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Abstract

This paper designs the recursive least-squares (RLS) Wiener fixed-point smoother and filter from randomly
delayed observed values by multiple sampling times or uncertain observations in linear discrete-time
stochastic systems. The observed value is generated in terms of the delayed observed values or uncertain
observed values. In the case of the observed value with delay or without delay, their probabilities are assigned.
Here, each observation includes signal plus white observation noise. Related to the uncertain observed value
with delay or without delay, the probability that the observation consists of only observation noise is allocated,
according to the time delayed or not delayed. It is assumed that the delay and uncertain measurements are
characterized by the Bernoulli random variables. The RLS Wiener estimators use the following information. (1)
The system matrix. (2) The observation matrix. (3) The variance of the state vector. (4) The probabilities
concerned with the delayed observation and the uncertain observation. (5) The variance of white observation
noise.
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Introduction

Data in a network of control system are usually transmitted with delay and packet dropout from a sensor to a
controller and also from a controller to an actuator [1]. In linear discrete-time stochastic systems, the optimal
filter, predictor and smoother are proposed, based on the innovation approach, from observations with
randomly delayed and packet dropouts [2], [3]. Also, with observations multiply and randomly delayed, the
recursive least-squares (RLS) Wiener fixed-point smoother and filter are proposed [4]. Concerned with the
uncertain observation, the RLS estimation method is presented, given the probability that the signal exists in
the observation characterized by the independent Bernoulli random variable [5]. Estimation technique in [5] is
extended to the case where the random variable, related to the uncertainty, in the observation equation has
the correlation property [6]. In addition to the probability that the signal exists in the observation, the
conditional probability is given for the existence of the signal in the observation.

In [7], the RLS Wiener fixed-point smoother and filter are proposed for the uncertain observation. The
probability that the signal exists in the observation and the conditional probability are used in the estimators.
In wireless sensor network system with multiple packet losses, related to the delayed observations, the optimal
filter is proposed in linear discrete-time stochastic systems [8]. The technique is also extended to the design of
the filter in nonlinear discrete-time stochastic systems. In [9], the quadratic filter is proposed for the nonlinear
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discrete-time stochastic systems. The nonlinear state equation and the uncertain nonlinear observation
equation, characterized by the Bernoulli random variables, are given.

Hitherto, it seems that there have been no studies on the RLS Wiener estimation problem considering the
both cases of the multiply delayed or uncertain observations. From this viewpoint, this paper designs the RLS
Wiener fixed-point smoother and filter from randomly delayed observed values by multiple sampling times or
uncertain observations in linear discrete-time stochastic systems. The observed value is generated in terms of
the delayed observed values or uncertain observed values. In the case of the observed value with delay or
without delay, their probabilities are assigned. Here, each observation includes signal plus white observation
noise. Related to the uncertain observed value with delay or without delay, the probability that the
observation consists of only observation noise is allocated, according to the time delayed or not delayed. It is
assumed that the delay and uncertain measurements are characterized by the Bernoulli random variables. The
RLS Wiener estimators use the following information. (1) The system matrix. (2) The observation matrix. (3) The
variance of the state vector. (4) The probabilities concerned with the delayed observation and the uncertain
observation. (5) The variance of white observation noise.

A numerical simulation example, in section 5, shows the estimation characteristics of the current filter and the
fixed-point smoother with the multiply delayed or uncertain observations.

Least-squares fixed-point smoothing problem

Let an m-dimensional observation equation be given by

Y(K) = 762 ()Y (K) + 735 () Y (k =) ++--+ 7, (K) Y (k = N)
+700 (KIV(K) + 730 (K)V(K =) +--++ g, (K)v(k = N),

(k) =z(k)+v(k), z(k) = Hx(k),
Elro (K)]= gy (K),  Elysy (K)]= puy(K), ELyy (K)]= pay(K) ... Elyy (K)]= Py (K),

E[yoo(k)] = poo(k) 1 E[710(k)] = plo(k): E[yzo(k)] = pzo(k) reser E[7No(k)] = pmo(k) ' (M

in linear discrete-time stochastic systems. It is assumed that the observation at each time K >1 can be either
delayed by sampling periods, j, 1< ] <N, with known probabilities or consist of only delayed observation
noise data without including signal data. {y; (k),0<i < N, j=0,1; k>1} denote a sequence of Bernoulli

random  variables  (binary  switching  sequence taking the values 0 or 1 with
Ply; (k) =1] = p;(k),0<i< N,j=0,1 . Usually, in applications of communication networks,

{yj (k); k>1} represents the random delay from sensor to [4]. Here, Z(K) is a signal vector, H is an m

by N observation matrix, X(K) is a state vector and V(K) is white observation noise. It is assumed that the

signal and the observation noise are mutually independent and have the mean of zero respectively. Let the
auto-covariance function of V(K) be given by

E[v(K)V' (s)]=R&, (t-s), R>0. @)

Here, O, (-) denotes the Kronecker delta function.

