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Abstract  

This paper proposes the robust RLS Wiener filter and fixed-interval smoothing algorithms based on the 

innovation approach. As a result, the robust RLS Wiener filtering algorithm is same as the existing robust RLS 

Wiener filtering algorithm. The estimation accuracy of the fixed-interval smoother is compared with the robust 

RLS Wiener filter and the following fixed-interval smoothers. In the proposed robust RLS Wiener fixed-interval 

smoother, the case, where the observed value is replaced with the robust filtering estimate of the signal, is also 

simulated. (1) The RLS Wiener fixed-interval smoother in which the filtering estimate of the state is replaced with 

the robust RLS Wiener filtering estimate. (2) The RTS (Rauch-Tung-Strieber) fixed-interval smoother in which the 

filtering estimate of the state is replaced with the robust RLS Wiener filtering estimate. (3) The 𝐻∞ RLS Wiener 

fixed-interval smoother and the 𝐻∞ RLS Wiener filter. (4) The RLS Wiener fixed-interval smoother in which the 

filtering estimate of the state is replaced with the robust RLS Wiener filtering estimate and the observed value 

is replaced with the robust RLS Wiener filtering estimate of the signal. From the simulation results, the most 

feasible estimation technique for the fixed-interval smoothing estimate is the RLS Wiener fixed-interval 

smoother. Here, the robust filtering estimate is used and the observed value is replaced with the robust filtering 

estimate. 
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1. Introduction 

The robust estimation problem has been studied extensively over the last three decades for the systems with 

unknown parameters [1]- [5]. For example, in Zhu et al. [6] and Yang et al. [7], the robust Kalman filter is proposed 

for the systems with norm-bounded parameter uncertainties in both the state and output matrices in linear 

discrete-time stochastic systems. In Duane et al. [8], the robust filter is devised for the systems with polytypic 

uncertainty. In Wang et al. [9], an adaptive robust Kalman filtering algorithm is proposed in linear time-varying 

systems with stochastic parametric uncertainties. The minimization of the mean-square error is reduced to linear 

matrix inequalities (LMIs). 

Along with the RLS Wiener estimation technique with the invariant imbedding method, Nakamori [10] proposed 
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the robust recursive least-squares (RLS) Wiener filter and fixed-point smoother in linear discrete-time systems 

with uncertain parameters in the system and observation matrices. It is a characteristic of the robust estimators 

that the degraded signal process is fitted to the finite order autoregressive (AR) model. The estimation accuracy 

of the robust RLS Wiener filter [10] is superior in estimation accuracy to the robust Kalman filter by Zhu et al. [6]. 

Nakamori also proposed the robust RLS Wiener FIR filter [11]. This paper, from the point to improve the 

estimation accuracy, examines to develop the robust RLS Wiener filter and fixed-interval smoother based on the 

innovation theory. As a result, the robust RLS Wiener filter, derived in this paper, is same as the robust RLS 

Wiener filter [10]. The robust RLS Wiener filter [10] and fixed-interval smoother in this paper use the information. 

(1) The covariance function of the state for the degraded signal. (2) The cross-covariance function of the state 

for the signal with the state for the degraded signal. (3) The observation matrices for the signal and the degraded 

signal. (4) The system matrices for the signal and the degraded signal. (5) The variance of the white observation 

noise. The observation matrix and the system matrix for the degraded signal are obtained by fitting the degraded 

signal to the finite-order AR model. 

A numerical simulation example compares the estimation accuracy of the proposed robust RLS Wiener fixed-

interval smoother with the robust RLS Wiener filter [10], the RLS Wiener fixed-interval smoother [12], the RTS 

(Rauch-Tung-Strieber) fixed-interval smoother [13], [14], the RLS Wiener 𝐻∞ filter [15] and the RLS Wiener 𝐻∞ 

fixed-interval smoother [16]. In the RLS Wiener fixed-interval smoother [12] and the RTS fixed-interval smoother, 

the filtering estimate by the robust RLS Wiener filter [10] is used. In addition, in the RLS Wiener fixed-interval 

smoother [12] and the proposed robust RLS Wiener fixed-interval smoother, the case, where the observed value 

is replaced with the robust filtering estimate of the signal, is also simulated. 

2. Degraded system including uncertain parameters and flawless state-space model  

Let an m-dimensional observation equation and an n-dimensional state equation be described by  

 

𝑦̆(𝑘) = 𝑧̆(𝑘) + 𝑣(𝑘), 𝑧̆(𝑘) = 𝐻̄(𝑘)𝑥̄(𝑘), 𝐻̄(𝑘) = 𝐻 + Δ𝐻(𝑘),

𝑥̄(𝑘 + 1) = Φ̄(𝑘)𝑥̄(𝑘) + Γ𝑤(𝑘), Φ̄(𝑘) = Φ + ΔΦ(𝑘),

𝐸[𝑣(𝑘)𝑣𝑇(𝑠)] = 𝑅𝛿𝐾(𝑘 − 𝑠), 𝐸[𝑤(𝑘)𝑤𝑇(𝑠)] = 𝑄𝛿𝐾(𝑘 − 𝑠)

 (1) 

in linear discrete-time stochastic systems with uncertain parameters [10]. Δ𝐻(𝑘) and ΔΦ(𝑘) represent the 

perturbations including uncertain parameters. Here, 𝑣(𝑘) is the white observation noise with the variance 𝑅. 

𝑤(𝑘) is the white input noise with the variance 𝑄. Their auto-covariance functions are given in (1) with the 

Kronecker delta function 𝛿𝐾(𝑘 − 𝑠) . The state equation, which generates 𝑥̄(𝑘 + 1) , contains the uncertain 

quantity ΔΦ(𝑘) in the system matrix Φ̄(𝑘). In addition, in the observation equation the observation matrix 

𝐻̄(𝑘) contains the uncertain quantity Δ𝐻(𝑘). Hence, the degraded signal 𝑧̆(𝑘) in (1) has a deviation from the 

nominal signal 𝑧(𝑘) along with the flawless state-space model (2), which does not have any uncertain quantities. 

In (1), as the sum of the degraded signal 𝑧̆(𝑘) and the observation noise 𝑣(𝑘), the observed value 𝑦̆(𝑘) is 

given. The flawless state-space model without any uncertain quantities Δ𝐻(𝑘) and ΔΦ(𝑘) in (1) is written as 
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𝑦(𝑘) = 𝑧(𝑘) + 𝑣(𝑘), 𝑧(𝑘) = 𝐻𝑥(𝑘),
𝑥(𝑘 + 1) = Φ𝑥(𝑘) + Γ𝑤(𝑘).

 (2) 

In (2), 𝑧(𝑘) represents the signal to be estimated. 𝐻 denotes an 𝑚 by 𝑛 observation matrix, 𝑥(𝑘) is the state 

and 𝑣(𝑘) is the white observation noise with the auto-covariance function given in (1). The auto-covariance 

function of the input noise 𝑤(𝑘) is also given in (1). It is assumed that the signal and the observation noise are 

zero-mean and mutually independent stochastic processes. The purpose of this paper is to design the robust 

RLS Wiener fixed-interval smoother in estimating the signal 𝑧(𝑘) with the observed value 𝑦̆(𝑘) without using 

any information concerning the uncertain quantities ΔΦ(𝑘) and Δ𝐻(𝑘).  

As in [10] let the degraded signal 𝑧̆(𝑘) be represented by the 𝑁 −th order AR model of 

 
𝑧̆(𝑘) = −𝑎1𝑧̆(𝑘 − 1) − 𝑎2𝑧̆(𝑘 − 2)⋯ − 𝑎𝑁 𝑧̆(𝑘 − 𝑁) + 𝑒̆(𝑘),

𝐸[𝑒̆(𝑘)𝑒̆𝑇(𝑠)] = 𝑄̆𝛿𝐾(𝑘 − 𝑠).
 (3) 

By introducing the state 𝑥̆(𝑘) in (4), 𝑧̆(𝑘) is expressed as  

 

𝑧̆(𝑘) = 𝐻̆𝑥̆(𝑘),

𝑥̆(𝑘) =

[
 
 
 
 

𝑥̆1(𝑘)

𝑥̆2(𝑘)
⋮

𝑥̆𝑁−1(𝑘)

𝑥̆𝑁(𝑘) ]
 
 
 
 

=

[
 
 
 
 

𝑧̆(𝑘)

𝑧̆(𝑘 + 1)
⋮

𝑧̆(𝑘 + 𝑁 − 2)

𝑧̆(𝑘 + 𝑁 − 1)]
 
 
 
 

,

𝐻̆ = [𝐼𝑚×𝑚 0 0 ⋯ 0 0].

