =
+k3{Cu5C53 — Cag(Csz — k3) hwage ™"
+k3{C15Cs53 — Cag(Cs2 — k3) Ywege ™ *37]

1+ s e
_%[{ﬁ@ﬁoﬂ — Os3 (Can — k2) Junge ™
+{k§C46054 — Cs3 (041 — k%)}w4667k2x
+{k32,c46054 — Css (041 — kg)}wGGe_kS‘”]

1+ sS “hiw
+%[{(O41 — k§)(Csa — k7) — k{CasCsa ywage ™™

+{(Cy1 — k2)(Cs2 — k3) — k2C45C54 ywage 2"
+{(C41 - ]{53)(052 - /{‘32)) — k§C45C54}w66€_k3x. (42)

3 Numerical results and discussions

To illustrate and compare the theoretical results obtained in Section 3, we now present some numerical results which
depict the variations of temperature, volume fraction field, displacement, and stress component. The material chosen
for numerical evaluations is magnesium crystal, for which we take the following values of the different physical constants
Dhaliwal and Singh (1980):

A=217x 10" Nm™!, 1 =3278 x 10'° Nm™!, p=1.74 x 10® kgm?, Ty, = 298° K,
Cp =1.04 x 10° Jkg *deg™, k=1.7x 10> Wm ™ 'deg™?, f = 2.68 x 10° Nm 2deg™1.
The void parameters are
x=1.753x 107" m? a=3.688x 1075 N, £ =1.475 x 10'° Nm~2,
b=1.13849 x 10'® Nm™2, m =2 x 10° Nm~2deg™*.

The non-dimensional relaxation time is 79 = 0.02.

The computations are carried out for a* = 0.002,0.003 and ¢ = 1. The numerical technique of Zakian (1969, 19970)
is used to invert the Laplace transforms in (35)-(39), providing the temperature ©, the volume fraction field @, the
displacement u and the stress 7., distributions in the physical domain. The results are represented graphically for
different positions of x. The case a* = 0 indicates the case where the elastic module does not depend on the reference
temperature.

Figs. 1, 2, 3 and 4 are drawn for a non-dimensional time ¢=1. These figures exhibit the spatial variations of the
field quantities in the context of reference temperature-dependent generalized thermoelasticity for different values of
empirical material constant a*.

Fig. 1 depicts the variations of temperature © with distance x for different values of o* and it is noticed that in all
the cases (i.e., a* = 0, a* = 0.002 and a*=0.003), O attains its maximum value on the boundary of the half-space
x > 0. We observe significant differences in the values of © and all the series approach to zero as z increases further.

Fig.2 shows the variations of volume fraction field ® with = for different values of a*. It is evident from the figure
that all the three series have a similar trend, that is, starting from a maximum value converge to zero finally.

Fig.3 displays the variations of displacement component u for different values of a*. In all the cases (i.e.,a* =
0,0.002,0.003), the displacement component attains maximum value at = 0.06, and then continuously decreases to
zero. Hence, displacement component has similar trend for all the values of o*.

Fig.4 shows the variations of stress component ¢ with x for different values of a*. It is evident from the figure that
all the three series started from a maximum magnitude decreases to zero which ensures the compressive nature of the
stress field. The difference is significant.
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In all of these four figures, it is observed that all the field variables exhibit its greater magnitude for the smaller value
of empirical material constant a*.

o =0
— — — o =0.002 ||
-—-— o' =0.003
—0.1 . . . . . . .
o 0.5 1 1.5 2 2.5 3 3.5 4
b 4

-
10
o .
o =0
Bk — — —a'=0.002 |
T S~ | o =0.003 |
a -
5 -
= 4 4
3 -
= 4
1 . -
o — e
-1 . . . . . . .
o 0.5 1 1.5 2 25 3 3.5 <4
=

Fig. 2 Volume fraction field distribution ® at ¢ = 1 for different values of a*.
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X107 . . . . . :
o =0
& — — — o' =0D.002 ||
R o =0.003
6 -
5 —
= 4 —
_‘3 -
2 —
D —
1 . . . . . . .
o 0.5 1 1.5 = 25 3 25 S
x
Fig. 3 Displacement distributionu at ¢t = 1 for different values of a*.
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oF =TT o
. - - _____—-"--_--_
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/ P
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£
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-025F 7 .
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[ r—— — w =0
-0.3 T — — —o'=0.002 [
''''' o =0.003
_0.25 . . . . . . ,
0 0.5 1 1.5 2 25 3 a5 4
b 4
Fig. 4 Stress distributiono,, at t = 1 for different values of a*.
0.3 . . . . . . .
t=0.2
— — —t=0.5
0.25} -
A
A
D_"'F -
0.15 -
I
0.1 -
0.05 -
o :_‘ P —
—0.054 0.5 1 1.5 2 25 3 25 4
x

Fig. 5 Temperature distribution © at a* = 0.002 for different ¢.
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_10 0.5 1 1.5 2 2.5 3 3.5 <4
=

Fig. 6 Volume fraction field distribution ® at a* = 0.002 for different ¢.