By denoting
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QR (O LN (] 7 (3] I/ (9] Py
O P (91 PN (] M PN (9] PR A (9] Mg
300 =[yK) yKk-D - yk-N)],
V() =[v(k) v(k-1) - v(k—N)]T, 3)
from (1), we obtain
y(k) =7(K)§(K) +7, (K)V (k) . 4)

Let E [] denote the expectation with respect to the random variables {y(k), k=1}.

The Bernoulli random variables satisfy E [1; (K)]= p; (K)1 ...,/ E, [y (k)= p; (K)1 . 0<i< N,j=0,1.

From (3), it is seen that the auto-covariance function of V(K) is given by

Kv(k’s):{c‘:(k)ﬁT (s),0<s <k, -

D(KK)C" (s),0<k <,

C_Z(k)ZCD\I},ET (5) =D, °K, (s,S). Here, the transition matrix @; and the variance K (S,s) of V(K) are
given by

[0 0 --- 0 O] 'R 0 --- 0 0]
R 0 -~ 0O O R .- 0 O
®,={0 R -+ 0 O[,Ky(s,8)=|: = . 1 ] (6)
Doon 0 0 R O
|10 0 - R 0] |10 0 - 0 R]
By denoting
H -~ 0 0 x(K)
O R N ] o
O - H O :
0 -~ 0 H x(k — N)

from (1) and (3), the observation equation (4) is also written as
y(k) = 7, (K)HX(K) + 7, (K)V (K) + 7, (K)V (k) (8)

since
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2(k) Hx(K)

z(k—-1) | | Hx(k-1)

Z(k) = = HX (k). ©)

z(k.—N) Hx(k.— N)

Let K, (k,S) =K, (k—S) represent the auto-covariance function of the state vector X(k) in wide-sense

stationary stochastic systems [7], and let K, (K,S) be expressed in the form of

X(k’S)Z{A(k)BT (s), 0<s<k, 0

B(s)A"(k), 0<k<s,
A(k) = @, B"(s) = ®°K,(s,s) . Here, ® is the transition matrix of X(K) .
Let the state-space model for X(k) be described as
x(k +1) = dx(k) + Bw(k), E[w(k)W' (s)] = QJ, (k—S5), (11)

where B is N by | input matrix and W(K) is white input noise with the auto-covariance function of (11). Let

@ represent the system matrix for X(K). From

x(k+1) ] ® 0 -~ 0 O x(k) | [wk)]
x(k) ly 0 - 0 O x(k —1) 0
: =l i : + (12)
x(k=N+2) 0 0 -+ 0 O0fx(k=N+1 0
_x(k—l\_l+1)_ 0 0 - 1, 0] x(k—N) 110 |
D is given by
[® 0 - 0 O]
.. O 0 O
O=| : RV (13)
o 0. 0 O
10 0 ln O]

Let K. (K,S) represent the auto-covariance function of X(K).Then K_(K,S) is expressed in the form of

Kx(k,s):{/i(k)ET (s),0<s <Kk, "

B(k)A'(s),0<k <s,

A(K) = @*, BT (s) =D °K_(s,S). Here, K, (s,5) =K, (0) is expressed as
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x(s)
x(s—-1)
K,(s,s)=E : [X'(s) X'(s-1) -+ X'(s—=N+1) x'(s=N)]
X(s—N +1)
| x(s—N) |
- N N ] (15)
K,(0) oK, (0) - @K, (0) DTK(0)
K, (0)®' K, (0) o @YK (0) DVTK (0)
K 0)(@)"" K O)(@)"* - K(0) @K, (0)
K O)@)" K (0)(@)" - K (0D K,(0)

Let the fixed-point smoothing estimate X(K, L) of X(K) at the fixed point K be expressed by

n L

%(k,L) = > h(k,i, L)y (i) (16)
i

in terms of the observed values {y(i), 1<i< L}. In (16), h(k,i,L) is a time-varying impulse response
function.

Let us consider the estimation problem, which minimizes the mean-square value (MSV)
J = E[l x(k)—x(k, L) 1] (17)

of the fixed-point smoothing error. From an orthogonal projection lemma [7],
)‘((k)—ih(k,i,L)y(i)J_y(s),lSSSL, (18)
i1
the impulse response function satisfies the Wiener-Hopf equation
E[x(K)y' (s)]= ih(k, L, L)E[()y' ()1 (19)
i1

Here ' L ' denotes the notation of the orthogonality.