 (4) 

From (3) and (4) the state equation for the state 𝑥̆(𝑘) is given by 

 
[
 
 
 
 

𝑥̆1(𝑘 + 1)

𝑥̆2(𝑘 + 1)
⋮

𝑥̆𝑁−1(𝑘 + 1)

𝑥̆𝑁(𝑘 + 1) ]
 
 
 
 

=

[
 
 
 
 

0 𝐼𝑚×𝑚 0 ⋯ 0
0 0 𝐼𝑚×𝑚 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ 𝐼𝑚×𝑚

−𝑎̆𝑁 −𝑎̆𝑁−1 −𝑎̆𝑁−2 ⋯ −𝑎̆1 ]
 
 
 
 

[
 
 
 
 

𝑥̆1(𝑘)

𝑥̆2(𝑘)
⋮

𝑥̆𝑁−1(𝑘)

𝑥̆𝑁(𝑘) ]
 
 
 
 

+

[
 
 
 
 

0
0
⋮
0

𝐼𝑚×𝑚]
 
 
 
 

𝜁(𝑘), 𝜁(𝑘) = 𝑒̆(𝑘 + 𝑁), 𝐸[𝜁(𝑘)𝜁𝑇(𝑠)] = 𝑄̆𝛿𝐾(𝑘 − 𝑠).

 (5) 

Let 𝐾(𝑘, 𝑠) = 𝐾(𝑘 − 𝑠)  represent the auto-covariance function of the state 𝑥̆(𝑘)  in wide-sense stationary 

stochastic systems [17]. Hence, 𝐾(𝑘, 𝑠) has the form of  

 

𝐾(𝑘, 𝑠) = {
𝐴(𝑘)𝐵𝑇(𝑠),0 ≤ 𝑠 ≤ 𝑘,

𝐵(𝑘)𝐴𝑇(𝑠),0 ≤ 𝑘 ≤ 𝑠,
 

𝐴(𝑘) = Φ̆𝑘, 𝐵𝑇(𝑠) = Φ̆−𝑠𝐾(𝑠, 𝑠). 

(6) 

Here, Φ̆ represents the system matrix for the state 𝑥̆(𝑘). The system matrix Φ̆ in the state equation (5) is given 
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by 

 Φ̆ =

[
 
 
 
 

0 𝐼𝑚×𝑚 0 ⋯ 0
0 0 𝐼𝑚×𝑚 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ 𝐼𝑚×𝑚

−𝑎̆𝑁 −𝑎̆𝑁−1 −𝑎̆𝑁−2 ⋯ −𝑎̆1 ]
 
 
 
 

. (7) 

Also, by putting 𝐾𝑧(𝑘, 𝑠) = 𝐾𝑧(𝑘 − 𝑠) = 𝐸[𝑧̆(𝑘)𝑧̆𝑇(𝑠)], the auto-variance function 𝐾(𝑘, 𝑘) of the state 𝑥̆(𝑘) is 

described by  

 

𝐾(𝑘, 𝑘) = 𝐸

[
 
 
 
 
 

[
 
 
 
 

𝑧̆(𝑘)
𝑧̆(𝑘 + 1)

⋮
𝑧̆(𝑘 + 𝑁 − 2)

𝑧̆(𝑘 + 𝑁 − 1)]
 
 
 
 

× [𝑧̆𝑇(𝑘) 𝑧̆𝑇(𝑘 + 1) ⋯ 𝑧̆𝑇(𝑘 + 𝑁 − 2) 𝑧̆𝑇(𝑘 + 𝑁 − 1)]]

=

[
 
 
 
 

𝐾𝑧(0) 𝐾𝑧(−1) ⋯ 𝐾𝑧(−𝑁 + 2) 𝐾𝑧(−𝑁 + 1)

𝐾𝑧(1) 𝐾𝑧(0) ⋯ 𝐾𝑧(−𝑁 + 3) 𝐾𝑧(−𝑁 + 2)
⋮ ⋮ ⋱ ⋮ ⋮

𝐾𝑧(𝑁 − 2) 𝐾𝑧(𝑁 − 3) ⋯ 𝐾𝑧(0) 𝐾𝑧(−1)

𝐾𝑧(𝑁 − 1) 𝐾𝑧(𝑁 − 2) ⋯ 𝐾𝑧(1) 𝐾𝑧(0) ]
 
 
 
 

.

 (8) 

By using the expression of 𝐾𝑧(𝑘 − 𝑠), the Yule-Walker equation for the AR parameters is formulated as 

 

𝐾(𝑘, 𝑘)

[
 
 
 
 

𝑎1
𝑇

𝑎2
𝑇

⋮
𝑎𝑁−1

𝑇

𝑎𝑁
𝑇 ]

 
 
 
 

= −

[
 
 
 
 
 

𝐾𝑧
𝑇(1)

𝐾𝑧
𝑇(2)
⋮

𝐾𝑧
𝑇(𝑁 − 1)

𝐾𝑧
𝑇(𝑁) ]

 
 
 
 
 

,

𝐾(𝑘, 𝑘) =

[
 
 
 
 

𝐾𝑧(0) 𝐾𝑧(1) ⋯ 𝐾𝑧(𝑁 − 2) 𝐾𝑧(𝑁 − 1)

𝐾𝑧
𝑇(1) 𝐾𝑧(0) ⋯ 𝐾𝑧(𝑁 − 3) 𝐾𝑧(𝑁 − 2)
⋮ ⋮ ⋱ ⋮ ⋮

𝐾𝑧
𝑇(𝑁 − 2) 𝐾𝑧

𝑇(𝑁 − 3) ⋯ 𝐾𝑧(0) 𝐾𝑧(1)

𝐾𝑧
𝑇(𝑁 − 1) 𝐾𝑧

𝑇(𝑁 − 2) ⋯ 𝐾𝑧
𝑇(1) 𝐾𝑧(0) ]

 
 
 
 

.

 (9) 

3. Robust RLS Wiener fixed-interval smoothing problem based on innovation approach 

Let the fixed-interval smoothing estimate 𝑥̂(𝑘, 𝐿) of the state 𝑥(𝑘) be given by  

 𝑥̂(𝑘, 𝐿) = ∑𝑔

𝐿

𝑖=1

(𝑘, 𝑖)𝜈(𝑖) (10) 

in terms of the innovation process 𝜈(𝑖) = 𝑦̆(𝑘) − 𝐻̆Φ̆𝑥̂̆(𝑘 − 1, 𝑘 − 1), 1 ≤ 𝑖 ≤ 𝐿. Here, 𝑥̂̆(𝑘 − 1, 𝑘 − 1) represents 

the filtering estimate of the state 𝑥̆(𝑘 − 1). g(𝑘, 𝑖) donotes a time-varying impulse response function and 𝐿 is 

the fixed interval. Let us consider the fixed-interval smoothing problem, which minimizes the mean-square value 

(MSV)  
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 𝐽 = 𝐸[||𝑥(𝑘) − 𝑥̂(𝑘, 𝐿)||2] (11) 

of the fixed-interval smoothing error 𝑥(𝑘) − 𝑥̂(𝑘, 𝐿). From an orthogonal projection lemma [17],  

 𝑥(𝑘) − ∑𝑔

𝐿

𝑖=1

(𝑘, 𝑖)𝜈(𝑖) ⊥ 𝜈(𝑠),1 ≤ 𝑠 ≤ 𝐿, (12) 

the impulse response function satisfies the Wiener-Hop equation  

 𝐸[𝑥(𝑘)𝜈𝑇(𝑠)] = ∑𝑔

𝐿

𝑖=1

(𝑘, 𝑖)𝐸[𝜈(𝑖)𝜈𝑇(𝑠)]. (13) 

Here, ‘⊥’ denotes the notation of the orthogonality. Let, in terms of 𝑔0(𝑠, 𝑖), the filtering estimate 𝑥̂̆(𝑠, 𝑠) of the 

state 𝑥̆(𝑠) be expressed by 

 𝑥̂̆(𝑠, 𝑠) = ∑𝑔0

𝑠

𝑖=1

(𝑠, 𝑖)𝜈(𝑖). (14) 

Substituting (1) and (14) into (13), from (4), and using 𝐸[𝑥(𝑘)𝑦̆𝑇(𝑠)] = 𝐾𝑥𝑧(𝑘, 𝑠) = 𝐾𝑥𝑥(𝑘, 𝑠)𝐻̆𝑇 and introducing 

the variance of the innovation process Π(𝑠) = 𝐸[𝜈(𝑠)𝜈𝑇(𝑠)], we obtain  

 𝑔(𝑘, 𝑠)Π(𝑠) = 𝐾𝑥𝑥(𝑘, 𝑠)𝐻̆𝑇 − ∑𝑔

𝑠−1

𝑖=1

(𝑘, 𝑖)Π(𝑖)𝑔0
𝑇(𝑠, 𝑖)𝐻̆𝑇 . (15) 

Here, 𝐾𝑥𝑥̆(𝑘, 𝑠)  represent the cross-covariance function of the state 𝑥(𝑘)  with the degraded signal 𝑥̆(𝑠), 

𝐸[𝑥(𝑘)𝑥̆𝑇(𝑠)]. Let 𝐾𝑥𝑥(𝑘, 𝑠) be represented by 

 

𝐾𝑥𝑥̆(𝑘, 𝑠) = {
𝛼(𝑘)𝛽𝑇(𝑠),

𝛾(𝑘)𝛿𝑇(𝑠),

0 ≤ 𝑠 ≤ 𝑘,
0 ≤ 𝑘 ≤ 𝑠,

 

𝛼(𝑘) = Φ𝑘, 𝛽𝑇(𝑠) = Φ−𝑠𝐾𝑥𝑥(𝑠, 𝑠), 𝛾(𝑘) = 𝐾𝑥𝑥(𝑘, 𝑘)(Φ̆𝑇)−𝑘, 𝛿𝑇(𝑠) = (Φ̆𝑇)𝑠. 

