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Abstract  

This paper proposes the robust estimation technique for the signal and the state variables with respect to the 

state-space model having the general types of system matrices in linear discrete-time stochastic systems with 

the uncertain parameters. It is assumed that the signal and degraded signal processes are fitted to the finite 

order autoregressive (AR) models. By fitting the signal process to the AR model, the system matrix for the signal 

is transformed to the controllable canonical form. By using the system matrix, the existing robust RLS Wiener 

filter and fixed-point smoother are adopted to estimate the signal. Concerning the state estimation, the existing 

robust RLS Wiener filter calculates the filtering estimate of the signal. By replacing the observed value with the 

robust filtering estimate of the signal in the existing RLS Wiener filtering and fixed-point smoothing algorithms, 

the robust filtering and fixed-point smoothing estimates of the signal and the state variables are calculated.  

The simulation result shows the superior estimation characteristics of the proposed robust estimation technique 

for the signal and the state variables in comparison with the existing 𝐻∞ RLS Wiener filter, the robust Kalman 

filter, and the existing robust RLS Wiener filter and fixed-point smoother. 
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1. Introduction 

The Kalman filter is designed for the estimation of the state variables by using the observed values, generated 

by the accurate state-space model. Given the observed values generated by the state-space model with the 

uncertain parameters, the robust estimation techniques have been studied extensively [1]-[22] in linear discrete-

time stochastic systems. In [3], the robust state filtering technique is devised based on the minimization of the 

bound on the state error variance. In [6], [7], by solving the convex optimization problem with the linear matrix 

inequality (LMI) method, the adaptive robust Kalman filtering algorithm is proposed in linear time-varying 

systems with stochastic parametric uncertainties. In [8], the robust finite-horizon Kalman filter is devised for the 

uncertain systems with both additive and multiplicative noises. In [9], the robust Kalman filter is proposed for 

the time-varying stochastic systems with state delay and the possibility of missing measurements. In [10], [11], 

the regularized robust filters are proposed in linear uncertain stochastic systems. In [11], the LMI method is 

adopted. In [12], the 𝐻∞ filter is proposed in linear time-varying systems subject to norm-bounded parameter 

uncertainties. In [13], by solving the constrained minimization problem, the robust filter is presented for the 

stochastic systems with parameter uncertainties. In [14], the robust Kalman filtering algorithms are presented in 

linear stochastic systems with the uncertain parameters in the system and observation matrices. Together with 

the two Riccati-type equations, the filtering estimate is calculated recursively. In [15], the robust filter is proposed 

under incremental model perturbations characterized by the 𝜏 -divergence family by minimizing the mean 

square error according to the least favorable model.  

The recursive least squares (RLS) Wiener filter and fixed-point smoother are proposed for the observations with 

random unit delays [23] and also with delays and the packet dropout [24] in linear discrete-time stochastic 

systems. In [20], the 𝐻∞ RLS Wiener filter and fixed-point smoother are proposed in linear continuous-time 
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stochastic systems. The observation equation in the Krein spaces is obtained. In [21], the 𝐻∞ RLS Wiener filter 

and fixed-point smoother are presented in linear discrete-time stochastic systems. Recently, in [22], the robust 

RLS Wiener filter and fixed-point smoother are proposed for estimating the signal in linear discrete-time 

stochastic systems. The estimation accuracy of the robust RLS Wiener filter in [22] is superior to the RLS Wiener 

filter in [25] and the robust Kalman filter [14]. The robust RLS Wiener estimators [22] assume that the system 

matrix for the signal is expressed in the controllable canonical form. It is assumed that the signal and degraded 

signal processes are fitted to the finite order autoregressive (AR) models. The purpose of this paper is to develop 

the robust estimation technique of the signal and the state variables for the state-space models with the general 

kind of system matrices. By fitting the signal process to the AR model, the system matrix for the signal is 

transformed into the controllable canonical form. Then the robust RLS Wiener filter and fixed-point smoother 

[22] can be applied to the estimation of the signal even if the system matrix, before transformation, has not the 

controllable canonical form. In section 5, the example on the transformation is explained. Concerning the robust 

estimations of the state variables, in the first place, the robust filtering estimate of the signal is calculated by the 

robust RLS Wiener filter in [22]. In the second place, by replacing the observed value with the robust filtering 

estimate of the signal in the RLS Wiener filtering and fixed-point smoothing algorithms [25], the robust filtering 

and fixed-point smoothing estimates of the signal and the state variables are obtained. The robust RLS Wiener 

filtering and fixed-point smoothing algorithms in Theorem 1 [22] require the following information. (1) The 

system and observation matrices for the signal and the degraded signal. (2) The variance of the state vector for 

the degraded signal process. (3) The cross-variance of the state vector for the signal with the state vector for 

the degraded signal. (4) The variance of the observation noise. The RLS Wiener filtering and fixed-point 

smoothing algorithms, proposed in Theorem 2, require the robust filtering estimate of the signal, the system 

and observation matrices, and the variances of the state vector and the observation noise.  