= 107°
a ; ; ; ; ; ;
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Fig. 7 Displacement distributionu at o* = 0.002 for different t.
0.1 : : : : : : :
D.05 -
=
=03
r — — —t=05
o= s . s . . .
0255 05 1 1.5 2 25 3 35 4
b4

Fig. 8 Stress distributiono,, at a* = 0.002 for different ¢.

Figs. (5)—(8) display the temperature, volume fraction field, displacement, and stress distributions for a wide range
of z (0.0 < z < 4.0) at o* = 0.002 for different values of the time ¢ = 0.3,0.5 and we have noticed that the time
parameter t play significant role in all the studied fields. The increasing of the value of ¢ causes increasing of the values
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of all the studied fields and makes the speed of the waves propagation vanishes more rapidly.

4 Concluding remarks

(i) The results of this work presents the reference temperature-dependent generalized thermoelasticity theory with
voids as a new improvement and progress in the field of the thermoelasticity with voids subjected to a continuous heat
source.

(ii) The method eigenvalue approach reduced the problem on vector-matrixz differential equation to algebraic eigenvalue
problems and the solutions for the field variables were achieved by determining the eigenvalues and the corresponding
eigenvectors of the coefficient matrix. In this method, the physical quantities are directly involved in the formulating
of the problem and as such the boundary and initial conditions can be applied directly. This is not in other methods,
like State—Space—Approach.

(iii) The phenomenon of finite speeds of propagation is observed in all depicted figures. This is expected since the
thermal wave travels with finite speed.

(iv) The effects of empirical material constant * on all the studied fields are very significant.

(v) The value of time ¢ has also an essential role in changing the value of the distributions.

Funding: The author received no financial support for the research.
Conflict of interest: The author declares that he has no Conflict of interest.

Acknowledgements: The author would like to thank the Editor and the anonymous referees for their comments and
suggestions on this paper.

References

[1] Abbas, I. A. 2015a. A Dual Phase Lag Model on Thermoelastic Interaction in an Infinite Fiber-Reinforced
Anisotropic Medium with a Circular Hole. Mechanics Based Design of Structures and Machines 43(4): 501-513.
doi: 10.1080/15397734.2015.1029589.

[2] Abbas, I. A. 2015b. Analytical Solution for a Free Vibration of a Thermoelastic Hollow Sphere. Mechanics Based
Design of Structures and Machines 43(3): 265-276. doi: 10.1080/15397734.2014.956244.

[3] Abbas, 1. A. 2017. Free vibration of a thermoelastic hollow cylinder under two-temperature general-
ized thermoelastic theory. Mechanics Based Design of Structures and Machines 45(3): 395-405. doi:
10.1080/15397734.2016.1231065.

[4] Bachher, M., Sarkar, N., and Lahiri. A., Generalized Thermoelastic Infinite Medium with Voids Subjected to
a Instantaneous Heat Sources with Fractional Derivative Heat Transfer. International Journal of Mechanical
Sciences 89: 8491. doi:10.1016/j.ijmecsci.2014.08.029.

[5] Biswas, S. 2019. Fundamental solution of steady oscillations for porous materials with dual-phase-lag
model in micropolar thermoelasticity. Mechanics Based Design of Structures and Machines : 1-23. doi:
10.1080/15397734.2018.1557528.

[6] Caddock, B. D., and K. E. Evans. 1989. Microporous materials with negative Poissons ratios. I. Microstruc-
ture and mechanical properties. Journal of Physics D: Applied Physics 22(12): 1877-1882. doi: 10.1088/0022—
3727/22/12/012.

[7] Stan Chirita, A. S. 2001. On the Spatial and Temporal Behavior in Linear Thermoelasticity of Materials with
Voids. Journal of Thermal Stresses 24(5): 433-455. doi: 10.1080/01495730151126096.

88


http://purkh.com/index.php/mathlab

MathLAB Journal Vol 3 (2019) http://purkh.com/index.php/mathlab

(8]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Cowin, S. C., and J. W. Nunziato. 1983. Linear elastic materials with voids. Journal of Flasticity 13(2): 125-147.
doi: 10.1007/BF00041230.

Dhaliwal, R. S., and A. Singh. 1980. Dynamic coupled thermoelasticity. Hindustan Publishing Corporation.

Dhaliwal, R. S., and J. Wang. 1995. A heat—flux dependent theory of thermoelasticity with voids. Acta Mechanica
110(14): 33-39. doi: 10.1007/BF01215413.