By putting P, (k) :[p01(k)|m><m P Puoan(K) le(k)Imxm]' from (3) and (4), the left

hand side of (19) is written as
E[X(K)Y" (s)] = EIX(K)(7,(S)HX(S) + 71 (S)V(S) + 75 (S)V(S)) ']
= E[X()X" S)IH [P Pl Pyss Ol Pra () ]

=K, (k,s)H" P/ (s). (20)
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Also, from (2) and (8), E[y(i)y" (S)] is written as

Ely()y" ()] =EL(7)HX () + A0V () + 7OV O F2(S)HX(S) + 7 (S)V(S) + 7 (S)V(S)) ']
=E [ (OHK, (i, s)H 7 ($)1+E, [7, (1)K (i,9)7; (S)],

7,(8) =7,(8) +7:.(5). (21)
Substituting (20) and (21) into (19), we obtain

Ky (k,s)HT P/ (5) = Zh(k i, L{E, [ (OHK, (,s)HT 7 )]+ E, [7,()K; (,9)7; ()]} 22)

From the stochastic property of 7,(-) and 7,(), (22) becomes

Ky (k,S)H™ P (5) = h(k, s, L){E, [72(s)HK, (s, 5)H "7, (8)1+E, [7,(S)Ky (5,5)7; (5)]
—E, [7(8)IHK, (s, )H"E, [7/" ()]~ E, [7(S)IK; (s, S)E, [7; ()1}

+Zh(k i, L{E, [ (0HK, (i, s)HE, [77 (8)]+E, [7,()IK; (i, S)E, [7; ()1}

(23)
From
5,(K) = E, 7K1 =] Py () Py Pkl Py ()l |,
P2(K) = E, [, (K)]=E, [ (k) + 72 (k)] = Po (k) + Py (k)
Z[(F’oo(k)Jr Por (KN m  (Pro(K) + Pra(KD Ve (P20 (K) + Poa (KD e =+ (Po (K) + pﬂl(k))lmxm]'
70 =70l 7@l 72l 7y (K |
770(k):|:700(k)|mxm le(k)Imxm 7/20(k)|m><m 7N0(k)|mxm:|' (24)
(23) is written as
h(k,s, LY{E, [72(s)HK, (s,)H" 7' (8)]+E, [7,(s)K (5,9)7; ()]
—E,[7(9)IHK, (s, 9)HTE,[7; (s)]-E, [7,(S)IK; (5, S)E, [7; ()} = K, (k,s)H B/ (5)
—Zh(k i, L){E, [7()IHK, (i,s)H"E, [ (5)]+E,[7,()IK (i, 9)E, [7; (s)I}

(25)

Consequently, the optimal impulse response function h(k,s, L) satisfies
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h(k,s, L)R(s) = K, (k, S)HT P! (5)

N . N e = . : (26)
—Zh(k,l, L{P.()HK, (,s)HTp; (5) + P, (1)K (i, 5) P, ()},
R(s) = E, [7(S)HK, (s, )HT 7 (5)]+ E, [7,(5)K; (5, 5)7; (5)] o

~E, [7()IHK, (s, )HE, [7)' (s)1- E, [7,(S)IK; (s, S)E, [7; ()]
RLS Wiener estimation algorithms

Under the linear least-squares estimation problem of the signal zZ(K) in section 2, [Theorem 1] shows the RLS

Wiener fixed-point smoothing and filtering algorithms, which use the covariance information of the signal and
observation noise.

Theorem 1

Let the auto-covariance function K, (K,S) of the state vector X(k) be expressed by (10), and let the variance

of white observation noise be R . Then, the RLS Wiener algorithms for the fixed-point smoothing at the fixed
point K and filtering estimate of the signal Z(K) consist of (28)-(42) in linear discrete-time stochastic systems

with randomly delayed observations.

Fixed-point smoothing estimate of the signal z(K): Z(k, L)

2(k,L) =Hx(k,L) (28)
Filtering estimate of the signal z(L)

2(L, L) = HR(L, L) (29)

X(k, L) =x(k,L=1)+ h(k, L, L)(y(L) - p,(L)H®X(L -1, L -1) - p,(L)®,V(L -1, L -1)),

)’z(k! L) = [Onxn Onxn Onxn Inxn ] i(k’ L) '
R(k, L)
. R(k—1 L)
x(k,L) = : (30)
R(k—N,L)

hek, L, L) =[K, (k, K)(@")“HTp; (L) —ty(k, L =D HT P} (L) -0, (k, L ~1) DG P; (L)]
{R(L) +[P(L)HK, (L, L) = p(LYHDS, (L -1) @7 - P, (L)P; S, (L)@ IH p; (L)
HP(LKy (L, L) = (L) H DS, (L =D Dy — (L) Dy S, (L -DPyIH " p; (L)}

31
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6, (k, L) =g, (k, L-D)®" +h(k, L, L)[P,(L)HK, (L, L)~ p,(L)H DS, (L ~1) '
_ﬁz(l—)q)vsu(l- _1)q_)T ]’

q, (k,k) =S, (k) (32)