A simulation example shows the estimation characteristics of the proposed robust estimation method for the 

signal and the state vector. Here, the signal process, generated by the second-order state equation, and the 

degraded signal process are fitted to the 5th order AR models. The robust RLS Wiener filter and fixed-point 

smoother of Theorem 1, for estimating the signal 𝑧(𝑘), and the RLS Wiener filter and fixed-lag smoother of 

Theorem 2, for estimating the signal 𝑧(𝑘) with the state variables 𝑥1(𝑘) and 𝑥2(𝑘), are compared in estimation 

accuracy with the 𝐻∞ RLS Wiener filter in [21], the robust Kalman filter [14] and the robust RLS Wiener filter 

and fixed-point smoother [22].  

2. Robust least-squares fixed-point smoothing problem 

Let the state-space model in linear discrete-time stochastic systems be described by  

 

𝑦(𝑘) = 𝑧(𝑘) + 𝑣(𝑘), 𝑧(𝑘) = 𝐻𝑥(𝑘),

𝑥(𝑘 + 1) = Φ𝑥(𝑘) + Γ𝑤(𝑘),

𝐸[𝑣(𝑘)𝑣𝑇(𝑠)] = 𝑅𝛿𝐾(𝑘 − 𝑠),

𝐸[𝑤(𝑘)𝑤𝑇(𝑠)] = 𝑄𝛿𝐾(𝑘 − 𝑠).

 (1) 

Here, 𝑧(𝑘)  represents the signal to be estimated and 𝑥(𝑘)  the state vector. 𝐻  denotes the 𝑚  by 𝑛 

observation matrix, Γ the 𝑛 by 𝑙 input matrix, 𝑣(𝑘) the white observation noise with the mean zero and 

𝑤(𝑘) the input noise with the mean zero. The auto-covariance functions of the observation noise and the input 

noise are shown in (1). It is assumed that the signal process is uncorrelated with the observation noise process. 

Let the signal process be expressed by the AR model of the finite order 𝑀.  

 
𝑧(𝑘) = −𝑎1𝑧(𝑘 − 1) − 𝑎2𝑧(𝑘 − 2) ⋯− 𝑎𝑀𝑧(𝑘 − 𝑀) + 𝑒(𝑘),

𝐸[𝑒(𝑘)𝑒𝑇(𝑠)] = 𝑄𝛿𝐾(𝑘 − 𝑠)
 (2) 

Let 𝑧(𝑘) be expressed in terms of the state vector 𝑥(𝑘) as follows. 
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𝑧(𝑘) = 𝐻𝑥(𝑘), 𝐻 = [𝐼𝑚×𝑚 0 0 ⋯ 0 0],

𝑥(𝑘) =

[
 
 
 
 

𝑥1(𝑘)

𝑥2(𝑘)

⋮
𝑥𝑀−1(𝑘)

𝑥𝑀(𝑘) ]
 
 
 
 

=

[
 
 
 
 

𝑧(𝑘)

𝑧(𝑘 + 1)
⋮

𝑧(𝑘 + 𝑀 − 2)
𝑧(𝑘 + 𝑀 − 1)]

 
 
 
 

 (3) 

Then the state equation, corresponding to the AR model (2), is described by  

 

𝑥(𝑘 + 1) = Φ𝑥(𝑘) + Γ𝑤(𝑘), 𝐸[𝑤(𝑘)𝑤𝑇(𝑠)] = 𝑄𝛿𝐾(𝑘 − 𝑠),

Φ =

[
 
 
 
 

0 𝐼𝑚×𝑚 0 ⋯ 0
0 0 𝐼𝑚×𝑚 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ 𝐼𝑚×𝑚

−𝑎𝑀 −𝑎𝑀−1 −𝑎𝑀−2 ⋯ −𝑎1 ]
 
 
 
 

, Γ =

[
 
 
 
 

0
0
⋮
0

𝐼𝑚×𝑚]
 
 
 
 

,

𝑤(𝑘) = 𝑒(𝑘 + 𝑁).

