Computer Reviews Journal Vol 4 (2019) ISSN: 2581-6640 http://purkh.com/index.php/tocomp

Robust RLS Wiener Fixed-Lag Smoothing Algorithm in Linear Discrete-Time Stochastic Systems with
Uncertain Parameters

Seiichi Nakamori
Department of Technology, Faculty of Education, Kagoshima University, Kagoshima, Japan
k6l65161@kadai.jp

Abstract

This paper, by combining the robust recursive least-squares (RLS) Wiener filter and the RLS Wiener fixed-lag
smoothing algorithm, proposes the robust RLS Wiener fixed-lag smoothing algorithm. In the robust estimation
problem, it is assumed that the system and observation matrices include some uncertain parameters. With the
observations generated by the state-space model including the uncertain parameters, the robust RLS Wiener
fixed-lag smoother estimates the signal recursively as the time advances. Both the signal and the degraded
signal processes are fitted to the finite order auto-regressive (AR) models. The robust RLS Wiener fixed-lag
smoother uses the following information. (1) The covariance function of the state for the degraded signal. (2)
The cross-covariance function of the state for the signal with the state for the degraded signal. (3) The
observation matrices for the signal and the degraded signal. (4) The system matrices for the signal and the
degraded signal. (5) The variance of the white observation noise. A numerical simulation example shows that
the robust RLS Wiener fixed-lag smoother, proposed in this paper, is superior in estimation accuracy to the H-
infinity RLS Wiener fixed-point smoother and the RLS Wiener fixed-lag smoother.
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1. Introduction

The robust estimation problems for the state-space model with the uncertain parameters have been investigated
extensively, e.g. [1]-[21]. The robust estimation problem is solved with the linear matrix inequality (LMI) method
as discussed by Wang et al. [12], [13], the H-infinity estimation method by Yang et al. [18], the method based
on the regularization and penalty function by Ishihara et al. [19], etc.

In Nakamori [22], the RLS Wiener fixed-point smoother and filter are proposed. In Nakamori [23], the H-infinity
RLS Wiener fixed-point smoothing and filtering algorithms are devised. In Nakamori [24], the RLS Wiener fixed-
point smoother and filter are proposed, given the randomly delayed or uncertain observations. In Nakamori [25],
the RLS Wiener fixed-lag smoothing algorithm is proposed. In Nakamori [26], for the purpose of estimating the
signal process, the robust RLS Wiener fixed-point smoother and filter are proposed for the discrete-time
stochastic systems with the uncertain parameters. In Nakamori [27], the robust RLS Wiener estimation technique
for the state variables is developed.

This paper, by combining the robust RLS Wiener filter [26] and the RLS Wiener fixed-lag smoothing algorithm
[25], proposes the robust RLS Wiener fixed-lag smoothing algorithm in Theorem 1. In the robust estimation
problem, it is assumed that the system and observation matrices include some uncertain parameters. With the
observations generated by the state-space model including the uncertain parameters, the robust RLS Wiener
fixed-lag smoother estimates the signal recursively as the time advances. Both the signal and the degraded
signal processes are fitted to the finite order auto-regressive (AR) models. The robust RLS Wiener fixed-lag
smoother uses the following information. (1) The covariance function of the state for the degraded signal. (2)
The cross-covariance function of the state for the signal with the state for the degraded signal. (3) The
observation matrices for the signal and the degraded signal. (4) The system matrices for the signal and the
degraded signal. (5) The variance of the white observation noise.
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A numerical simulation example shows that the robust RLS Wiener fixed-lag smoother, proposed in this paper,
is superior in estimation accuracy to the H-infinity RLS Wiener fixed-point smoother [23] and the RLS Wiener
fixed-lag smoother [25].

In the appendix, by using MAXIMA and MATLAB, the derivation method of the coefficients, used in the robust
RLS Wiener fixed-lag smoothing algorithm, is shown.

2. Robust least-squares fixed-lag smoothing problem

Let an m-dimensional observation equation and an n-dimensional state equation be described by

y(k) = 2(k) + v(k), 2(k) = H(k)x(k), A (k) = H + AH(k),
2k + 1) = d()x(k) + Tw(k), (k) = d + Ad(k), 1)
E[v(k)v"(s)] = Réx(k — 5), E[w()w" (s)] = Q8k (k — 5)

in linear discrete-time stochastic systems with uncertain parameters [20]. It is assumed that AH(k) and A®(k)
contain uncertain parameters respectively. Here, v(k) is the white observation noise with the variance R. w(k)
is the white input noise with the variance Q. Their auto-covariance functions are expressed with the Kronecker
delta function 6, (k — s). The state equation, which generates x(k + 1), contains the uncertain quantity A®(k)
in the system matrix ®(k). In addition, in the observation equation the observation matrix H(k) contains the
uncertain quantity AH (k). Hence, Z(k) is deviated from the nominal signal z(k) in the state-space model (2),
which does not contain the uncertain quantities. In (1), as the sum of the degraded signal Z(k) and the
observation noise v(k), the observed value #(k) is measured. The state-space model without containing the
uncertain quantities AH(k) and A®(k) in (1) is described by

y(k) = z(k) + v(k),z(k) = Hx(k), 2

x(k + 1) = dx(k) + Tw(k).