A, (k, L) =0, (k, L=D)® +h(k, L, L)[P,(L)Ky (L, L) = B,(L)HDS,, (L - 1)y
—P,(L)®y S, (L -1y ],

0, (K, k) =S, (k) (33)
Filtering estimate of X(L): X(L, L)

X(L, L) =dx(L-1,L-1)+G,(L, L)(y(L) - p,(L)HDX(L -1, L -1)
—p,(L)®,V(L-1 L-1)),

X(0,0)=0 (34)
Filtering estimate of V(L): V(L, L)

V(L,L)=d V(L-1,L-1)+G,(L, L)(y(L) - p,(L)H®X(L -1, L -1)
~p, (L), V(L-1,L-1)), (35)
v(0,0)=0

Auto-variance function of X(L,L): S;;(L) = E[x(L,L)X" (L, L)]

Sll(L) = (T)Sll(L—l)(T)T +Gl(L’ L)[ﬁl(l—) H_Kx(Li I—) - ﬁl(l—)ﬁCT)SM(I—_]-)CT)T
—EZ(L)CI)VS?J(L—].)CT)T], (36)
S11(0) =0

Cross-variance function of X(L, L) with V(L,L): S,,(L) = E[X(L, L)V (L, L)]

SlZ(L) = (T)Slz(l— _1)q)\T7 +Gl(Ll L)[ﬁz(l—) Kv (L, L) - ﬁl(L) H(T)Slz(L _1)q)\T7
—P, (L)@ S, (L-DD7], (37)
S12 (0) =0

Su(L) = @, S, (L-D®" + G, (L, I[P (L)FK, (L,L) - P (L) HDS,, (L -1)P’
-p,(L)®,S,, (L-1)D], (38)
S21(0) =0, 821(L) = Ssz(L)

Auto-variance function of V(L,L): S, (L) = E[V(L, L)V" (L, L)]
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S (L) =@y S, (L-1)@] +G, (L, L)[P,(L)Ky (L, L) - (L) H®S, (L -y
—P, (L), S, (L-DD7 ], (39)
S22 (0) =0

Gy(L,L) =[K, (L, LH"P{ (L) = @S, (L-DP"H " pj (L) - DS, (L ~ 1) p; (L)]
{R(L)+[P(L)HK (L, L) = P (L)H S, (L-DD" = P, (L)Dy S, (L-DO"IHT P/ (L)  (40)
HP (LK (L, L) = (L H DS, (L -DDg = P, (L) Dy S, (L-DP7IH " p; (L)}

G, (L, L) =[Ky (L, L)P; (L) = @Sy (LD O H Ty (L) — DS, (L ~1) 05 p; (L)]
{R(L) +[P(L)HK (L, L) = P (L)H S, (L-DD" — P, (L)Dy S, (L-DO"IHT P (L) @41
P (DK (L, L) = (L H DS, (L =Dy — P, (L) Dy S, (L-DP7IH " p; (L)}

R(L)=E,[7(LHK, (L LHT7 (L)]+E, [ (LK (L, L)7; (L)]

B, [A(UIAK, (L DATE,[7 (U], [7,(UIK, (L LE,[7 (L) -
The proof of Theorem 1 is deferred to the appendix.

From Theorem 1, it is found that the filtering error variance function of z(L) is given by

P,(L) = HH(K, (L,L)=S,(L)HHT, H=[l, Onm - Opql. 43)

A numerical simulation example

Let an m-dimensional observation equation be given by

Y(K) =y (K)Y(K) + 71, (K) Y (k =2) + 5, (K) Y (k - 2)
+700 (K)V(K) + 730 (K)V(K =1) + 7,0 (K)v(k = 2),

Pr{yn(k)}= Pr{701(k)2}: Pors Pr{y, (K)} = Pr{?ﬁl(k)z}: Prys
Priy,(k)}= Pr{721(k)2} = Par, Pr{yoo (K)} = Pr{yy (k)z} = Poos (44)
Priy, (k)}= Pr{710(k)2}: Pro, Pr{y,(K)} = Pr{72o(k)2} = Py

y (k) = z(k) +v(k), z(k) = Hx(k).
Here, Poi. Piis Pair Poor Pip and P,y are the probabilities shown in Table 1.

Table 1 Probabilities for the Bernouli variables 7/01(k), yll(k), }/21(k), ]/oo(k), }flo(k) and }/20(k).