(16) 

Here, Φ denotes the system matrix for the state 𝑥(𝑘). Similarly, to (15), the optimal impulse response function 

𝑔0(𝑘, 𝑠) satisfies 

 𝑔0(𝑘, 𝑠)Π(𝑠) = 𝐾(𝑘, 𝑠)𝐻̆𝑇 − ∑ 𝑔

𝑠−1

𝑖=1

(𝑘, 𝑖)Π(𝑖)𝑔0
𝑇(𝑠, 𝑖)𝐻̆𝑇 . (17) 

4 Autoregressive models for signal process 

Let the signal process be expressed in terms of the J −th order AR model  

 𝑧(𝑘) = −𝑎1𝑧(𝑘 − 1) − 𝑎2𝑧(𝑘 − 2) − ⋯− 𝑎𝐽𝑧(𝑘 − 𝐽) + 𝑤(𝑘). (18) 
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It is seen that the observation matrix 𝐻 and the state equation for the state 𝑥(𝑘) in (2) are given by  

 𝐻 = [𝐼𝑚×𝑚 0 0 ⋯ 0], (19) 

 
[
 
 
 
 

𝑥1(𝑘 + 1)

𝑥2(𝑘 + 1)
⋮

𝑥𝐽−1(𝑘 + 1)

𝑥𝐽(𝑘 + 1) ]
 
 
 
 

=

[
 
 
 
 

0 𝐼𝑚×𝑚 0 ⋯ 0
0 0 𝐼𝑚×𝑚 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ 𝐼𝑚×𝑚

−𝑎𝐽 −𝑎𝐽−1 −𝑎𝐽−2 ⋯ −𝑎1 ]
 
 
 
 

[
 
 
 
 

𝑥1(𝑘)

𝑥2(𝑘)
⋮

𝑥𝐽−1(𝑘)

𝑥𝐽(𝑘) ]
 
 
 
 

+

[
 
 
 
 

0
0
⋮
0

𝐼𝑚×𝑚]
 
 
 
 

𝑤(𝑘), 𝐸[𝑤(𝑘)𝑤𝑇(𝑠)] = 𝑄𝛿𝐾(𝑘 − 𝑠), Γ =

[
 
 
 
 

0
0
⋮
0

𝐼𝑚×𝑚]
 
 
 
 

.

 (20) 

5. Robust RLS Wiener fixed-interval smoothing and filtering algorithms 

Under the preliminary formulation on the robust fixed-interval smoothing problem for the signal 𝑧(𝑘) and the 

uncertain and certain systems in sections 2, 3, and 4, Theorem 1 presents the robust RLS Wiener filtering and 

fixed-interval smoothing algorithms. Here, the robust RLS Wiener filtering algorithm is same as that in [10]. 

Theorem 1 Let the state equation and the observation equation, including the uncertain quantities ΔΦ and 

Δ𝐻 respectively, be given by (1). Let Φ and 𝐻 represent the system and observation matrices respectively for 

the signal 𝑧(𝑘). Let Φ̆ and 𝐻̆ represent the system and observation matrices respectively for the degraded 

signal 𝑧̆(𝑘), which is fitted to the AR model (3) of the order 𝑁. Let the variance 𝐾(𝑘, 𝑘) of the state 𝑥̆(𝑘) for 

the degraded signal 𝑧̆(𝑘) and the cross-variance function 𝐾𝑥𝑥(𝑘, 𝑘) of the state 𝑥(𝑘) for the signal 𝑧(𝑘) with 

the state 𝑥̆(𝑘) for the degraded signal 𝑧̆(𝑘) Be given. Let the variance of the white observation noise 𝑣(𝑘) be 

𝑅. Then, the robust RLS Wiener fixed-interval smoothing and filtering algorithms for the signal 𝑧(𝑘) consist of 

(21) -(31) in linear discrete-time stochastic systems.  

Filtering estimate of the signal 𝑧(𝑘): 𝑧̂(𝑘, 𝑘)  

 𝑧̂(𝑘, 𝑘) = 𝐻𝑥̂(𝑘, 𝑘) (21) 

Filtering estimate of the state 𝑥(𝑘): 𝑥̂(𝑘, 𝑘)  

 
𝑥̂(𝑘, 𝑘) = Φ𝑥̂(𝑘 − 1, 𝑘 − 1) + 𝑔(𝑘, 𝑘)(𝑦̆(𝑘) − 𝐻̆Φ̆𝑥̂̆(𝑘 − 1, 𝑘 − 1)),

𝑥̂(0,0) = 0
 (22) 

Filter gain for the filtering estimate 𝑥̂(𝑘, 𝑘) in (22): 𝑔(𝑘, 𝑘)  

 

𝑔(𝑘, 𝑘) = [𝐾𝑥𝑧(𝑘, 𝑘) − Φ𝑆(𝑘 − 1)Φ̆𝑇𝐻̆𝑇]

× {𝑅 + 𝐻̆[𝐾(𝑘, 𝑘) − Φ̆𝑆0(𝐿 − 1)Φ̆𝑇]𝐻̆𝑇}−1,

𝐾𝑥𝑧(𝑘, 𝑘) = 𝐾𝑥𝑥(𝑘, 𝑘)𝐻̆𝑇

 (23) 
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Filtering estimate of 𝑥̆(𝑘): 𝑥̂̆(𝑘, 𝑘)  

 
𝑥̂̆(𝑘, 𝑘) = Φ̆𝑥̂̆(𝑘 − 1, 𝑘 − 1) + 𝑔0(𝑘, 𝑘)(𝑦̆(𝑘) − 𝐻̆Φ̆𝑥̂̆(𝑘 − 1, 𝑘 − 1)),

𝑥̂̆(0,0) = 0
 (24) 

Filter gain for the filtering estimate 𝑥̂̆(𝑘, 𝑘) in (24): 𝑔0(𝑘, 𝑘) 

 
𝑔0(𝑘, 𝑘) = [𝐾(𝑘, 𝑘)𝐻̆𝑇 − Φ̆𝑆0(𝑘 − 1)Φ̆𝑇𝐻̆𝑇]

× {𝑅 + 𝐻̆[𝐾(𝑘, 𝑘) − Φ̆𝑆0(𝐿 − 1)Φ̆𝑇]𝐻̆𝑇}−1
 (25) 

Auto-variance function of the filtering estimate 𝑥̂̆(𝑘, 𝑘): 𝑆0(𝑘) = 𝐸[𝑥̂̆(𝑘, 𝑘)𝑥̂̆𝑇(𝑘, 𝑘)]  

 
𝑆0(𝑘) = Φ̆𝑆0(𝑘 − 1)Φ̆𝑇 + 𝑔0(𝑘, 𝑘)𝐻̆[𝐾(𝑘, 𝑘) − Φ̆𝑆0(𝑘 − 1)Φ̆𝑇],

𝑆0(0) = 0
 (26) 

Cross-variance function of 𝑥̂(𝑘, 𝑘) with 𝑥̂̆(𝑘, 𝑘): 𝑆(𝑘) = 𝐸[𝑥̂(𝑘, 𝑘)𝑥̂̆𝑇(𝑘, 𝑘)]  

 
𝑆(𝑘) = Φ𝑆(𝑘 − 1)Φ̆𝑇 + 𝑔(𝑘, 𝑘)𝐻̆[𝐾(𝑘, 𝑘) − Φ̆𝑆0(𝑘 − 1)Φ̆𝑇],

𝑆(0) = 0
 (27) 

Fixed-interval smoothing estimate of the signal 𝑧(𝑘): 𝑧̂(𝑘, 𝐿) 

 𝑧̂(𝑘, 𝐿) = 𝐻𝑥̂(𝑘, 𝐿) (28) 

Fixed-interval smoothing estimate of the state 𝑥(𝑘): 𝑥̂(𝑘, 𝐿) 

 𝑥̂(𝑘, 𝐿) = 𝑥̂(𝑘, 𝑘) + (𝐾𝑥𝑥(𝑘, 𝑘) − 𝑆(𝑘))𝑞̆1(𝑘 + 1, 𝐿) (29) 

Backward equation for 𝑞̆1(𝑘, 𝐿) from 𝑞̆1(𝑘 + 1, 𝐿): 

 

𝑞̆1(𝑘, 𝐿) = Φ̆𝑇𝑞̆1(𝑘 + 1, 𝐿) + Φ̆𝑇𝐻̆𝑇Π−1(𝑘)(𝑦̆(𝑘) − 𝐻̆Φ̆𝑥̂̆(𝑘 − 1, 𝑘 − 1)) 

-Φ̆𝑇𝐻̆𝑇𝑔0
𝑇(𝑘, 𝑘) 𝑞̆1(𝑘 + 1, 𝐿), 𝑞̆1(𝐿 + 1, 𝐿) = 0 

(30) 

Variance of the innovation process 𝜈(𝑘): Π(𝑘) 

 Π(𝑘) = 𝑅 + 𝐻̆[𝐾(𝑘, 𝑘) − Φ̆𝑆0(𝐿 − 1)Φ̆𝑇]𝐻̆𝑇 (31) 

Proof of Theorem 1 is deferred to the appendix. The robust RLS Wiener filtering algorithm, proposed in 

Theorem 1 based on the innovation theory, is same as the robust RLS Wiener filtering algorithm [10].  