In (2), z(k) represents the signal to be estimated. H an m by n observation matrix, x(k) the state vector
and v(k) the white observation noise with the auto-covariance function given in (1). The auto-covariance
function of the input noise w(k) is also given in (1). It is assumed that the signal and the observation noise are
zero-mean mutually independent stochastic processes. The purpose of this paper is to design the RLS Wiener
fixed-lag smoother to estimate the signal z(k) with the observed value j (k) without using any information
on the uncertain quantities A®(k) and AH (k).

Let the degraded signal Z(k) be fitted to the Nth order AR model as
Z(k) = —a Z(k — 1) — ayZ(k — 2) -+ — ayZ(k — N) + é(k), 3)
E[e(k)e" ()] = Qo (k — 3).

Let Z(k) be expressed by

Z(k) = Hx(k),
X1 (k) Z(k)
%, (k) #(k + 1)
= = : )

w0l lzk+n-—2)
o | Lgesv—1)
H=[lpyxm 0 0 -+ 0 0]

It is seen that the state equation for the state vector X(k) is described by
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X, (k+1) 0 ILym O 0 11 %K)
I[ %o(k +1) ]I | 0 0 Lym 0 ]||[ %, (k) ]I
[Nw+nJ 0 1W4ﬁgw4
Xv(k+1 -1 —ayn-2 —ay AL Xy (k) )
[0 |
+|[ J|f(k) {(k) = &é(k + N),E[{(k){"(s)] = Qb (k — s)
Ime

Let K(k,s) = K(k —s) represent the auto-covariance function of the state vector ¥(k) in wide-sense

stationary stochastic systems [28]. Hence, K(k,s) has the form of
— A(k)BT(s),0 <s <k,
Ry =
&) =g oyar ()0 <k < s, ©
A(k) = ®%,BT(s) = ®5K(s,s). Here, ® is the system matrix for the state vector ¥(k). The system matrix ® in

the state equation (5) is written as
[ 0 Lynsm 0 0 1
|0 0 Lnsm = 0|
d=| : : : DU | @)
0 0 0 - Lyem
_dN _dN—l _dN—Z _dl
Also, by putting K;(k,s) = Ky(k — s) = E[2(k)#7(s)], the auto-variance function K(k, k) of the state vector
¥(k) is described by
[ z2t0
| Zke+1) |
R, k) =E|l ' I
|| 2(k + N —2)|
|Lzck + v = 1)
x[2T(k) 2T(k+1) Thk+N-2) Z"(k+N-1)]] 8)
K, (0) K,(=1) - K;(=N+2) K,(-=N+1)
K,(1) K»(0) - Ky(—N+3) K;(—N+2)
KN =2) KN =3) = K0) KD |
LGN = 1) K (N —2) Ky(1) K,(0)
Using K;(k — s), we have the Yule-Walker equation for the AR parameters as
] Eo
aj K (2)
RKkk)| ¢ |=- : )
ay-1 |K7 (N = 1)
K,(0) K, (1) - K;(N—2) K;(N—-1)
KI'(1) K,(0) K~(N -3) K; (N —-2)
Kk, k) = : : .
|KI(N—2) K{(N-3) K (0) K1) |
I -1) KIN=-2) ~  KI(D)  Ky(0)
Let K,z(k,s) = Kyx(k —s) = E[x(k)XT(s)] represent the cross-covariance function of the state vector x(k)
with ¥(s) in wide-sense stationary stochastic systems. K, (k,s) is expressed in the form of
(10)

Kee(k,s) = a(k)BT(s),0 < s <k,

a(k) = @, BT(s) = ®~K,x(s,s). Here, ® is the system matrix for the state vector x(k)
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Let the fixed-lag smoothing estimate %(k — L, k) of the state vector x(k — L) be expressed by

k
2k — L k) = Z h (k, )¥(0) (11)

in terms of the observed values {j(i),1 <i <L}. In (11), h(k,i) donotes a time-varying impulse response
function and L the fixed lag. We consider the estimation problem, which minimizes the mean-square value
(MSV)

J = E[llx(k = L) = 2(k — L, k)] 12)

of the fixed-lag smoothing error. From an orthogonal projection lemma [28],

k
x(k - 1) — Z h(k, D7) L ()1 <s <k, (13)

the impulse response function satisfies the Wiener-Hopf equation

k
E[x(k — L)y ()] = z h (k, DE[YDF" ()] 14

Here 'L’ denotes the notation of the orthogonality. Substituting (1) into (14), from (4) and (8), and using E[x(k —
L)yT(s)] = Kyy(k — L,s) = K,x(k — L,s)HT, we obtain
k—L
h(k,s)R = K,z(k — L, s)HT — z h (k, )HK (I, s)HT. (15)
i=1

Here, K,;(k —L,s) represent the cross-covariance function of the state vector x(k — L) with the degraded
signal Z(s), E[x(k)ZT(s)].