Cases of delay Probability of the observation | Probability of the observation not
including  both  signal and | including signal and consisting of
observation noise only observation noise
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No delay Pr{yp (k) =1} = py, (k) =0.8820 | Pr{yy, (k) =1 = py,(k) = 0.0180
One-step delay Pr{y,, (k) =1} = p,, (k) =0.0570 | Pr{y,,(k) =1}= p,,(k) =0.0030
Two-steps delay Pr{y,,(k) =1} = p,, (k) =0.0360 | Pr{y,,(k) =1}= p,,(k) =0.0040

Let the observation noise V(K) be zero-mean white Gaussian process with the variance R, N(0,R). (44) is
also written as

y(k) = 71.(k) ¥(K) + 7, (K)V (K) = 7. (K) Z (K) + 7, (K)V (K),

7K =[70(K) 72 (K) 7 (K] 7 () =100 (k) 716(K) 70 (K)],
V2 (K) =[700(K) + 700 (K) 720 (K) +721(K)  70(K) + 720 (K)],

Pu(K) =[Por(K)  Pu(k) (k)] Po(K) =[Poo(K) P (k)  Pa(K)],
P, (K) =[Py (K) + Poo (K) Py (K) + Py (K) P (k) + Py (K)],
J0)=[yK) yk-1 yk-27,

v(k) =[v(k) v(k-1) v(k-2)],

2(k) Hx (k)
7(k) =| 2(k=1) |=| Hx(k-1) |= AX(K). (45)
2(k=2)| | Hx(k-2)

Let the signal Z(K) be generated by the second-order AR model.

z(k +1) = —-a,z(k) —a,z(k —1) + w(k), E[w(k)w(s)] = o°5, (k —s),

(46)
a=-01a,=-080=05.
The state-space model for z(K) is given by
_ B _ | x(k)
z(k) = Hx(k) = x (k),H =[1 0], x(k) _{Xz(k)}
k+1) 0 1 {xk)]| |0 @
Brve S R e SR
X, (k+1) -8, —a || % (k) 1
Hence, H and X(K) are given by
C o) ][ oxk) ]
H 0O 0][L00O0OO Xk(k)l Xl(tf)
I—_I:OH0:001000,7(k):xi(_):xi(_). (48)
0 0 H| |[0000O010 %= % (k)
x(k=-2) 1 | x((k-2)
%, (k-2)| [ xk-_
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From X(K), the signal z(K) is calculated by

Z(k):[l 0000 O]Y(k):xl(k). (49)
The auto-covariance function of the signal Z(K) is given by [7]
K(0)=0?,
K(m) = o*{a,(cF -V 1 [(er, — o) (a0, +1)]
o, (o5~ (e, — ), +1)]},0<m, (50)
2
8 i«/a1 —4a,
a,o, = .
2
From
K(0) K( 0 1
Kx(k,k){ © ()},@:{ } (51)
K@) K(0) -8, —8
® and K, (0) are given by
[0 1 00 0 O]
-a, - 0 0 0 O
® 0 0 2 T4
_ 1 0O 00O0ODO
d=|1 0 0|= , (52)
0 1 00O0O
0O 1 0
0 0 1000
| 0 0 010 0]
K0 OK(0) @°K,(0)
Kz (0)=| K, (0T Ky(0) @K, (0) |,
Ky (O)(@T)? K (0" K, (0)
K(0) K@) K() K(0) —a,K(0)—aK (1) —a,K(1)-aK(0)
K(®) K(0) -,K(0)-a K1) -a,K@O)-aK(0) -a,K(1)+a(a,K(0)+a,K(1) -a,K(0)+a(a,K(1)+aK(0))
B K() —a,K(0)—a,K (D) K(0) K K1) K(0)
- K(0) —a,K(1) -3, (0) K@) K(0) —a,-K(0)—a,-K(Q) —a,K(1) -3 (0)
—a,K(0)—aK() —a,K(D)+a (a,K(0)+aK(D) K@) —a,-K(0)—a -K(Q) K(0) K@)
-a,K@1)-a,K(0) -a,K(0)+a,(a,K(1)+aK(0)) K(0) -a, K@) -a,-K(0) K@) K(0)
K(0)=0.25, K(1)=0.125. (53)

From (44), (45), H in (48), and (53), ﬁ(L) is calculated as
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R(L) = E, [7(L)HK, (L, LH" 7" (D]+E, [7,(L)Ky (L, L)7; (L)]

~E,[7(DIHK, (L, L)HTE, [ (L)]-E, [7,(L)IKy (L, L)E,[7; (L)]

= P (K(0)+ p, K@) + p,, (a,K(0) —a, K (1)) (54)
+ Py (P K (@) + K(0) + p, K@) + (Pgo + Pyo + P)R

—Po1 (P K(0) + i, K@) + Py (8, K(0) — 3, K (1))

= Pu (PorK (@) + P K (0) + Py K (1) = (P + Pr + P2o)R:

Substituting H, @, K, (L,L)=K,(0), p,(L), P,(L) and R(L) into the RLS Wiener estimation algorithms
in Theorem 1, the filtering and fixed-point smoothing estimates are calculated recursively. Fig.1 illustrates the
fixed-point smoothing estimate 2(K,k +5) vs. k for the white Gaussian observation noise N(0,0.3%). Fig.2
illustrates the MSVs (mean-square values) of the filtering errors Z(K)—Z2(k,K) and the fixed-point smoothing

errors Z(k)—2(k,k +Lag) vs. Lag, 0<Lag <5, for the white Gaussian observation noises N(0,0.1%),