The necessary conditions for the stability of the robust filtering and fixed-interval smoothing algorithms are as 

follows.  

1. All the real parts in the eigenvalues of the matrix Φ  are negative. 
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2. All the real parts in the eigenvalues of the matrix Φ̆ − 𝑔0(𝑘, 𝑘)𝐻̆Φ̆ are negative.  

3. 𝑅 + 𝐻̆[𝐾(𝑘, 𝑘) − Φ̆𝑆0(𝐿 − 1)Φ̆𝑇]𝐻̆𝑇 > 0  

The fixed-interval smoothing error variance 𝑃̃𝑧(𝑘, 𝐿) of the signal 𝑧(𝑘) is shown in section 6.  

6. Fixed-interval smoothing error variance of the signal 

This section discusses on the existence of the fixed-interval smoothing estimate 𝑧̂(𝑘, 𝐿). The variance 𝑃̃𝑧(𝑘, 𝐿) 

of the fixed-interval smoothing error 𝑧(𝑘) − 𝑧̂(𝑘, 𝐿) is shown as 

 𝑃̃𝑧(𝑘, 𝐿) = 𝐸[(𝑧(𝑘) − 𝑧̂(𝑘, 𝐿))(𝑧(𝑘) − 𝑧̂(𝑘, 𝐿))𝑇]. (32) 

(32) might be written as  

 

𝑃̃𝑧(𝑘, 𝐿) = 𝐻𝐾𝑥(𝑘, 𝑘)𝐻𝑇 − 𝑃𝑧̂(𝑘, 𝐿),

𝑃𝑧̂(𝑘, 𝐿) = 𝐸[𝑧̂(𝑘, 𝐿)𝑧̂𝑇(𝑘, 𝐿)]

= 𝐻𝐸[𝑥̂(𝑘, 𝐿)𝑥̂𝑇(𝑘, 𝐿)]𝐻𝑇

= 𝐻𝑃𝑥(𝑘, 𝐿)𝐻𝑇 , 𝑃𝑥(𝑘, 𝐿) = 𝐸[𝑥̂(𝑘, 𝐿)𝑥̂𝑇(𝑘, 𝐿)].

 (33) 

Here, 𝐾𝑥(𝑘, 𝑘) represents the variance of the state 𝑥(𝑘). From (29), (A-38), (A-39), (A-51) and (A-52), the auto-

variance function of the fixed-interval estimate 𝑥̂(𝑘, 𝐿), 𝑃𝑥(𝑘, 𝐿), is described by 

 

𝑃𝑥(𝑘, 𝐿) = 𝑃𝑥(𝑘, 𝑘) + (𝐾𝑥𝑥(𝑘, 𝑘 − 𝑆(𝑘))𝐸[𝑞̆1(𝑘 + 1, 𝐿)𝑞̆1
𝑇(𝑘 + 1, 𝐿)] 

× (𝐾𝑥𝑥(𝑘, 𝑘 − 𝑆(𝑘))𝑇 

=𝑃𝑥(𝑘, 𝑘) + (𝐾𝑥𝑥(𝑘, 𝑘 − 𝑆(𝑘))𝑞̅(𝑘 + 1, 𝐿)(𝐾𝑥𝑥(𝑘, 𝑘 − 𝑆(𝑘))𝑇, 

𝑞̅(𝑘 + 1, 𝐿) = 𝐸[𝑞̆1(𝑘 + 1, 𝐿)𝑞̆1
𝑇(𝑘 + 1, 𝐿)]. 

(34) 

Here, 𝑞̅(𝑘, 𝐿) is calculated in the backward of time 𝑘 by  

 

𝑞̅(𝑘, 𝐿) = Φ̅(𝑘)𝑞̅(𝑘 + 1, 𝐿)Φ̅(𝑘)𝑇 + 𝐺̅(k)Π(k)𝐺̅(𝑘)𝑇 ,  

𝑞̅(𝐿 + 1, 𝐿) = 0, 

Φ̅(𝑘) = (Φ̆𝑇 − Φ̆𝑇𝐻̆𝑇𝑔0
𝑇(𝑘, 𝑘)), 𝐺̅(𝑘) = Φ̆𝑇𝐻̆𝑇Π−1(𝑘). 

(35) 

(34) shows that the relationship 0 ≤ 𝐾𝑥(𝑘, 𝑘) − 𝑃𝑥(𝑘, 𝐿) ≤ 𝐾𝑥(𝑘, 𝑘) − 𝑃𝑥(𝑘, 𝑘) holds. This means that the MSV of 

the fixed-interval smoothing error 𝑥(𝑘) − 𝑥̂(𝑘, 𝐿) is less than the MSV of the filtering error 𝑥(𝑘) − 𝑥̂(𝑘, 𝑘). Since 

𝑃̃𝑧(𝑘, 𝐿) ≥ 0  and the variance 𝑃𝑧̂(𝑘, 𝐿)  of the fixed-interval smoothing estimate 𝑧̂(𝑘, 𝐿)  is also positive 

semidefinite 

 𝑃𝑧̂(𝑘, 𝐿) ≥ 0, (36) 
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it follows that  

 0 ≤ 𝑃𝑧̂(𝑘, 𝐿) ≤ 𝐻𝐾𝑥(𝑘, 𝑘)𝐻𝑇. (37) 

(37) shows that the variance of the fixed-interval smoothing error is upper bounded by the variance of the signal 

and lower bounded by the zero matrix. This validates the existence of the robust fixed-interval smoothing 

estimate 𝑧̂(𝑘, 𝐿) of the signal 𝑧(𝑘). In section 7 the estimation accuracy of the proposed robust RLS Wiener 

fixed-interval smoother is compared with the robust RLS Wiener filter [10], the RLS Wiener fixed-interval 

smoother [12], the RTS fixed-interval smoother [13], [14], the RLS Wiener 𝐻∞ filter [15] and the 𝐻∞ RLS Wiener 

fixed-interval smoother [16] from the numerical aspect.  

7. A numerical simulation example 

In linear discrete-time stochastic systems, let a scalar observation equation and a state equation for 𝑥(𝑘) be 

given by  

 

𝑦(𝑘) = 𝑧(𝑘) + 𝑣(𝑘), 𝑧(𝑘) = 𝐻𝑥(𝑘), 𝐻 = [1 0],

𝑥(𝑘 + 1) = Φ𝑥(𝑘) + Γ𝑤(𝑘), 𝑥(𝑘) = [
𝑥1(𝑘)

𝑥2(𝑘)
] ,

Φ = [
0 1

−𝑎2 −𝑎1
] , Γ = [

0
1
] , 𝑎1 = −0.1, 𝑎2 = −0.8 

 
𝐸[𝑣(𝑘)𝑣(𝑠)] = 𝑅𝛿𝐾(𝑘 − 𝑠), 𝐸[𝑤(𝑘)𝑤(𝑠)] = 𝑄𝛿𝐾(𝑘 − 𝑠), 𝑄 = 0.52.

 (38) 

The observation noise 𝑣(𝑘) is a zero-mean white noise process. From (1) let the state-space model containing 

the uncertain quantities be described by 

 

𝑦̆(𝑘) = 𝑧̆(𝑘) + 𝑣(𝑘), 𝑧̆(𝑘) = 𝐻(𝑘)𝑥̅(𝑘), 𝑥̅(𝑘) = [
𝑥̅1(𝑘)

𝑥̅2(𝑘)
], 

𝑥̅(𝑘 + 1) = Φ̅(𝑘)𝑥̅(𝑘) + Γ𝑤(𝑘), Φ̅(𝑘) = Φ + ΔΦ(𝑘), Γ = [
0
1
], 

ΔΦ(𝑘) = [
0 0

Δ2(𝑘) Δ1(𝑘)
] , Δ1(𝑘) = −0.1, Δ2(𝑘) = 0.1, 

𝐻(𝑘) = 𝐻 + ΔH(𝑘), ΔH(𝑘) = [0 Δ3(𝑘)], Δ3(𝑘) = 0.1. 