 (4) 

It should be noted that the system matrix Φ is not necessarily limited to the expression of the controllable 

canonical form. By introducing the auto-covariance function of the signal 𝑧(𝑘), 𝐾𝑧(𝑘, 𝑠) = 𝐸[𝑧(𝑘)𝑧𝑇(𝑠)] = 𝐾𝑧(𝑖), 

𝑖 = 𝑘 − 𝑠, 0 ≤ 𝑖 ≤ 𝑀, the Yule-Walker equation for the AR parameters 𝑎𝑖, 1 ≤ 𝑖 ≤ 𝑀, is formalized as  

 

𝐾(𝑘, 𝑘)

[
 
 
 
 
 

𝑎1
𝑇

𝑎2
𝑇

⋮
𝑎𝑀−1

𝑇

𝑎𝑀
𝑇 ]

 
 
 
 
 

= −

[
 
 
 
 

𝐾𝑧
𝑇(1)

𝐾𝑧
𝑇(2)
⋮

𝐾𝑧
𝑇(𝑀 − 1)

𝐾𝑧
𝑇(𝑀) ]

 
 
 
 

,

𝐾(𝑘, 𝑘) =

[
 
 
 
 

𝐾𝑧(0) 𝐾𝑧(1) ⋯ 𝐾𝑧(𝑀 − 2) 𝐾𝑧(𝑀 − 1)

𝐾𝑧
𝑇(1) 𝐾𝑧(0) ⋯ 𝐾𝑧(𝑀 − 3) 𝐾𝑧(𝑀 − 2)
⋮ ⋮ ⋱ ⋮ ⋮

𝐾𝑧
𝑇(𝑀 − 2) 𝐾𝑧

𝑇(𝑀 − 3) ⋯ 𝐾𝑧(0) 𝐾𝑧(1)

𝐾𝑧
𝑇(𝑀 − 1) 𝐾𝑧

𝑇(𝑀 − 2) ⋯ 𝐾𝑧
𝑇(1) 𝐾𝑧(0) ]

 
 
 
 

.

 (5) 

The purpose of this paper is to develop the robust estimation technique for the state vector 𝑥(𝑘) from the 

degraded measurement data �̆�(𝑘), which is generated by the state-space model.  

 
�̆�(𝑘) = �̆�(𝑘) + 𝑣(𝑘), �̆�(𝑘) = �̄�(𝑘)�̄�(𝑘), �̄�(𝑘) = 𝐻 + Δ𝐻(𝑘),

�̄�(𝑘 + 1) = Φ̄(𝑘)�̄�(𝑘) + Γ𝑤(𝑘), Φ̄(𝑘) = Φ + ΔΦ(𝑘)
 (6) 

In (6) the observation matrix �̄�(𝑘) and the system matrix Φ̄(𝑘) contain the uncertain matrices Δ𝐻(𝑘) and 

ΔΦ(𝑘) additionally to the observation matrix 𝐻 and the system matrix Φ, in comparison with the state-space 

model (1), respectively. Due to the uncertain quantity ΔΦ(𝑘), the trajectory of the state vector �̄�(𝑘) strays out 

of the nominal trajectory of 𝑥(𝑘). �̆�(𝑘) is the degraded signal. The observation matrix �̄�(𝑘) contains the 

uncertain matrix Δ𝐻(𝑘).  

In [22], the robust RLS Wiener filtering and fixed-point smoothing algorithms are proposed for estimating the 

signal 𝑧(𝑘) from the degraded measurement data �̆�(𝑘). In [22], the norm-bounded condition [14] posed on 

the uncertain parameters is not used at all. It is a characteristic that the robust RLS Wiener estimators [22] do 

not use any information on the uncertain quantities ΔΦ(𝑘) and Δ𝐻(𝑘).   

The sequence of the degraded signal �̆�(𝑘) is fitted to the AR model of the 𝑁-th order.  

 
�̆�(𝑘) = −�̆�1�̆�(𝑘 − 1) − �̆�2�̆�(𝑘 − 2)⋯ − �̆�𝑁�̆�(𝑘 − 𝑁) + �̆�(𝑘),

𝐸[�̆�(𝑘)�̆�𝑇(𝑠)] = �̆�𝛿𝐾(𝑘 − 𝑠)
 (7) 

�̆�(𝑘) is expressed in terms of the state vector �̆�(𝑘) as  
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�̆�(𝑘) = �̆��̆�(𝑘), �̆� = [𝐼𝑚×𝑚 0 0 ⋯ 0 0],

�̆�(𝑘) =

[
 
 
 
 

�̆�1(𝑘)

�̆�2(𝑘)
⋮

�̆�𝑁−1(𝑘)