N(0,0.2%), N(0,0.3%) and N(0,0.4%). For Lag =0, the MSV of the filtering errors z(k)—2(k,k) is
shown. Fig.3 indicates the tendency, as Lag increases, that the MSVs decrease gradually and the estimation
accuracy is improved by the fixed-point smoother. For the white Gaussian observation noise with larger

variance, the MSVs of the filtering errors and the fixed-point smoothing errors increase and the estimation

accuracy becomes degraded. Here, The MSVs of the fixed-point smoothing and filtering errors are evaluated by
2000 2000

> (2(K) - 2(k k +Lag))* 1 2000 and Y (2(k) - 2(k,k))* / 2000.
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4 T T T T
Signal
3l ., - Fixed-point smoothing estimate

Signal and fixed-point smoothing estimate

0 50 100 150 200 250
time k

Fig.1 Fixed-point smoothing estimate 2(K,k +5) vs. k for the white Gaussian observation noise N(0,0.3%).
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Fig.2 MSVs of the filtering errors Z(k) —Z(k,K) and the fixed-point smoothing errors z(k) —Z(k,k + Lag)
vs. Lag, 0<Lag <5, for the white Gaussian observation noises N(0,0.1%), N(0,0.2%), N(0,0.3%) and
N(0,0.42).
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Conclusions

This paper proposed the RLS Wiener fixed-point smoother and filter from randomly delayed observed values
by multiple sampling times or uncertain observations in linear discrete-time stochastic systems. Some
numerical simulation results have shown that the devised estimators have feasible estimation characteristics.

Since the RLS Wiener estimators do not use the information of the variance Q of the input noise and the input

matrix B in the state equation (11), in comparison with the estimation technique [1]-[3] with additional
information of Q and B to those used in the RLS Wiener estimators, the proposed RLS Wiener estimators do

not incur estimation degradation influenced by the model uncertainty on Q and B .

In this paper, the RLS Wiener fixed-point smoother and filter are designed from observations with random and
multiple delays in linear discrete-time stochastic systems. The probability of the arrival of the observed value

y(k) on time k is P, and the probabilities of the arrival of the observed value Y(k—(j-1)),
j=2,3,---,N, on time Kk is P;. A numerical simulation example has shown that the proposed estimation

technique with the randomly delayed observed values is feasible.
Appendix (Proof of Theorem 1)

From (26), the impulse response function h(k,s,L) satisfies
h(k,s, L)R(s) = K. (k,S)HT P, (s)

> (ki DIBORK, 69T B $)+ B.0)K, (.91 O] o

Subtracting h(k,s, L—1)R(s) from h(k,s, L)R(S), we have
(h(k,s,L)~h(k,s,L=1))R(s) =—h(k, L, L)[p,(L)HK, (L, s)H" P/ (5) + P, (L) Ky (L, 8) P; ()]

—ZL:(h(k, i, L) =h(k,i, L-D)[P, () HK, (i, )H" P! () + P, (K, (i, 5) P; (S)].

i=1
Introducing

3,(5, L-DR(s) = ® K, (5, 9)A" B[ (5)

33,6, L-DIROK, (A" B (9 + B.OK, (.91 O] e
and

J,(s,L-D)R(s) = DK (s,5)H' P, (5)

33,0, LD, OAK, (.9 B (5)+ (0K, (9P} 5], o
we obtain

h(k,s, L) —h(k,s, L —1) = —h(k, L, L)[B,(L)A®" 3, (s, L 1) "

+|52(L)(D\I%‘]2(S’ L_l)]-
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Subtracting J, (s, L—1)R(s) from J,(s,L)R(S), we have

(3y(8, L) =3, (s, L=1))R(s) =—J, (L, L)[ P, (L)HK (L, s)H T p; (S)
+P,(LK (L, 8)P; (5)] (A-5)

—i(Jl(i, L) =3, (i, L=I)IP. () HK, (i, s)H" P (5) + P, (1)K (i,5) P; (5)].