2.1 Auto-regressive model for the signal process

Let the signal process be modeled in terms of the Nth order AR model

z(k) =—ayz(k—1) —ayz(k — 2) — - —ayz(k — N) + w(k). (16)
It is seen that the observation matrix H and the state equation for the state vector x(k) in (2) are given by
H = [lpxm 0 0 - 0], 17)
x, (k+1) [[ 0 Inywm 0 0 ]] x; (k)
x,(k + 1) || 0 0 Luscm 0 || x5 (k)
xyoa(k +1) [ 0o 0 0 Imme iy (k)
xy(k+1) —ay ay-1 an-2 a; l xy (k) J
(18)
0 0
0 0
+ i wk),T=| i |LEwkw(s)] = Qbk(k —s).
0 0
U Lo

In (15), the function K,z(k —L,s), 1 <s < k — L, cannot be expressed in the form of (10) explicitly. The Robust
RLS Wiener filtering algorithm [26] is obtained for L = 0. The robust RLS Wiener fixed-lag smoothing estimate
2(k —L,k) of z(k — L) is calculated by (26). Let us consider how to get the coefficients a, 5, Gy, sy Ari1n
in the followings.

From (16), we have

ztk+N—-1)=—-a;ztk+N—-2)—ayz(k+N—-3)—-—ayz(k—1)

+w(k +N — 1) (19)
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From (19) and the relationship K(k,s) = E[z(k)z(s)], it follows that

Kk+N—-1,5)=—-a;K(k+N—2,5)—a,K(k+N—3,5) — - —ayK(k
—-1,5). (20)

From (20), we have
Kk—-—1,5)=Kk+N-1,5)+aK(k+N—-2,5)+a,K(k+N—3,s) + - (21)
+ay_1K(k,s))/(—ay).

Similarly, the following equations hold.
Kk—2,5)=Kk+N-2,5)+aK(k+N—-3,5)+a,K(k+N—4,s) + - (22)
+ay_1K(k = 1,5))/(—an)
K(k—-3,s)=Kk+N-3,5)+aK(k+N—-4,5)+a,K(k+N—5,s) + - (23)
+ay_1K(k —2,5))/(—an)

K(k—(N—-1),s)=(K(k+1,s)+a;K(k,s)+a,K(k—1,5) + - (24)

tay_1K(k — (N =2),5))/(—ay)

It is clear that K(k — (N — 1),s) is calculated by successive substitutions of K(k —1,s) into (22), K(k — 2,s)
into (23), and finally by substituting K(k — (N — 2),s) into (24).

Asaresult K(k—1L,s), 1 <L <N —1, are obtained as follows from the above iterative substitutions [25]
K(k - L, S) = dl,NK(k' S) + dZ,NK(k + 1, S) + C_l3,NK(k + 2, S) + .-

tag Kk +L,s). (25)

in terms of the newly introduced parameters, a;y, 1 <i < N. In the derivations of the RLS Wiener fixed-lag
smoother, the relationship (25) is available. The derivations of the parameters, a;y, 1 <i < N, by MAXIMA and
MATLAB, are summarized in the appendix. It should be noted, for the Nth order AR model, that the fixed-lag
smoothing estimates Z(k —L,k), 1 <L < N — 1, can be calculated.

3. Robust RLS Wiener fixed-lag smoothing and filtering algorithms

Under the linear least-squares estimation problem of the signal z(k) in section 2, Theorem 1 presents the
robust RLS Wiener fixed-lag smoothing and filtering algorithms.

Theorem 1 [25], [26] Let the state equation and the observation equation, including the uncertain quantities
AP and AH respectively, be given by (1). Let & and H represent the system and observation matrices
respectively for the signal z(k). Let ® and H represent the system and observation matrices respectively for
the degraded signal Z(k), fitted to the AR model (3) of the order N. Let the variance K(k, k) of the state vector
¥(k) for the degraded signal Z(k) and the cross-variance function K,;(k,k) of the state vector x(k) for the
signal z(k) with the state vector X¥(k) for the degraded signal Z(k) be given. Let the variance of the white
observation noise v(k) be R. Then, the robust RLS Wiener algorithms for the fixed-lag smoothing estimate
2(k — L, k) of the signal z(k — L) and the filtering estimate Z(k, k) of the signal z(k) consist of (26)-(33) in
linear discrete-time stochastic systems.

Robust RLS Wiener fixed-lag smoothing estimate of z(k —L): Z2(k — L, k)
2(k — L, k) = (A nH + ayyHP + a3 yHP? + -+ + @y yHOMR (K, k) (26)
Filtering estimate of the signal z(k): Z(k, k)
2(k, k) = Hx(k, k) (27)
Filtering estimate of x(k): X(k, k)

2(k, k) = 0%k — 1,k — 1) + G(k)(F(k) — HBZ(k — 1,k — 1)),

£(0,0)=0 (8)

Filter gain for X(k, k) in the equation (28): G (k)
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G(k) = [Kyy(k, k) — ®S(k — 1)PTH]
x {R + H[K(k, k) — ®S,(L — 1)PT]HT} L, (29)
Kz (k k) = Kz (k, K)HT

Filtering estimate of ¥(k): ¥(k, k)
F( k) = 3%k — Lk — 1) + gl (k) — ABZ(k — 1,k — 1)),