�̆�𝑁(𝑘) ]
 
 
 
 

=

[
 
 
 
 

�̆�(𝑘)

�̆�(𝑘 + 1)
⋮

�̆�(𝑘 + 𝑁 − 2)

�̆�(𝑘 + 𝑁 − 1)]
 
 
 
 

.
 (8) 

Hence, the state equation for the state vector �̆�(𝑘) is described by  

 

�̆�(𝑘 + 1) = Φ̆�̆�(𝑘) + Γ̆𝜁(𝑘), 𝐸[𝜁(𝑘)𝜁𝑇(𝑠)] = �̆�𝛿𝐾(𝑘 − 𝑠),

Φ̆ =

[
 
 
 
 

0 𝐼𝑚×𝑚 0 ⋯ 0
0 0 𝐼𝑚×𝑚 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ 𝐼𝑚×𝑚

−�̆�𝑁 −�̆�𝑁−1 −�̆�𝑁−2 ⋯ −�̆�1 ]
 
 
 
 

, Γ̆ =

[
 
 
 
 

0
0
⋮
0

𝐼𝑚×𝑚]
 
 
 
 

,

𝜁(𝑘) = �̆�(𝑘 + 𝑁).

 (9) 

The auto-covariance function 𝐾(𝑘, 𝑠) of the state vector �̆�(𝑘) is assumed to have the semi-degenerate kernel 

form of  

 
𝐾(𝑘, 𝑠) = {

𝐴(𝑘)𝐵𝑇(𝑠),0 ≤ 𝑠 ≤ 𝑘,

𝐵(𝑘)𝐴𝑇(𝑠),0 ≤ 𝑘 ≤ 𝑠,

𝐴(𝑘) = Φ̆𝑘, 𝐵𝑇(𝑠) = Φ̆−𝑠𝐾(𝑠, 𝑠).

 (10) 

In terms of the auto-covariance function 𝐾𝑧(𝑘, 𝑠) = 𝐸[�̆�(𝑘)�̆�𝑇(𝑠)] of the degraded signal �̆�(𝑘) in wide sense 

stationary stochastic systems, the auto-variance function 𝐾(𝑘, 𝑘) of the state vector �̆�(𝑘) is expressed as 

follows. 

 

𝐾(𝑘, 𝑘) = 𝐸

[
 
 
 
 
 

[
 
 
 
 

�̆�(𝑘)
�̆�(𝑘 + 1)

⋮
�̆�(𝑘 + 𝑁 − 2)

�̆�(𝑘 + 𝑁 − 1)]
 
 
 
 

× [�̆�𝑇(𝑘) �̆�𝑇(𝑘 + 1) ⋯ �̆�𝑇(𝑘 + 𝑁 − 2) �̆�𝑇(𝑘 + 𝑁 − 1)]]

=

[
 
 
 
 

𝐾𝑧(0) 𝐾𝑧(−1) ⋯ 𝐾𝑧(−𝑁 + 2) 𝐾𝑧(−𝑁 + 1)

𝐾𝑧(1) 𝐾𝑧(0) ⋯ 𝐾𝑧(−𝑁 + 3) 𝐾𝑧(−𝑁 + 2)
⋮ ⋮ ⋱ ⋮ ⋮

𝐾𝑧(𝑁 − 2) 𝐾𝑧(𝑁 − 3) ⋯ 𝐾𝑧(0) 𝐾𝑧(−1)

𝐾𝑧(𝑁 − 1) 𝐾𝑧(𝑁 − 2) ⋯ 𝐾𝑧(1) 𝐾𝑧(0) ]
 
 
 
 

 (11) 

By using 𝐾𝑧(𝑖), 0 ≤ 𝑖 ≤ 𝑁, the Yule-Walker equation for the AR parameters �̆�𝑖 , 1 ≤ 𝑖 ≤ 𝑁, is formalized as  

 

𝐾(𝑘, 𝑘)

[
 
 
 
 

�̆�1
𝑇

�̆�2
𝑇

⋮
�̆�𝑁−1

𝑇

�̆�𝑁
𝑇 ]

 
 
 
 

= −

[
 
 
 
 
 

𝐾𝑧
𝑇(1)

𝐾𝑧
𝑇(2)
⋮

𝐾𝑧
𝑇(𝑁 − 1)

𝐾𝑧
𝑇(𝑁) ]

 
 
 
 
 

,

𝐾(𝑘, 𝑘) =

[
 
 
 
 