(39) 

It should be noted that the uncertain quantities ΔΦ(𝑘) and ΔH(𝑘) are unknown. It is a task to estimate the 

signal 𝑧(𝑘) recursively in terms of the observed value 𝑦̆(𝑘), which is given as the sum of the degraded signal 

𝑧̆(𝑘) and the observation noise 𝑣(𝑘). Let 𝑧̆(𝑘) be fitted to the 10-th order AR model, expressed by 

 
𝑧̆(𝑘) = −𝑎̆1𝑧̆(𝑘 − 1) − 𝑎̆2𝑧̆(𝑘 − 2) − ⋯− 𝑎̆𝑁𝑧̆(𝑘 − 𝑁) + 𝑒̆(𝑘),

𝐸[𝑒̆(𝑘)𝑒̆(𝑠)] = 𝑄̆𝛿𝐾(𝑘 − 𝑠), 𝑁 = 10.
 (40) 
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In this example, the state equation for 𝑥̆(𝑘), given by (5), corresponds to the case of 𝑚 = 1. The relationship 

𝐾(𝑘, 𝑠) = 𝐾(𝑘 − 𝑠)  represents the auto-covariance function of the state 𝑥̆(𝑘)  in wide-sense stationary 

stochastic systems. 𝐾(𝑘, 𝑠) is expressed in the form of the semi-degenerate function (6). Φ̆ in (7) represents 

the system matrix for the state 𝑥̆(𝑘). Also, from 𝐾𝑧(𝑘 − 𝑠) = 𝐾𝑧(𝑠 − 𝑘) = 𝐸[𝑧̆(𝑘)𝑧̆(𝑠)] for the scalar degraded 

signal 𝑧̆(𝑘), the auto-variance function 𝐾(𝑘, 𝑘) of the state 𝑥̆(𝑘) is expressed as  

 

𝐾(𝑘, 𝑘) = 𝐸

[
 
 
 
 
 

[
 
 
 
 

𝑧̆(𝑘)

𝑧̆(𝑘 + 1)
⋮

𝑧̆(𝑘 + 𝑁 − 2)

𝑧̆(𝑘 + 𝑁 − 1)]
 
 
 
 

× [𝑧̆(𝑘) 𝑧̆(𝑘 + 1) ⋯ 𝑧̆(𝑘 + 𝑁 − 2) 𝑧̆(𝑘 + 𝑁 − 1)]

]
 
 
 
 
 

=

[
 
 
 
 

𝐾𝑧(0) 𝐾𝑧(1) ⋯ 𝐾𝑧(𝑁 − 2) 𝐾𝑧(𝑁 − 1)

𝐾𝑧(1) 𝐾𝑧(0) ⋯ 𝐾𝑧(𝑁 − 3) 𝐾𝑧(𝑁 − 2)
⋮ ⋮ ⋱ ⋮ ⋮

𝐾𝑧(𝑁 − 2) 𝐾𝑧(𝑁 − 3) ⋯ 𝐾𝑧(0) 𝐾𝑧(1)
𝐾𝑧(𝑁 − 1) 𝐾𝑧(𝑁 − 2) ⋯ 𝐾𝑧(1) 𝐾𝑧(0) ]

 
 
 
 

.

 (41) 

Let 𝐾𝑧𝑧(𝑘, 𝑠) = 𝐸[𝑧(𝑘)𝑧̆(𝑠)] represent the cross-covariance function between the signal 𝑧(𝑘) and the degraded 

signal 𝑧̆(𝑠). From (4) and (38), the cross-covariance function 𝐾𝑥𝑥̆(𝑘, 𝑠) is expressed as  

 

𝐾𝑥𝑥(𝑘, 𝑠) = Φ𝑘−𝑠𝐾𝑥𝑥(𝑠, 𝑠), 0 ≤ 𝑠 ≤ 𝑘,

𝐾𝑥𝑥(𝑘, 𝑘) = 𝐸 [[
𝑥1(𝑘)

𝑥2(𝑘)
] [𝑧̆(𝑘) 𝑧̆(𝑘 + 1) ⋯ 𝑧̆(𝑘 + 𝑁 − 2) 𝑧̆(𝑘 + 𝑁 − 1)]]

= [
𝐸[𝑥1(𝑘)𝑧̆(𝑘)] 𝐸[𝑥1(𝑘)𝑧̆(𝑘 + 1)]

𝐸[𝑥2(𝑘)𝑧̆(𝑘)] 𝐸[𝑥2(𝑘)𝑧̆(𝑘 + 1)]

⋯ 𝐸[𝑥1(𝑘)𝑧̆(𝑘 + 𝑁 − 2)] 𝐸[𝑥1(𝑘)𝑧̆(𝑘 + 𝑁 − 1)]

⋯ 𝐸[𝑥2(𝑘)𝑧̆(𝑘 + 𝑁 − 2)] 𝐸[𝑥2(𝑘)𝑧̆(𝑘 + 𝑁 − 1)]
]

= [
𝐸[𝑧(𝑘)𝑧̆(𝑘)] 𝐸[𝑧(𝑘)𝑧̆(𝑘 + 1)]

𝐸[𝑧(𝑘 + 1)𝑧̆(𝑘)] 𝐸[𝑧(𝑘 + 1)𝑧̆(𝑘 + 1)]

⋯ 𝐸[𝑧(𝑘)𝑧̆(𝑘 + 𝑁 − 2)] 𝐸[𝑧(𝑘)𝑧̆(𝑘 + 𝑁 − 1)]

⋯ 𝐸[𝑧(𝑘 + 1)𝑧̆(𝑘 + 𝑁 − 2)] [𝑧(𝑘 + 1)𝑧̆(𝑘 + 𝑁 − 1)]
]

= [
𝐾𝑧𝑧(𝑘, 𝑘) 𝐾𝑧𝑧(𝑘, 𝑘 + 1)

𝐾𝑧𝑧(𝑘 + 1, 𝑘) 𝐾𝑧𝑧(𝑘 + 1, 𝑘 + 1)

⋯ 𝐾𝑧𝑧(𝑘, 𝑘 + 𝑁 − 2) 𝐾𝑧𝑧(𝑘, 𝑘 + 𝑁 − 1)

⋯ 𝐾𝑧𝑧(𝑘 + 1, 𝑘 + 𝑁 − 2) 𝐾𝑧𝑧(𝑘 + 1, 𝑘 + 𝑁 − 1)
] .

 (42) 

The AR parameters 𝑎̆1, 𝑎̆2, ⋯ , 𝑎̆𝑁−1, 𝑎̆𝑁 in (40) are calculated by the Yule-Walker equation. 

[
 
 
 
 

𝐾𝑧(0) 𝐾𝑧(1) ⋯ 𝐾𝑧(𝑁 − 2) 𝐾𝑧(𝑁 − 1)

𝐾𝑧(1) 𝐾𝑧(0) ⋯ 𝐾𝑧(𝑁 − 3) 𝐾𝑧(𝑁 − 2)
⋮ ⋮ ⋱ ⋮ ⋮

𝐾𝑧(𝑁 − 2) 𝐾𝑧(𝑁 − 3) ⋯ 𝐾𝑧(0) 𝐾𝑧(1)

𝐾𝑧(𝑁 − 1) 𝐾𝑧(𝑁 − 2) ⋯ 𝐾𝑧(1) 𝐾𝑧(0) ]
 
 
 
 

[
 
 
 
 

𝑎̆1

𝑎̆2

⋮
𝑎̆𝑁−1

𝑎̆𝑁 ]
 
 
 
 

=

[
 
 
 
 

−𝐾𝑧(1)

−𝐾𝑧(2)
⋮

−𝐾𝑧(𝑁 − 1)

−𝐾𝑧(𝑁) ]
 
 
 
 

 

Substituting 𝐻, 𝐻̆, Φ, Φ̆, 𝐾𝑥𝑥(𝑘, 𝑘), 𝐾(𝑘, 𝑘) and 𝑅 into the robust RLS Wiener fixed-interval smoothing and 

filtering algorithms of Theorem 1, the fixed-interval smoothing and filtering estimates are calculated recursively. 
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In evaluating Φ̆  in (7) for 𝑚 = 1 , 𝐾(𝑘, 𝑘)  in (41) and 𝐾𝑥𝑥(𝑘, 𝑘)  in (42), 2,000 number of the signal and 

degraded signal data are used.  

Fig.1 illustrates the signal 𝑧(𝑘) and its degraded signal 𝑧̆(𝑘) vs. 𝑘. In comparison with the signal, the degraded 

signal is influenced by the uncertain parameters in the system matrix Φ̅(𝑘) and the observation matrix 𝐻(𝑘) 

in (39). Fig.2 illustrates the signal, the RLS Wiener filtering estimate 𝑧̂(𝑘, 𝑘) , the RLS Wiener fixed-interval 

smoothing estimate 𝑧̂(𝑘, 𝐿), for the fixed interval L = 200, by Nakamori et al. [12], vs. 𝑘  when the white 

Gaussian observation noise obeys N(0, 0.32). In the calculation of the fixed-interval smoothing estimate, the 

filtering estimate by the robust RLS Wiener filter [10] is used. Fig.3 illustrates the mean-square values (MSVs) of 

the filtering errors 𝑧(𝑘) − 𝑧̂(𝑘, 𝑘) by the robust RLS Wiener filter [10] and the fixed-interval smoothing errors 

𝑧(𝑘) − 𝑧̂(𝑘, 𝐿) by the RTS fixed-interval smoother [13], [14] vs. fixed interval L, 50 ≤ 𝐿 ≤ 250, 1≤ 𝑘 ≤ 𝐿, for the 

white Gaussian observation noises N(0, 0.12), N(0, 0.32), N(0, 0.52) and N(0, 0.72). Here, the RTS fixed-interval 

smoother uses the filtering estimates calculated by the robust RLS Wiener filter [10]. For the white Gaussian 

observation noise N(0, 0.12), The estimation accuracy of the fixed-interval smoother improves that of the robust 

filter by a little. For the white Gaussian observation noise N(0, 0.32) with 𝐿 = 50, the estimation accuracy of the 

fixed-interval smoother is superior to that of the robust filter [10]. Fig.4 illustrates the MSVs of the filtering and 

fixed-interval smoothing errors by the RLS Wiener 𝐻∞  filter [15] and the RLS Wiener 𝐻∞  fixed-interval 

smoother [16] vs. L. Compared with the 𝐻∞ filtering estimate, the estimation accuracy of the 𝐻∞ fixed-interval 

smoothing estimate is improved for L = 150, 200 for the observation noise N(0, 0.52) and for L = 100, 150 for 

the observation noise N(0, 0.72). However, from Fig.3 and Fig.4, the estimation accuracy of the RLS Wiener 𝐻∞ 

filter is inferior to that of the robust RLS Wiener filter. Fig.5 illustrates the MSVs of the filtering and fixed-interval 

smoothing errors by the robust RLS Wiener filter [10] and the RLS Wiener fixed-interval smoother [12] vs. L. The 

RLS Wiener fixed-interval smoother is superior in estimation accuracy to the robust RLS Wiener filter particularly 

for the white Gaussian observation noise N(0, 0.72) . For the white Gaussian observation 

noises N(0, 0.12), N(0, 0.32) and N(0, 0.52), The estimation accuracy of the robust RLS Wiener filter is superior 

to the RLS Wiener fixed-interval smoother. Here, in the calculation of the fixed-interval smoothing estimate, the 

filtering estimate by the robust RLS Wiener filter [10] is used. Fig.6 illustrates the MSVs of the filtering and fixed-

interval smoothing errors by the robust RLS Wiener filter [10] and the robust RLS Wiener fixed-interval smoother 

of Theorem 1 vs. L. Compared with the robust filtering  

 

Fig.1 Signal and degraded signal. 