%(0,0) =0 (30)
Filter gain for X(k,k) in the equation (30): g(k)
g(k) = [K(k, k)AT — &Sy (k — 1)DTHT]
% (R + H[R(k, k) — BSy(L — )BT} G
Auto-variance function of ¥(k, k): So(k) = E[¥(k, K)X" (k, k)]
So(k) = ®Sy(k — 1D + g(k)H[K (k, k) — ®Sy(k — 1)PT], (32)
S0(0)=0
Cross-variance function of £(k, k) with ¥(k, k): S(k) = E[&(k, k)XT (k, k)]
S(k) = ®S(k — 1)@ + G (k)H[R (k, k) — BSy(k — )BT, a3)

S(0) =0

For the stability of the filtering and fixed-lag smoothing algorithms, the following conditions are necessary.
1. All the real parts in the eigenvalues of the matrix ® — g(k)H® are negative.
2. R+ H[K(k k) — DSy(L — 1)PT|HT >0

The fixed-lag smoothing error variance function of the signal is shown in section 4.

4. Fixed-lag smoothing error variance function of signal

In this section the existence of the fixed-lag smoothing estimate Z(k — L, k) is shown. The variance function
B,(k — L) of the fixed-lag smoothing error z(k — L) — 2(k — L, k) is formulated as

B,(k—L)=E[(z(k — L) — 2(k — L,k))(z(k — L) — 2(k — L, k))]. (34)
(34) might be written as

P(k—L)=K(k—Lk—L)—P,(k—1L),
P(k—L)=E[2(k — L k)2T(k — L, k)]

= (dy H + Gy HO + o + Gy HOVD)E[R(k, k)R (K, k)] (@ H (35)
+ay HP + -+ ay HOLD)T
Since P,(k — L) = 0 and the variance P,(k — L) of the fixed-lag smoothing estimate 2(k — L, k) satisfies
P,(k—1L)=0, (36)
it is shown that
0<P(k—L)<K(k—Lk—L) 37)

is valid. (37) indicates that the variance of the fixed-lag smoothing error is upper bounded by the variance of
the signal and lower bounded by zero matrix. This validates the existence of the robust fixed-lag smoothing
estimate Z(k — L, k) of the signal z(k —L).

In section 5, The estimation accuracy of the proposed RLS Wiener fixed-lag smoother is compared with the H-
infinity RLS Wiener fixed-point smoother [23] and the RLS Wiener fixed-lag smoother [25] from the numerical
aspect.

5. A numerical simulation example

Let a scalar observation equation and the state equation for x(k) be given by
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y(k) = z(k) + v(k),z(k) = Hx(k),H=[1 0 0 -- 0],
[ x1(k) 7
| x; (k)
x(k+1) = dx(k) +Tw(k),x(k) =| ,
xy-1(k)
xy (k) |
0 1 0 w0 0
|[ 0 0 1 w0 ]| 0 (38)
o= : : : s‘,rz i,
0 0 0 1 0
—ay —ay-1 Ay - T4 -1

a, = —0.6135,a, = 0.1635,a; = —1.2912,a, = 0.4335,as; = —0.6697,
ag = 0.7693,a, = 0.0800,ag = 0.6141,a, = —0.1770,a,, = —0.3007, N = 10,
E[v(k)v(s)] = Réx(k — s), E[w(k)w(s)] = Q6x(k —5),Q = 2.1727.

The observation noise v(k) is a zero-mean white noise process. Let us consider to estimate a vowel signal
spoken by the author. Its phonetic symbol is expressed as “/i:/." The sampling frequency of the voice signal is
10.025[kHz]. The auto-covariance data of the signal is calculated in terms of 5,000 sampled signal data. Let the
process of the signal z(k) is fitted to the AR model of the order 10 in (16) for m = 1. The 1 x 10 observation
vector, the state equation for the state vector x(k) and the system matrix @ are given in (38). Let the state-
space model containing the uncertain quantity A®(k) be described by

X, (k)
X, (k)
yl) = z(k) + v(k), z2(k) = HU)x(k), x(k) =| ¢ |,
Xy-1(k)
Xy (k)
X(k+1) = ®(k)x(k) + Tw(k), ®(k) = & + Ad(k),
0 0 0 0
[ 0 0 0 0 ] (39)
Ad(k) = | : : 0 : |
0 0 0 0

lay(k) Ay_i (k) By_p() Ay (k)
A, (k) = 0.0220, A, (k) = 0.0083,A;(k) = —0.0623, A, (k) = —0.0196,
Ag(k) = —0.0092, Ay (k) = 0.0506, A, (k) = 0.0575, Ag (k) = 0.0147,
Ag(k) = —0.0258,A,,(k) = —0.0362, N = 10,

in linear discrete-time stochastic systems. It should be noted that the uncertain quantity A®(k) is unknown. It
is a task to estimate the signal z(k) recursively in terms of the observed value j(k), which is given as the sum
of the degraded signal Z(k) and the observation noise v(k). Let Z(k) be also fitted to the N-th order AR
model of

#(k) = —a,5(k — 1) — Gy2(k — 2) — -+ — dyZ(k — N) + 6(k),

E[é(k)é(s)] = Q8x(k — s),N = 10. (40)