Hilal, M. I. M., and M. I. A. Othman. 2016. Propagation of plane waves of magneto—thermoelastic medium with
voids influenced by the gravity and laser pulse under G-N theory. Multidiscipline Modeling in Materials and
Structures 12(2): 326-344. doi: 10.1108/MMMS-08-2015-0047.

Tesan, D. 1986. A theory of thermoelastic materials with voids. Acta Mechanica 60(12): 67-89. doi:
10.1007/BF01302942.

Kumar, R., and L. Rani. 2005. Deformation due to mechanical and thermal sources in generalized thermoelastic
half-space with voids. Journal of Thermal Stresses 28(2): 123145. doi: 10.1080/014957390523697.

Lakes, R. 1987. Foam Structures with a Negative Poissons Ratio. Science 235(4792): 1038-1040. doi: 10.1126/sci-
ence.235.4792.1038.

Lee, T., and R. S. Lakes. 1997. Anisotropic polyurethane foam with Poissonsratio greater than 1. Journal of
materials science 32(9): 2397-2401. doi: 10.1023/A:1018557107786.

Lord, H. W., and Y. Shulman. 1967. A generalized dynamical theory of thermoelasticity. Journal of the Mechanics
and Physics of Solids 15(5): 299-309. doi: 10.1016/0022-5096(67)90024—5.

Othman, M. I. A., and E. M. Abd—Elaziz. 2015. The Effect of Thermal Loading Due to Laser Pulse in Generalized
Thermoelastic Medium with Voids in Dual Phase Lag Model. Journal of Thermal Stresses 38(9): 1068-1082. doi:
10.1080/01495739.2015.1073492.

Othman, M. I. A., and S. Y. Atwa. 2012. Response of Micropolar Thermoelastic Solid with Voids Due to Var-
ious Sources Under Green Naghdi Theory. Acta Mechanica Solida Sinica 25(2): 197-209. doi: 10.1016/S0894—
9166(12)60020-2.

Othman, M. I. A.; and M. I. M. Hilal. 2015. Rotation and gravitational field effect on two—temperature ther-
moelastic material with voids and temperature dependent properties type I11. Journal of Mechanical Science and
Technology 29(9): 3739-3746. doi: 10.1007/s12206-015-0820-8.

Othman, M. I., and K. Lotfy. 2010. The effect of thermal relaxation times on wave propagation of micropolar
thermoelastic medium with voids due to various sources. Multidiscipline Modeling in Materials and Structures
6(2): 214-228. doi: 10.1108/15736101011068000.

Othman, M. 1., M. E. Zidan, and M. 1. Hilal. 2013. Effect of rotation on thermoelastic material with voids and
temperature dependent properties of type III. Journal of Thermoelasticity 1(4): 1-11.

Puri, P., and S. C. Cowin. 1985. Plane waves in linear elastic materials with voids. Journal of Elasticity 15(2):
167-183. doi: 10.1007/BF00041991.

Sarkar, N. 2013. On the discontinuity solution of the Lord—Shulman model in generalized thermoelasticity. Applied
Mathematics and Computation 219(20): 10245-10252. doi: 10.1016/j.amc.2013.03.127.

Sarkar, N., and A. Lahiri. 2012. A three—dimensional thermoelastic problem for a half-space without energy
dissipation. International Journal of Engineering Science 51: 310-325. doi: 10.1016/j.ijengsci.2011.08.005.

Sarkar, N., and A. Lahiri. 2013. The Effect of Gravity Field on the Plane Waves in a Fiber—Reinforced Two—
Temperature Magneto—Thermoelastic Medium Under Lord—Shulman Theory. Journal of Thermal Stresses 36(9):
895-914. doi: 10.1080/01495739.2013.7707009.

Scalia, A., A. Pompei, and S. Chirita. 2004. On the behavior of steady time—harmonic oscillations in thermoelastic
materials with voids. Journal of Thermal Stresses 27(3): 209-226. doi: 10.1080/01495730490264330.

89


http://purkh.com/index.php/mathlab

MathLAB Journal Vol 3 (2019) http://purkh.com/index.php/mathlab

[27] Zakian, V. 1969. Numerical inversion of Laplace transform. FElectronics Letters 5(6): 120-121. doi:
10.1049/el:19690090.

[28] Zakian, V. 1970. Optimisation of numerical inversion of Laplace transforms. Electronics Letters 6(21): 677-679.
doi: 10.1049/€l:19690090.

90


http://purkh.com/index.php/mathlab

	Basic equations and formulation of the problem
	Solution in the Laplace transform domain: Eigenvalue approach
	Numerical results and discussions
	Concluding remarks