From (A-2) and (A-3), we obtain

3y (s, L) =3, (s, L-1) =3, (L, L)[P,(L)H®"J, (s, L —1) + P, (L) D I, (s, L-1)]. (A-6)
Similarly, from (A-3), we obtain

J,(8,L)=J,(s,L=1) =—J,(L, )[P(L)HD"I, (s, L 1) + P, (L) DI, (s, L -D)]. (A-7)
From (A-2), J,(L—1,L-1) satisfies

J(L-LL-DR(L-D)=> “ K (L-L,L-1)H"p] (L-1)

—ZL: 3,3, L=D[P,(HK, (i, L-DHTp, (L-1) + P, ()K; (i, L-1) p; (L 1))

i=1

Using (5) and (10), and introducing

L-1

ha(L=1) =Y 3G, L-1)p,()HB(), (A-8)
i=1
L-1

h(L-2)=> 3G,L-DP,0)B, (), (A-9)
i=1

we obtain

J(L-LL-DR(L-) = “ K _(L-LL-DH"p/(L-1)

_ _ (A-10)
—, (L=-DAT(L-DH"p/ (L-1) —r,(L-1)A) (L-D) P, (L -D).
Similarly, using (A-3), (5) and (10), and introducing
L1 L
(L= =" 3,(i,L-D) P, ()HB() (A-11)
i=1
L1
Lo (L=1) = D3, (i, L-D) P, ()B, (), (A-12)
i=1

we obtain
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J,(L-LL-)R(L-1) = ;K (L-1,L-1)H"p] (L-1)

_ _ (A-13)
~ty(L-DAT(L-DHT P} (L-D) ~ (LD A (L-1) P} (L D).

Subtracting r;(L-1) from r,(L) and using (A-6), (A-8) and (A-11), we obtain

h(L-D-ry(L-2)=J(L-LL-D[P(L-1)B(L-1)

- (A-14)
—B(L-)HD 1y (L-2)— P (L - Dy ry (L-2)].

Subtracting r,(L-1) from r,(L) and using (A-6), (A-9) and (A-12), we obtain

ho(L-1)—1p(L—2) = Jy(L-1,L-D)[P,(L-1)B, (L-1) A15)
“Py(L-DHO" Ty (L —2) = B (L-DDy 'rp (L-2)].
Subtracting r,;(L-1) from r,,(L) and using (A-7), (A-8) and (A-11), we obtain

(L =1 =1 (L=2) = Jp(L-L L-D[P(L-1)B(L-D) A1
—P(L-DH®O M, (L-2) - P (L D)0 "1y (L-2)].
Subtracting r,,(L—-1) from r,, (L) and using (A-7), (A-8) and (A-11), we obtain

My (L—=1) =1y (L-2) = Jp(L-1,L-D)[P(L-DB(L-1) (A-17)
—P(L-DH®O 'y (L=2) = B (L-D)DF 1y (L -2)].
Let us introduce the functions

S11(L) = @ 1y (LY@, Sy, (L) = DUy (LY(@F)"

L =T\L T T\L (A-18)
Sp1(L) = DGy (L)@ )™, Spp (L) = Dy (L)(Dy )~
From (A-14) and (A-18), we obtain

S11(L) = ®Sy; (L-DT +Gy(L, L)[Py(L)Ky (L, L) - py(LIH DS (L ~DDT

- o (A-19)
—P2(L)DySy (L-DD" ],S,,(0) =0.
From (A-15) and (A-18), we obtain

S12(L) = DSp, (L—D@F + Gy (L, LI, (L)Ky (L, L)~ Py(L)H DS, (L -1y,

(A-20)
—P (L) Dy S (L -1 1,5,(0) = 0.

From (A-16) and (A-18), we obtain

Sy (L) =Dy Sy (L-1)D" +Gy (L, L)[Py(L)HK (L, L) - B (L)H DS, (L-1) D'

- . (A-21)
=P (L) Dy Sy (L-DD" 1,5, (0) =0.

From (A-17) and (A-18), we obtain
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Sy (L) = Dy Sy, (L-D)DG + Gy (L, L)[,(L)Ky (L, L) - B (L)H DS, (L DDy

B (L)Dy Sy (L ~1)®1,5,,(0) =0, (22
Let us introduce the functions

Gy(L,L) =@ J;(L,L),G,(L,L) = D3I, (L, L). (A-23)
Substituting (A-10) into (A-23) and using (A-18), we obtain

Gy(L,L) =[Ky (LLLHT B ()= Si (WHT B (L) =S (L)P3 (DIRTH(L) - (A-24)
Substituting (A-13) into (A-23) and using (A-18), we obtain

Gy(L, L) =[Ky (L, L)P3 (L) =Sy (LHTB{ (L) =S (L) Bz (IR (L) (A-25)

Substituting (A-19) and (A-20) into (A-24), we obtain (40). Substituting (A-21) and (A-22) into (A-25), we obtain
4amn.