In this example, the state equation for ¥(k), given by (5), corresponds to the case of m = 1. The relationship
K(k,s) = K(k — s) represents the auto-covariance function of the state vector ¥(k) in wide-sense stationary
stochastic systems. K(k,s) is expressed in the form of the semi-degenerate function (6). ® represents the
system matrix for the state vector ¥(k). @ is given by (7). Also, from K,(k —s) = Ky(s — k) = E[#(k)Z(s)] for
the scalar degraded signal #(k), the auto-variance function K(k, k) of the state vector ¥(k) is expressed as
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[[ HONE ]
| zk+1) |
Kk, k) =E|l| : lZG) Z(k+1) - #(k+N—2) Z(k+N—1)]
[z“(k +N - 2)J
3k +N—1)
(41)
[ K;(0) K;(1) o Ky(N—2) Ky(N- 1)]
I Kz'(l) Kz'(O) Kz(N'— 3) Kz(N— Z)I
B [KZ(N'— 2) KWN-3) ~ K0 K@) |
K;(N-1) K,(N—-2) - K;(1) K;(0)

Let K,;(k,s) = E[z(k)Z(s)] represent the cross-covariance function between the signal z(k) and the degraded
signal Z(s). From (4) (38) and (39), the cross-covariance function K,;(k,s) is expressed as

K,z (k,s) = ®* 5K, ;(s,5),0 <s <k,

[ x1 (k)
| x2 (k)

KaGol)=E|| ¢ |[Z() 2(k+1) - Z(k+N-2) z(k+N-1)]
[[xn-1Ck)

Il xy i) ]

[ Elxi(k)Z(K)] E[x(k)Z(k + 1)]

| E[x, (/f)f(k)] E[xz(k)zt(k + 1]

e e e e e ]

lE[xN—l(k)Z(k)] Elxy-1(k)Z(k + 1)]

Elxy(k)z(k)]  E[xy(k)Z(k +1)]
Elx,(Z(k+N=2)]  E[x;()Z(k + N —1)]
Elx,(K)Z(k + N —=2)]  E[x,(K)Z(k + N — 1)] |

I

© Elxy-1(k)Z(k + N —2)] E[xy_1(k)Z(k + N —1)]
Elxy()2(k + N —2)]  E[xy()Z(k + N — 1)]
E[z(k)Z(k)] E[z(k)Z(k + 1)

| E[z(k + 1)Z(k)] E[z(k + 1)Z(k + 1) 42)
[E[z(k +N —2)2(k)] E[z(k + N — 2)Z(k + 1)]
E[z(k + N — Dz(k)] E[z(k + N — 1)z(k + 1)]

E[z(k)Z(k + N — 2)] E[z(k)%(k + N — 1)]
E[z(k + 1)Z(k + N — 2)] E[z(k + 1)2(k + N — 1)] |

. E[z(k+ N —2)#(k + N —2)] E[z(k+N —2)#(k + N — 1)]J
. E[z(k+N—=1Dz(k+N—2)] E[z(k+N —1)Z(k + N — 1)]
Kzz(k, k) Kz (k, k+ 1)
K,k +1,k) Kk + 1,k +1)

[
I
=| ; :
lsz(k +N—-2k) Ky(k+N-2k+1)
Ky(k+N—1,k) Ky(k+N—-1k+1)
K,z(k,k+ N —2) K,s(k,k+ N —1)
Ky(k+1,k+N—2) K,(k+1,k+N—1)

- Kyy(k+N—-2k+N—-2) Ky(k+N-2k+N—1)
- Ky(k+N—-1,k+N—-2) K,(k+ N—1k+N—1)

The AR parameters d;, d,, -, dy_1,dy in (40) are calculated by the Yule-Walker equation
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[ K;(0) K;(1) K;(N —2) KZ(N_l)] a;
RECEENCORE RS KZ(N_—Z)I[ a |
[Kz(N'—Z) Ky(N - 3) K0) Ky (D) Jla&_l
K;(N—-1) K;(N-2) K;(1) K;(0) ay
(D)
[ —sz(z) I
_r@m—n'
K (V)