Computer Reviews Journal Vol 5 (2019) ISSN: 2581-6640               http://purkh.com/index.php/tocomp 

44 

 

Fig.2 Signal, robust RLS Wiener filtering estimate by Nakamori [10] and fixed-interval smoothing 

estimate by Nakamori et al. [12] for white Gaussian observation noise 𝐍(𝟎, 𝟎. 𝟑𝟐). 

 

Fig.3 MSVs of filtering and fixed-interval smoothing errors by robust RLS Wiener filter [10] and RTS 

fixed-interval smoother [13], [14] vs. fixed interval 𝐋. 

 

Fig.4 MSVs of filtering and fixed-interval smoothing errors by 𝑯∞ RLS Wiener filter [15] and 𝑯∞ RLS 
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Wiener fixed-interval smoother [16] vs. fixed interval 𝐋. 

 

Fig.5 MSVs of filtering and fixed-interval smoothing errors by robust RLS Wiener filter [10] and RLS 

Wiener fixed-interval smoother [12] vs. fixed interval 𝐋. 

 

Fig.6 MSVs of filtering and fixed-interval smoothing errors by robust RLS Wiener filter [10] and RLS 
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Wiener fixed-interval smoother in Theorem 1 vs. fixed interval 𝐋. 

 

Fig.7 MSVs of filtering and fixed-interval smoothing errors by robust RLS Wiener filter [10] and robust 

RLS Wiener fixed-interval smoother in Theorem 1 by replacing the observed value with robust filtering 

estimate vs. fixed interval 𝐋. 

 

Fig.8 MSVs of the filtering and fixed-interval smoothing errors by the robust RLS Wiener filter [10] and 
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the RLS Wiener fixed-interval smoother [12] by replacing the filtering estimate of the state with the 

robust RLS Wiener filtering estimate and the observed value with the robust RLS Wiener filtering 

estimate vs. fixed interval 𝐋. 

estimate, the estimation accuracy of the robust fixed-interval smoother is improved for L = 50  for the 

observation noises N(0, 0.52)  and N(0, 0.72) . Fig.7 illustrates the MSVs of the filtering and fixed-interval 

smoothing errors by the robust RLS Wiener filter [10] and the robust RLS Wiener fixed-interval smoother of 

Theorem 1 by replacing the observed value with the robust filtering estimate vs L. The estimation accuracy of 

the fixed-interval smoother is superior to the filter for the observation noises N(0, 0.52)  and N(0, 0.72) . 

Compared with the robust fixed-interval smoother of Fig.6, the estimation accuracy of the robust fixed-interval 

smoother of Fig.7 is superior for the observation noises N(0, 0.32), N(0, 0.52) and N(0, 0.72). Fig.8 illustrates 

the MSVs of the filtering and fixed-interval smoothing errors by the robust RLS Wiener filter [10] and the RLS 

Wiener fixed-interval smoother [12] by replacing the filtering estimate of the state with the robust RLS Wiener 

filtering estimate and the observed value with the robust RLS Wiener filtering estimate vs. L. The estimation 

accuracy of the fixed-interval smoother is superior to the filter for the observation noises N(0, 0.52)  and 

N(0, 0.72). Compared with the robust fixed-interval smoother of Fig.7, the estimation accuracy of the fixed-

interval smoother of Fig.8 is superior for the observation noises N(0, 0.12), N(0, 0.32) and N(0, 0.72). Here, the 

MSVs are evaluated by 
2

1

ˆ( ( ) ( , )) /
L

k

z k z k k L
=

−  for the filtering errors and 
2

1

ˆ( ( ) ( , )) /
L

k

z k z k L L
=

−  for the 

fixed-interval smoothing errors. For the less MSV of the estimation errors, the estimation accuracy becomes 

better. 

From the above simulation results, the most feasible estimation technique for the fixed-interval smoothing 

estimate is the RLS Wiener fixed-interval smoother [12]. Here, the robust filtering estimate is used and the 

observed value is replaced with the robust filtering estimate. This result might be conjectured from the following 

viewpoints. (1) The RLS Wiener filter and fixed-interval smoother [12] are designed based on the precise state-

space model. By replacing the degraded observed value with the filtering estimate, calculated by the robust RLS 

Wiener filter in [10], the estimation accuracy of the RLS Wiener filter and fixed-interval smoother [12] is improved 

as seen from Fig.5 and Fig.8. (2) The robust RLS Wiener estimators in Theorem 1 are designed based on the 

state-space model with uncertain parameters. As shown in Fig.7 and Fig.8, for the relatively small variances 
20.1  

and 
20.3  of the observation noise, the estimation accuracy of the robust RLS Wiener fixed-interval smoother 

in Theorem 1 is inferior to the RLS Wiener fixed-interval smoother [12]. This degradedness of the robust RLS 

Wiener fixed-interval smoother might be caused by the imprecise state-space model. 

 8. Conclusions 

This paper has proposed, in Theorem 1, the robust RLS Wiener filter and the robust RLS Wiener fixed-interval 

smoother based on the innovation theory. As a result, the robust RLS Wiener filtering algorithm is same as the 

existing robust RLS Wiener filtering algorithm. In the numerical simulation example, the estimation 

characteristics of the fixed-interval smoother in Theorem 1 are compared with the robust RLS Wiener filter, the 
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RTS fixed-interval smoother, the RLS Wiener fixed-interval smoother, the 𝐻∞  RLS Wiener filter and the 

𝐻∞fixed-interval smoother. From the simulation results, the most feasible estimation technique for the fixed-

interval smoothing estimate is the RLS Wiener fixed-interval smoother. Here, the robust filtering estimate is used, 

and the observed value is replaced with the robust filtering estimate.  

Appendix Proof of Theorem 1 

From (10) the fixed-interval smoothing estimate 𝑥̂(𝑘, 𝐿) of the state 𝑥(𝑘) is expressed as  

 𝑥̂(𝑘, 𝐿) = ∑ 𝑔𝑘
𝑖=1 (𝑘, 𝑖)𝜈(𝑖) + ∑ 𝑔𝐿

𝑖=𝑘+1 (𝑘, 𝑖)𝜈(𝑖). (A-1) 

The first term on the right-hand side represents the filtering estimate 𝑥̂(𝑘, 𝑘) of the state 𝑥(𝑘). Let us introduce 

an auxiliary function 𝐽1(𝑠), which satisfies 

 𝐽1(𝑠)Π(s) = 𝛽𝑇(𝑠)𝐻̆𝑇 − ∑𝐽1(𝑖)

𝑠−1

𝑖=1

Π(i)𝑔0
𝑇(𝑠, 𝑖)𝐻̆𝑇 . (A-2) 

From (15), (16) and (A-2), 𝑔(𝑘, 𝑠), 0 ≤ 𝑠 ≤ 𝑘, is given by 

 𝑔(𝑘, 𝑠) = 𝛼(𝑘)𝐽1(𝑠). (A-3) 

Let us introduce an auxiliary function 𝐽3(𝑠), which satisfies 

 𝐽3(𝑠)Π(s) = 𝐵𝑇(𝑠)𝐻̆𝑇 − ∑𝐽3(𝑖)

𝑠−1

𝑖=1

Π(i)𝑔0
𝑇(𝑠, 𝑖)𝐻̆𝑇 . (A-4) 

From (6), (17) and (A-4), 𝑔0(𝑘, 𝑠) is given by 

 𝑔0(𝑘, 𝑠) = 𝐴(𝑘)𝐽3(𝑠), 0 ≤ s ≤ k . (A-5) 

In (A-2), by putting 𝑠 = 𝑘, it follows that 

 𝐽1(𝑘)Π(k) = 𝛽𝑇(𝑘)𝐻̆𝑇 − ∑ 𝐽1(𝑖)

𝑘−1

𝑖=1

Π(i)𝑔0
𝑇(𝑘, 𝑖)𝐻̆𝑇 . (A-6) 

Substituting (A-5) into (A-6) and introducing 

 𝑟13(𝑘) = ∑𝐽1(𝑖)