From (26), h(k,L,L) satisfies
h(k,L,L)R(L) =K, (k, L)HT / (L)

—ih(k, i, L{p, (W HK, (i, LIH Py (L) + P, (K, (1, L) p; (L)}

STAY T AT y VAR (YR AT T AT (A-26)
=BK)AT(LDHTP (L) -2 h(k,i, L)p,(YHB)AT(L)H T p; (L)
-2 h(k,i,L)p, (1B, HA (L) (L).
Introducing the functions
L
R(k,L) =Y h(k,i, L), ()HB(), (A-27)
i=1
P,(k,L) = > h(k,i,L)P,(©)B, (). (A-28)
we rewrite (A-26) as
h(k, L, L)R(L) = K, (k,k)(@")"“HTp; (L)~ R, (k, L)AT(L)H T p; (L) A-29)
-R,(k, YA (L) (L).
Subtracting P (k,L-1) from P,(k,L) and using (A-4), we have
Rk, L) =Rk, L-2)+h(k, L, L)[P,(L)HB(L) - p(L)H®"r, (L 1) A30)

_Ez(l—)q)\lfrzl(l- _1)]-
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Subtracting P,(k,L-1) from P,(k,L) and using (A-4), we have

P,(k,L) =P, (k, L-1)+h(k, L, L)[P,(L)K, (L, L) - p,(L)H D 1, (L -1)

A ) (A-31)
_pz(l—)q)vrzz(l-_l)]-
Introducing
_ =T\L
G (k, L) =Rk L)(@ T) i (A-32)
dp (k, L) = P (k, L)(@g) ",
From (A-30) and (A-31), we obtain
o (k, L) =, (k, L=2)®" +h(k, L, L)[,(L)HK (L, L) "33
_ﬁl(L)l__Iq_)Sll(L_l)(T)T - EQ(L)(DSM(L_]-)CT)T]’
g, (k, L) = q,(k, L=2)@j +h(k, L, L)[ P, (L)K, (L, L) A3
~PULH®S, (L-1)Dy — P (L)Py Sy, (L -DDy].
In (A-1), putting L=s, we have
h(k,s,k)R(s) = K, (k,s)HT Pl (s)
k - - TT — —_ - - —
—> h(k,i,K)[P,()HK, (i,5)HT P (5)+ P, (1)K, (i,5)P; (5)]-
i=1
From (A-2), it is clear that
h(k,s,k) = ®*J; (s,k). (A-35)
From (A-32), we have
_ =Tk
(k. k) = R(k,k)(P T) k (A-36)
0y (k, k) = By (k,k)(Dg)".
Putting L=k in (A-27) and (A-28), we have
L JE—
Rk, k) = > h(k,i,k) B, () HB(),
- (A-37)

L
Py (k,k) = > h(k,i, k) B, (i)By (i)
i=1

From (A-35)-(A-37) with (A-8), (A-9) and (A-18), we obtain 0, (K,k) =S,,(k) and 0,(k,k) =S, (k).

From (A-29) and (A-32), we have
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h(k, L, L)R(s) = K, (k, K)(@")"“HTp; (L) — g, (k, L)(L)H " py (L) A-39
=0, (k, L) p; (L).
Substituting (A-33) and (A-34) into (A-38), after some manipulations, we obtain (31).
Now, from (16), the filtering estimate X(L,L) is given by
L
X(L,L) =" h(L,i, L)y().
i-1
Let us introduce functions.

L
e (L) =Y 3,6, L)y,
= (A-39)

’ ,
e (L) =D 3,0, L)y().

i=1
From (A-35), we see that
X(L, L) = D"e (L). (A-40)

Subtracting the equation obtained by putting L — L—1 in the first equation of (A-39) from the first equation
of (A-39), we have

e (L)—e(L-1)=Jy(L, L)y(L)+§(J1(i, L) =3, (i, L=1)y (@), (A-41)
e (0)=0.

Substituting (A-6) into (A-41), we obtain

ey(L) =€ (L-D)+J; (L, L)Y(L) ~ Iy (L, P (L) H B e (L -1 + P (L) Dye, (L D). (A-42)
Similarly, from (A-7), we obtain the difference equation for e,(L) .

&, (L) =e,(L—1)+J,(L, L)y(L) - I, (L, Y[ (L)H D e, (L ~1) + P, (L) DJe, (L ~D)], (A-43)
e,(0)=0.

Substituting (A-42) into (A-40), using (A-23) and introducing

V(L L) = dbe, (L), (A-44)
we have

X(L, L) = dX(L—-1,L 1)+ G, (L, L)[y(L) — (P, (L)H dX(L -1, L -1) A-45)

+P, (L)DyV (L -1, L -1))],X(0,0) = 0.

Similarly, the difference equation for \?(L, L) is obtained from (A-44), (A-23), (A-43) as (35).
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The fixed-point smoothing estimate X(k,L) is given by (16). Subtracting X(k,L—1) from X(k,L), we have
. . L-1

i=1
Substituting (A-4) into (A-46) and using (A-39), (A-40) and (A-44), we obtain

X(k, L) =x(k,L=1)+h(k, L, L)(y(L) - p,(L)H®X(L -1, L 1)

B — A (A-47)
- pz(l—)q)vv (I— —1, L _1))-

Initial condition of the fixed-point smoothing estimate X(k, L) at L=k is the filtering estimate X(k,k).

(Q.E.D)
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