The coefficients a;y, 1 <i <N, N =10, in (26) for the robust RLS Wiener fixed-lag smoothing estimate are
shown in the appendix. The coefficients are listed for the fixed lag L, 0 < L < 9. Substituting H, H, ®, &,
K.:(k, k), K(k, k) = K(L, L), the coefficients and R into the robust RLS Wiener fixed-lag smoothing and filtering
algorithms of Theorem 1, the fixed-lag smoothing and filtering estimates are calculated recursively. In evaluating
® in(7)for m=1, K(k, k) in(41) and K, z(k, k) in (42), 2,000 number of the signal and degraded signal data
are used. Fig.1 illustrates the signal process z(k) and its degraded signal Z(k) by the uncertain parameters in
the system matrix vs. k.In comparison with the signal process, the degraded signal is influenced by the uncertain
parameters in the system matrix ®(k) in (39). Fig.2 illustrates the signal and the fixed-lag smoothing estimate
Z2(k,k +5) of the signal z(k) vs. k for the white Gaussian observation noise with the signal-to-noise ratio
(SNR) 10 [dB]. Fig.3 illustrates the mean-square values (MSVs) of the filtering errors z(k) — Z(k, k) and the
fixed-lag smoothing errors z(k) — Z(k,k + L) vs. L, 0 <L <9, for SNR=3 [dB] and 5 [dB]. For the fixed lag,
L = 0, the MSVs of the filtering errors z(k) — Z2(k, k), 1 < k < 1000, are plotted. From Fig.3, it is seen that the
robust RLS Wiener filter and fixed-lag smoother, proposed in this paper, are superior in estimation accuracy to
the H-infinity RLS Wiener filter and fixed-point smoother [23], and the RLS Wiener filter and fixed-lag smoother
[25]. Concerning the robust RLS Wiener fixed-lag smoother, proposed in this paper, the MSVs of the fixed-lag
smoothing errors are smaller than those of the filtering errors and decease gradually as the fixed lag L increases.
This shows that the proposed robust RLS Wiener fixed-lag smoother improves the estimation accuracy of the
robust RLS Wiener filter as the lag increases. Here, the MSVs of the fixed-lag smoothing and filtering errors are
evaluated by Y199°(z(k) — 2(k, k + L))?/1000 and Y:°9°(z(k) — 2(k, k))?/1000 respectively. In the above
calculations, MATLABR12 is used.
2.5 T T T . T T T T

2} . -
1.5

1r by

Signal and degraded signal

-2 Signal 7
~— — Degraded signal

450

-2.5 1 1 1 1 1 1
100 150 200 250 300
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350 400 500

Fig. 1 Signal process z(k) and its degraded signal z(k) by the uncertain parameters in the system matrix vs.
k.
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Signal and robust fixed-lag smoothing estimate
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— — Fixed-lag smoothing estimate
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50 100
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Fig. 2 Signal and the fixed-lag smoothing estimate Z(k,k + 5) of the signal z(k) vs. k for the white
Gaussian observation noise with the signal-to-noise ratio (SNR) 10 [dB].

MSVs of filtering and fixed-lag smoothing errors

10° :

(a)
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(c)
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(f)

MSV for SNR=3[dB]
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([231)
([25])
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Fig. 3 Mean-square values of the filtering errors z(k) — 2(k, k) and the fixed-lag smoothing errors z(k) —

Z(k,k+ L) vs. L, 0 <L <9, by the H-infinity RLS Wiener fixed-point smoother [23] and the RLS Wiener fixed-
lag smoother [25] for SNR=3 [dB] and 5 [dB].
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6. Conclusions

This paper, by combining the robust RLS Wiener filter and the RLS Wiener fixed-lag smoothing algorithm, has
proposed the robust RLS Wiener fixed-lag smoothing algorithm in Theorem 1. In the problem formulation of
the robust estimation problem, it is assumed that the system and observation matrices include some uncertain
parameters. With the observations generated by the state-space model including the uncertain parameters, the
robust RLS Wiener fixed-lag smoother estimates the signal recursively as the time advances. Both the signal and
the degraded signal processes are fitted to the finite order AR models. The robust RLS Wiener fixed-lag smoother
uses the following information. (1) the covariance function of the state for the degraded signal. (2) The cross-
covariance function of the state for the signal with the state for the degraded signal. (3) The observation matrices
for the signal and the degraded signal. (4) The system matrices for the signal and the degraded signal. (5) The
variance of the white observation noise.

A numerical simulation example has shown that the robust RLS Wiener fixed-lag smoother, proposed in this
paper, is superior in estimation accuracy to the H-infinity RLS Wiener fixed-point smoother and the RLS Wiener
fixed-lag smoother. Also, the MSV of the fixed-lag smoothing errors decreases as the fixed lag increases.

Appendix Derivation method of coefficients in (25) by MAXIMA and MATLAB

As an example, let us show the MAXIMA commands for the coefficients a;y,1 <i < 10, in the cases of the AR
model order N = 10:

(%i1) km1: km1l=(k9+al*k8+a2*k7+a3*k6+ad*k5+a5*k4+a6*k3+a7*k2
+a8*k1+a9*k)/(-a10);

(%i2) km2: km2=(k8+al*k7+a2*k6+a3*k5+ad4*k4+a5*k3+a6*k2+a7*kl
+a8*k+a9*km1)/(-al0);

(%i3) ratsimp(km2);

(%i4) km3: km3=(k7+al*k6+a2*k5+a3*k4+a4*k3+a5*k2+a6*kl+a7*k
+a8*kml+a9*km2)/(-al0);

(%i5) ratsimp(km3);

km1 for the fixed lag L = 1:
-1/a1l0*a9%*k
-1/a10*a8*k1l
-1/al0*a7*k2
-1/a10*a6*k3
-1/al0*a5*k4
-1/al0*a4*k5
-1/al0*a3*k6
-1/al0*a2*k7
-1/a10*al*k8
-1/a10*k9

km2 for the fixed lag L = 2:after substitution of km1 into km2:
(@9 k9 + (al a9 - al0) k8 + (a2 a9 - al al0) k7