𝑘

𝑖=1

Π(i)𝐽3
𝑇(𝑖), (A-7) 

we have 

 𝐽1(𝑘)Π(k) = 𝛽𝑇(𝑘)𝐻̆𝑇 − 𝑟13(𝑘 − 1)𝐴𝑇(𝑘)𝐻̆𝑇 . (A-8) 
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Subtracting 𝑟13(𝑘 − 1) from 𝑟13(𝑘), we have 

 𝑟13(𝑘) = 𝑟13(𝑘 − 1) + 𝐽1(𝑘)Π(k)𝐽3
𝑇(𝑘), 𝑟13(0) = 0. (A-9) 

From (A-3), the filtering estimate 𝑧̂(𝑘, 𝑘) of the signal 𝑧(𝑘) is given by 

 𝑧̂(𝑘, 𝑘) = 𝐻𝛼(𝑘)𝑒1(𝑘), (A-10) 

where 𝑒1(𝑘) satisfies 

 𝑒1(𝑘) = ∑𝐽1(𝑖)𝜈

𝑘

𝑖=1

(𝑖). (A-11) 

Subtracting 𝑒1(𝑘 − 1) from 𝑒1(𝑘), we have 

 𝑒1(𝑘) = 𝑒1(𝑘 − 1) + 𝐽1(𝑘)(𝑦̆(𝑘) − 𝐻̆Φ̆𝑥̂̆(𝑘 − 1, 𝑘 − 1)), 𝑒1(0) = 0. (A-12) 

Now, the variance of the innovation process is given by 

 

𝛱(𝑘) = 𝐸[𝜈(𝑘)𝜈𝑇(𝑘)] 

=E[𝑦̆(𝑘)𝑦̆𝑇(𝑘)]- 𝐻̆𝛷̆E[𝑥̂̆(𝑘 − 1, 𝑘 − 1)𝑥̂̆𝑇(𝑘 − 1, 𝑘 − 1)]𝛷̆𝑇𝐻̆𝑇 . 

(A-13) 

From (14) and (A-5), the filtering estimate 𝑥̂̆(𝑘, 𝑘) of the state 𝑥̆(𝑘) is expressed as 

 

𝑥̂̆(𝑘, 𝑘) = ∑ 𝑔0

𝑘

𝑖=1

(𝑘, 𝑖)𝜈(𝑖) 

=A(𝑘)𝑒3(𝑘), 

(A-14) 

where 𝑒3(𝑘) is given by 

 𝑒3(𝑘) = ∑ 𝐽3
𝑘
𝑖=1 (𝑖)𝜈(𝑖). (A-15) 

Subtracting 𝑒3(𝑘 − 1) from 𝑒3(𝑘), we have 

 𝑒3(𝑘) = 𝑒3(𝑘 − 1) + 𝐽3(𝑘)(𝑦̆(𝑘) − 𝐻̆Φ̆𝑥̂̆(𝑘 − 1, 𝑘 − 1)), 𝑒3(0) = 0. (A-16) 

Substituting (A-14) into (A-13), we have  

 Π(k) = 𝑅 + 𝐻̆𝐾(𝑘, 𝑘)𝐻̆𝑇- 𝐻̆Φ̆𝐴(𝑘 − 1)E[𝑒3(𝑘 − 1)𝑒3
𝑇(𝑘 − 1)]𝐴𝑇(𝑘 − 1)Φ̆𝑇𝐻̆𝑇 . (A-17) 

Substituting (A-15) into (A-17) and introducing  
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 𝑟33(𝑘) = ∑𝐽3(𝑖)Π

𝑘

𝑖=1

(𝑖)𝐽3
𝑇(𝑖), (A-18) 

we obtain the expression for Π(k) as 

 Π(k) = 𝑅 + 𝐻̆𝐾(𝑘, 𝑘)𝐻̆𝑇- 𝐻̆Φ̆𝐴(𝑘 − 1)𝑟33(𝑘 − 1)𝐴𝑇(𝑘 − 1)Φ̆𝑇𝐻̆𝑇 . (A-19) 

Substituting (A-16) into (A-14), from (A-5), the filtering estimate 𝑥̂̆(𝑘, 𝑘) is calculated by 

 

𝑥̂̆(𝑘, 𝑘) =A(k)𝑒3(𝑘 − 1) + 𝐴(𝑘)𝐽3(𝑘)(𝑦̆(𝑘) − 𝐻̆Φ̆𝑥̂̆(𝑘 − 1, 𝑘 − 1)) 

=Φ𝑥̂(𝑘 − 1, 𝑘 − 1)+ 𝑔0(𝑘, 𝑘)(𝑦̆(𝑘) − 𝐻̆Φ̆𝑥̂̆(𝑘 − 1, 𝑘 − 1)) . 

(A-20) 

From (A-4), (A-5) and (A-18), 𝐽3(𝑘) is developed as 

 

𝐽3(𝑘)Π(k) = 𝐵𝑇(𝑘)𝐻̆𝑇 − ∑ 𝐽3(𝑖)

𝑘−1

𝑖=1

Π(i)𝑔0
𝑇(𝑘, 𝑖)𝐻̆𝑇 

= 𝐵𝑇(𝑘)𝐻̆𝑇 − ∑ 𝐽3(𝑖)

𝑘−1

𝑖=1

Π(i)𝐽3
𝑇(𝑖)𝐴𝑇(𝑘)𝐻̆𝑇 

= 𝐵𝑇(𝑘)𝐻̆𝑇 − 𝑟33(𝑘 − 1)𝐴𝑇(𝑘)𝐻̆𝑇 . 

(A-21) 

Substitution of (A-21) into (A-5) yields  

 

𝑔0(𝑘, 𝑘) = 𝐴(𝑘)(𝐵𝑇(𝑘)𝐻̆𝑇 − 𝑟33(𝑘 − 1)𝐴𝑇(𝑘)𝐻̆𝑇)Π−1(𝑘) 

=(𝐾(𝑘, 𝑘)𝐻̆𝑇 − Φ̆𝑆0(𝑘 − 1)Φ̆𝑇𝐻̆𝑇)Π−1(𝑘). 

(A-22) 

Here, 

 𝑆0(𝑘) = 𝐴(𝑘)𝑟33(𝑘)𝐴𝑇(𝑘). (A-23) 

Subtraction of 𝑟33(𝑘 − 1) from 𝑟33(𝑘) yields 

 𝑟33(𝑘) = 𝑟33(𝑘 − 1) + 𝐽3(𝑘)Π(k)𝐽3
𝑇(𝑘), 𝑟33(0) = 0. (A-24) 

Substitution of (A-24) into (A-23) and using (A-5) yield (26). From (A-19) and (A-23), (31) is obtained. 

From (A-1) and (A-3), the filtering estimate 𝑥̂(𝑘, 𝑘) of 𝑥(𝑘) is expressed by 

 𝑥̂(𝑘, 𝑘) = ∑ 𝑔

𝑘

𝑖=1

(𝑘, 𝑖)𝜈(𝑖) (A-25) 
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= 𝛼(𝑘)𝑒1(𝑘). 

Here, 

 𝑒1(𝑘) = ∑ 𝐽1(𝑖)𝜈
𝑘
𝑖=1 (𝑖). (A-26) 

Subtraction of 𝑒1(𝑘 − 1) from 𝑒1(𝑘) yields 

 𝑒1(𝑘) = 𝑒1(𝑘) + 𝐽1(𝑘)𝜈(𝑘), 𝑒1(0) = 0. (A-27) 

Substitution of (A-27) into (A-25), from (A-3), yields 

 

𝑥̂(𝑘, 𝑘) = Φ𝑥̂(𝑘 − 1, 𝑘 − 1) + 𝛼(𝑘)𝐽1(𝑘)𝜈(𝑘) 

=Φ𝑥̂(𝑘 − 1, 𝑘 − 1) +  𝑔(𝑘, 𝑘)(𝑦̆(𝑘) − 𝐻̆Φ̆𝑥̂̆(𝑘 − 1, 𝑘 − 1)),  

𝑥̂(0,0) = 0. 

(A-28) 

Substituting (A-8) into (A-3) and introducing 

 𝑆(𝑘) = 𝛼(𝑘)𝑟13(𝑘)𝐴𝑇(𝑘), (A-29) 

we get  

 

𝑔(𝑘, 𝑘) = 𝛼(𝑘)(𝛽𝑇(𝑘)𝐻̆𝑇 − 𝑟13(𝑘 − 1)𝐴𝑇(𝑘)𝐻̆𝑇)Π−1(𝑘) 

=(𝐾𝑥𝑧(𝑘, 𝑘) − Φ𝑆(𝑘 − 1)Φ̆𝑇𝐻̆𝑇) Π−1(𝑘). 

(A-30) 

Substituting (A-9) into (A-29), we have 

 𝑆(𝑘) = 𝛼(𝑘)(𝑟13(𝑘 − 1) + 𝐽1(𝑘)Π(k)𝐽3
𝑇(𝑘))𝐴𝑇(𝑘). (A-31) 

From (A-3), (A-5), (A-22), (A-29) and (A-31), (27) is obtained. This completes the derivation of the robust RLS 

Wiener filter.  