+ (a3 a9 -al0a2) ke + (a4 a9 - al0 a3) k5 + (a5 a9 - al0 a4) k4
+ (a6 a9 - al0 ab) k3 + (a7 a9 - al0 a6) k2 + (a8 a9 - al0 a7) k1
+ (a9? - al0 a8) k)/a10? )

km3 for the fixed lag L = 3 after substitutions of km1 and km2 into km3:
- ((@9?% - al0 a8) k9 + (al a9? - all a9 - al al0 a8) k8

+ (a2 a9?% -alal0a9-al0a2a8 + ald? )k7

+ (a3 a9? -al0a2a9-al0a3 a8 +al a10? ) ké

+ (a4 a9?% -al0 a3 a9 -all a4 a8 + al0? a2) k5

+ (a5 a9% -al0a4a9-alla5a8 + al0? a3) k4
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+ (@6 a9? -al0 a5 a9 -allab a8 + al0? a4) k3
+ (@7 a9% -al0 a6 a9 -all a7 a8 + al0? a5) k2
+ (a8 a9% -al0a7 a9 -all a8% + al0? a6) kl
+(a93 -2al0a8a9 + al0? a7) k)/a103 )

Here, al=a,, a2=a,, a3=a3, ad=a,, a5=as, ab=a,, a7=a,, a8=ag, a9=a,, al0=a,,.

MATLAB program for the coefficients a;y,1 <i <10, in the case of the AR model order N = 10, by using
Symbolic Math Toolbox:

clear variables

syms al a2 a3 a4 a5 a6 a7 a8 a9 all k k1 k2 k3 k4 k5 k6 k7 k8 k9 km km1 km2 km3 km4 km5 km6 km7 km8
km9

kml=(k9+al*k8+a2*k7+a3*k6+ad*k5+a5*k4+a6*k3+a7*k2+a8*kl
+a9%k)/(-a10)

expand(km1)
km2=(k8+al*k7+a2*k6+a3*k5+a4*k4+a5*k3+ab*k2+a7*kl+a8*k
+a9*km1)/(-al0)

expand(km?2)
km3=(k7+al*k6+a2*k5+a3*k4+ad*k3+a5*k2+ab6*kl+a7*k+a8*kml
+a9*km2)/(-al0)

expand(km3)
km4=(k6+al*k5+a2*k4+a3*k3+ad*k2+a5*kl+ab*k+a7*kml+a8*km?2
+a9*km3)/(-al0)

expand(km4)
km5=(k5+al*k4+a2*k3+a3*k2+ad*kl+a5*k+ab*kml+a7*km2+a8*km3
+a9*km4)/(-a10)

expand(kmb5)
km6=(k4+al*k3+a2*k2+a3*kl+ad*k+a5*kml+a6*km2+a7*km3+a8*km4
+a9*km5)/(-a10)

expand(km6)
km7=(k3+al*k2+a2*kl+a3*k+ad*kml+a5*km2+a6*km3+a7*km4+a8*km5
+a9*km6)/(-a10)

expand(km?7)
km8=(k2+al*kl+a2*k+a3*kml+ad*km2+a5*km3+a6*km4+a7*km5+a8*km6
+a9*km7)/(-al0)

expand(km8)
km9=(kl+al*k+a2*kml+a3*km2+ad4*km3+a5*km4+a6*km5+a7*km6+a8*km7
+a9*km8)/(-al0)

expand(km?9)

In the case of the fixed lag L = 1, km1 is written as follows.
—1/al10%xa9*k
—1/al10*xa8xk1
—1/al0xa7xk?2
—1/al0xab*k3
—1/al10xa5k4
—1/al10xa4xk5
—1/al10*a3xk6
—1/al0xa2xk7
—1/al10xalxk8
—1/a10xk9

Here, k=K (0), k1=K (1), k2=K(2), k3=K(3), k4=K(4), k5=K(5), k6=K (6), k7=K (7), k8=K (8), k9=K (9).
For the fixed lag L = 1, the coefficients a;y, i = 1,2,...,10, N = 10, in (25) are given by
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a, y =—1/al0xa9
a,y =—1/al0xa8
aszy =—1/al0xa7
a4y =—1/al0xab
asy =—1/al0xa5
aey =—1/al0xa4
a; y =—1/al0xa3
ag y=—1/al0*a2
agy =—1/al0xal
le,N =_1/a10

In a similar manner, for the fixed lag, 2 <L <10, the coefficients a;y, i =1,2,...,10, N =10, in (25) are
obtained by computing the following equations for km2, km3, km4, km5, km6, km7, km8 and km9 in the case
of thefixed lag L =2, L =3,.., L =9 respectively. In the followings, the coefficients for the fixed lag, 2 <L <
4, are shown as an example.