Now, in terms of the filtering estimate 𝑥̂(𝑘, 𝑘), the fixed-interval smoothing estimate in (A-1) is written as 

 𝑥̂(𝑘, 𝐿) = 𝑥̂(𝑘, 𝑘) + ∑ 𝑔𝐿
𝑖=𝑘+1 (𝑘, 𝑖)𝜈(𝑖). (A-32) 

𝑔(𝑘, 𝑠), for 0 ≤ k ≤ s, satisfies 

 

𝑔(𝑘, 𝑠)Π(𝑠) = 𝐾𝑥𝑥(𝑘, 𝑠)𝐻̆𝑇 − ∑𝑔

𝑘

𝑖=1

(𝑘, 𝑖)Π(𝑖)𝑔0
𝑇(𝑠, 𝑖)𝐻̆𝑇 

-∑ 𝑔𝑠−1
𝑖=𝑘+1 (𝑘, 𝑖)Π(𝑖)𝑔0

𝑇(𝑠, 𝑖)𝐻̆𝑇 

(A-33) 



Computer Reviews Journal Vol 5 (2019) ISSN: 2581-6640               http://purkh.com/index.php/tocomp 

52 

=γ(k)𝛿𝑇(𝑠)𝐻̆𝑇 − ∑ 𝑔𝑘
𝑖=1 (𝑘, 𝑖)Π(𝑖)𝐽3

𝑇(𝑖)𝐴𝑇(𝑠)𝐻̆𝑇-∑ 𝑔𝑠−1
𝑖=𝑘+1 (𝑘, 𝑖)Π(𝑖)𝑔0

𝑇(𝑠, 𝑖)𝐻̆𝑇 

=γ(k)𝛿𝑇(𝑠)𝐻̆𝑇 − 𝛼(𝑘)𝑟13(𝑘)𝐴𝑇(𝑠)𝐻̆𝑇-∑ 𝑔𝑠−1
𝑖=𝑘+1 (𝑘, 𝑖)Π(𝑖)𝑔0

𝑇(𝑠, 𝑖)𝐻̆𝑇. 

By introducing 

 ∆1(𝑘, 𝑠)Π(𝑠) = 𝛿𝑇(𝑠)𝐻̆𝑇 − ∑ ∆1(𝑘, 𝑖)𝑠−1
𝑖=𝑘+1 Π(𝑖)𝑔0

𝑇(𝑠, 𝑖)𝐻̆𝑇, (A-34) 

and 

 ∆2(𝑘, 𝑠)Π(𝑠) = 𝐴𝑇(𝑠)𝐻̆𝑇 − ∑ ∆2(𝑘, 𝑖)𝑠−1
𝑖=𝑘+1 Π(𝑖)𝑔0

𝑇(𝑠, 𝑖)𝐻̆𝑇, (A-35) 

𝑔(𝑘, 𝑠) is expressed as 

 𝑔(𝑘, 𝑠) = 𝛾(𝑘)∆1(𝑘, 𝑠) − α(k)𝑟13(k)∆2(k, s), 0 ≤ k ≤ s. (A-36) 

Substituting (A-36) into (A-32), we have 

 𝑥̂(𝑘, 𝐿) = 𝑥̂(𝑘, 𝑘) + ∑ (𝛾(𝑘)∆1(𝑘, 𝑖) − α(k)𝑟13(k)∆2(k, i))𝐿
𝑖=𝑘+1 𝜈(𝑖). (A-37) 

By introducing functions 

 𝑞1(𝑘 + 1, 𝐿) = ∑ ∆1(𝑘, 𝑖)𝐿
𝑖=𝑘+1 𝜈(𝑖), (A-38) 

 

 𝑞2(𝑘 + 1, 𝐿) = ∑ ∆2(𝑘, 𝑖)𝐿
𝑖=𝑘+1 𝜈(𝑖), (A-39) 

the fixed-interval smoothing estimate 𝑥̂(𝑘, 𝐿) is given by 

 𝑥̂(𝑘, 𝐿) = 𝑥̂(𝑘, 𝑘) + 𝛾(𝑘)𝑞1(𝑘 + 1, 𝐿) − α(k)𝑟13(k)𝑞2(𝑘 + 1, 𝐿). (A-40) 

Subtraction of ∆1(𝑘, 𝑠) from ∆1(𝑘 + 1, 𝑠) yields 

 

(∆1(𝑘 + 1, 𝑠) − ∆1(𝑘, 𝑠))Π(𝑠)

= ∆1(𝑘, 𝑘 + 1)Π(𝑘 + 1)𝑔0
𝑇(𝑠, 𝑘 + 1)𝐻̆𝑇

− ∑ (∆1(𝑘 + 1, 𝑖) − ∆1(𝑘, 𝑖))

𝑠−1

𝑖=𝑘+2

Π(𝑖)𝑔0
𝑇(𝑠, 𝑖)𝐻̆𝑇 . 

(A-41) 

From (A-5), (A-41) is written as 
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(∆1(𝑘 + 1, 𝑠) − ∆1(𝑘, 𝑠))Π(𝑠)

= ∆1(𝑘, 𝑘 + 1)Π(𝑘 + 1)𝐽3
𝑇(𝑘 + 1)𝐴𝑇(𝑠)𝐻̆𝑇

− ∑ (∆1(𝑘 + 1, 𝑖) − ∆1(𝑘, 𝑖))

𝑠−1

𝑖=𝑘+2

Π(𝑖)𝑔0
𝑇(𝑠, 𝑖)𝐻̆𝑇 . 

(A-42) 

From (A-34), it is seen that 

 

∆1(𝑘, 𝑘 + 1)Π(𝑘 + 1) = 𝛿𝑇(𝑘 + 1)𝐻̆𝑇 − ∑ ∆1(𝑘, 𝑖)

𝑘

𝑖=𝑘+1

Π(𝑖)𝑔0
𝑇(𝑘 + 1, 𝑖)𝐻̆𝑇 

=𝛿𝑇(𝑘 + 1)𝐻̆𝑇 . 

(A-43) 

From (A-35), (A-42) and (A-43), we obtain 

 ∆1(𝑘 + 1, 𝑠) − ∆1(𝑘, 𝑠) = 𝛿𝑇(𝑘 + 1)𝐻̆𝑇𝐽3
𝑇(𝑘 + 1) ∆2(𝑘 + 1, 𝑠). (A-44) 

In a similar fashion, following relationships are derived. 

 ∆2(𝑘, 𝑘 + 1)Π(𝑘 + 1) = 𝐴𝑇(𝑘 + 1)𝐻̆𝑇 (A-45) 

 

 ∆2(𝑘 + 1, 𝑠) − ∆2(𝑘, 𝑠) = 𝐴𝑇(𝑘 + 1)𝐻̆𝑇𝐽3
𝑇(𝑘 + 1) ∆2(𝑘 + 1, 𝑠). (A-46) 

Subtracting 𝑞1(𝑘, 𝐿) from 𝑞1(𝑘 + 1, 𝐿) and referring to (A-39) and (A-44), we have 

 

𝑞1(𝑘 + 1, 𝐿) − 𝑞1(𝑘, 𝐿) = −∆1(𝑘 − 1, 𝑘)𝜈(𝑖) 

+ ∑ (∆1(𝑘, 𝑖)

𝐿

𝑖=𝑘+1

− ∆1(𝑘 − 1, 𝑖))𝜈(𝑖) 

=−∆1(𝑘 − 1, 𝑘)𝜈(𝑖) + 𝛿𝑇(𝑘)𝐻̆𝑇𝐽3
𝑇(𝑘) 𝑞2(𝑘 + 1, 𝐿). 

(A-47) 

From (A-38), it is clear that 

 𝑞1(𝐿 + 1, 𝐿) = ∑ ∆1(𝑘, 𝑖)𝐿
𝑖=𝐿+1 𝜈(𝑖)=0. (A-48) 

Similarly, we obtain following relationships 

 

𝑞2(𝑘 + 1, 𝐿) − 𝑞2(𝑘, 𝐿) = −𝐴𝑇(𝑘)𝐻̆𝑇Π−1(𝑘)𝜈(𝑖) 

+𝐴𝑇(𝑘)𝐻̆𝑇𝐽3
𝑇(𝑘) 𝑞2(𝑘 + 1, 𝐿), 𝑞2(𝐿 + 1, 𝐿) = 0. 

(A-49) 

From (A-38) and (A-39), (A-37) is written as 
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 𝑥̂(𝑘, 𝐿) = 𝑥̂(𝑘, 𝑘) + 𝛾(𝑘)𝑞1(𝑘 + 1, 𝐿) − α(𝑘)𝑟13(𝑘)𝑞2(𝑘 + 1, 𝐿). (A-50) 

By putting 

 𝑞̆1(𝑘 + 1, 𝐿) = (𝐴𝑇(𝑘))−1𝑞1(𝑘 + 1, 𝐿), (A-51) 

 

 𝑞̆2(𝑘 + 1, 𝐿) = (𝐴𝑇(𝑘))−1𝑞2(𝑘 + 1, 𝐿), (A-52) 

we obtain (30), from (A-47) and (A-49), after some manipulations, by noting the relationship 𝑞̆1(𝑘 + 1, 𝐿) =

𝑞̆2(𝑘 + 1, 𝐿) .  

  (Q.E.D.) 
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