kml1=(k9+alxk8+a2+k7+a3*k6+ad*k5+a5+k4+abxk3+a7+k2+a8xk1+a9+k)/(—all)
km2=(k8+al*k7+a2xkb+a3*k5+ad+kd+a5+k3+abxk2+a7+kl+a8+k+a9+km1)/(—al0)
km3=(k7+al*k6+a2+k5+a3*kd+ad+k3+a5+k2+abxkl+a7+k+a8+kml+a9+km?2)/(—al0)
kmA=(k6+al*k5+a2+kd+a3*k3+ad+k2+a5+kl+abxk+a7+kml+a8+km2+a9+km3)/(—al0)
kmb=(k5+alxkd+a2+k3+a3*k2+ad*kl+a5+k+abskml+a7+km2+a8+km3+a9+km4)/(—al0)
kmb6=(kd+alxk3+a2+k2+a3*kl+adsk+a5xkml+abxkm2+a7+km3+a8+kma+a9+km5)/(—al0)
km7=(k3+alxk2+a2+kl+a3*k+ad+kml+a5xkm2+a6xkm3+a7+*kmd+a8xkm5+a9+km6)/(—all)
km8=(k2+al*kl+a2xk+a3xkml+adxkm2+a5«km3+a6+kmd+a7+km5+a8xkm6+a9+km7)/(—al0)
km9=(kl+al*k+a2xkml+a3+xkm2+ad«km3+a5+kma+abxkm5+a7+kmb6+a8+km7+a9+km8)/(—al0)

% Coefficients for the 10th order AR model in the case of the fixed lag L = 2:

a, y =—1/al0xa8+1/a10"2xa9"2
a, y =—1/al0xa7+1/a10"2+a9*a8

asy =—1/al0xa6+1/al0"2xa9*a7
a,y =—1/al0xa5+1/a10"2+a9*ab
as y =—1/al0xa4+1/a10"2+a9*a5
aeny =—1/al0xa4+1/al0"2+a9*a5

a; y =—1/al0xa2+1/a10"2+a9*a3
ag y=—1/al0*al+1/al0"2xa9+a2
dq y =—1/al0+1/al0"2*a9*al
ayon =+1/al0"2+a9

% Coefficients for the 10th order AR model in the case of the fixed lag L = 3:

a, y =—1/al0"3xa9"3+2/a10"2*a8+a9

a, y =1/al0"2+a8"2—-1/a1l0%ab+1/al0"2+a9+*a7—-1/a10"3xa9"2+a8
asz y =—1/al0xa5+1/al0"2+a8*a7+1/al0"2xa9+a6—1/al0"3+*a9"2+a7
a,y =—1/al0xad+1/al0"2+a8*a6—1/al0"3+a9"2+ab+1/al0"2+a9*a5
as y =—1/al0xa3+1/al0"2+a9*ad+1/al0"2xa8+a5—1/al0"3*a9"2*a5
aey =—1/al0xa2+1/al0"2+a9+a3+1/al0"2+xa8+a4—1/al0"3xa9"2+a4

a; y =—1/al0xal+1/al0"2xa9+a2+1/al0"2+xa8+a3—1/al0"3*a9"2xa3

ag y=—1/al0*a7+1/a10"2*xa8*a2+1/a10"2xa9*al—1/al0"3xa9"2*xa2—1/al0
agy =1/a10"2xa9+1/al0"2xa8xal—1/al0"3xa9"2*al

ayon =1/a10"2+a8—-1/a10"3+a9"2

% Coefficients for the 10th order AR model in the case of the fixed lag L = 4:
a, y =+1/a10"4%a9"4+1/a10"2+a8"2—1/al0xa6+2/al0"2xa7+a9—-3/al0"3+xa8+a9"2
G,y =—1/al0xa5-1/al0"3+a9"2*xa7+1/a10"4*a9"3+a8+2/al0"2+a7+a8+1/al0"2*xa9*a6—2/a10"3*a8"2+a9

azy = —1/al0*ad+1/al0"2xa7"2-2/al0"3xa8+a9+a7+1/al0"2+a8+ab+1/al0"2+a9+a5+1/al0"4*a9"3xa7—1/al0"3x
a9"2+ab
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ayy = —1/al0"3xa9"2xa5+1/a10"2*xa9*ad+1/a10"2*a8*a5+1/al0"2xa7+ab+1/al0™4+a9"3*a6—1/al0xa3—-2/al0"3x
a8*a9+*ab

asy = —1/al0*a2—-2/al0"3*a8*a9*a5—1/al0"3*a9"2+a4+1/al0"2+a8+ad+1/al0"4*a9"3xa5+1/al0"2+a7+a5+1/all
A2+a9*a3

agny = —1/al0*al+1/al0™4*a9"3xad4—2/al0"3xa8+a9*ad+1/al0"2+a8+a3+1/al0"2+a9*a2—1/al0"3+a9"2xa3+1/al0
N2xal+ad

a;y = —1/al0+1/al0"2+*a9*al-2/al0"3*a8xa9*a3+1/al0"4*a9"3+a3—-1/al0"3xa9"2xa2+1/al0"2xa7+a3+1/al0"2x
a8*a?2

ag y=+1/al0"2+a9-2/al0"3*a8+a9+a2—1/al0"3*a9"2xal+1/al0"2*a7+a2+1/al0"4*a9"3*a2+1/al0"2+a8*al
dq y =—1/al0"3xa9"2+1/a10"2*xa8-2/al0"3*aB8xa%9+al+1/al04+a9"3*al+1/al0"2*a7+al
ayon =+1/al0"2*xa7+1/al0"4*a9"3-2/al0"3*a8*a9

The lengthy expressions of the coefficients a; y,1 < i < 10, for the fixed lag, 5 < L <9, are omitted here.
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