𝐾𝑧(0) 𝐾𝑧(1) ⋯ 𝐾𝑧(𝑁 − 2) 𝐾𝑧(𝑁 − 1)

𝐾𝑧
𝑇(1) 𝐾𝑧(0) ⋯ 𝐾𝑧(𝑁 − 3) 𝐾𝑧(𝑁 − 2)
⋮ ⋮ ⋱ ⋮ ⋮

𝐾𝑧
𝑇(𝑁 − 2) 𝐾𝑧

𝑇(𝑁 − 3) ⋯ 𝐾𝑧(0) 𝐾𝑧(1)

𝐾𝑧
𝑇(𝑁 − 1) 𝐾𝑧

𝑇(𝑁 − 2) ⋯ 𝐾𝑧
𝑇(1) 𝐾𝑧(0) ]

 
 
 
 

.

 (12) 

Let 𝐾𝑥𝑥(𝑘, 𝑠) = 𝐸[𝑥(𝑘)�̆�𝑇(𝑠)]  represent the cross-covariance function of the state vector 𝑥(𝑘)  with �̆�(𝑠). 

𝐾𝑥�̆�(𝑘, 𝑠) is assumed to have the functional form of 

 
𝐾𝑥𝑥(𝑘, 𝑠) = 𝛼(𝑘)𝛽𝑇(𝑠),0 ≤ 𝑠 ≤ 𝑘,

𝛼(𝑘) = Φ𝑘, 𝛽𝑇(𝑠) = Φ−𝑠𝐾𝑥𝑥(𝑠, 𝑠)
 (13) 

with the system matrix Φ for the state vector 𝑥(𝑘).  
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Let the fixed-point smoothing estimate �̂�(𝑘, 𝐿) of the state vector 𝑥(𝑘) at the fixed point, 𝑘 be given by  

 �̂�(𝑘, 𝐿) = ∑ℎ

𝐿

𝑖=1

(𝑘, 𝑖, 𝐿)�̆�(𝑖) (14) 

as a linear combination of the impulse response function ℎ(𝑘, 𝑖, 𝐿) and the observed values {�̆�(𝑖),1 ≤ 𝑖 ≤ 𝐿}. 

We consider the least-squares estimation problem, which minimizes the mean-square value (MSV)  

 𝐽 = 𝐸[||𝑥(𝑘) − �̂�(𝑘, 𝐿)||2] (15) 

of the fixed-point smoothing error 𝑥(𝑘) − �̂�(𝑘, 𝐿). From an orthogonal projection lemma [26]  

 𝑥(𝑘) − ∑ ℎ

𝐿

𝑖=1

(𝑘, 𝑖, 𝐿)�̆�(𝑖) ⊥ �̆�(𝑠),1 ≤ 𝑠 ≤ 𝐿, (16) 

the Wiener-Hopf equation  

 𝐸[𝑥(𝑘)�̆�𝑇(𝑠)] = ∑ℎ

𝐿

𝑖=1

(𝑘, 𝑖, 𝐿)𝐸[�̆�(𝑖)�̆�𝑇(𝑠)], (17) 

which the optimal impulse response function satisfies, is obtained. In (16), ‘⊥’ represents the notation of the 

orthogonality. From (6), (8) and (17), and taking into account of the relationship 𝐸[𝑥(𝑘)�̆�𝑇(𝑠)] = 𝐾𝑥𝑥(𝑘, 𝑠)�̆�𝑇 =

𝐾𝑥𝑧(𝑘, 𝑠), we obtain  

 ℎ(𝑘, 𝑠, 𝐿)𝑅 = 𝐾𝑥𝑥(𝑘, 𝑠)�̆�𝑇 − ∑ ℎ

𝐿

𝑖=1

(𝑘, 𝑖, 𝐿)�̆�𝐾(𝑖, 𝑠)�̆�𝑇 . (18) 

Here, 𝐾𝑥𝑧(𝑘, 𝑠) denote the cross-covariance function of the state vector 𝑥(𝑘) with the degraded signal �̆�(𝑠) 

as 𝐸[𝑥(𝑘)�̆�𝑇(𝑠)].  

3. Robust RLS Wiener filtering and fixed-point smoothing algorithms 

Under the problem formulation on the linear least-squares estimation problem in section 2, Theorem 1 [22] 

presents the robust RLS Wiener filtering and fixed-point smoothing algorithms for estimating the signal 𝑧(𝑘).  

Theorem 1 [22] Let the state-space model containing the uncertain quantities ΔΦ and Δ𝐻 be given by (6) in 

linear discrete-time stochastic systems. Let the state-space model for the signal 𝑧(𝑘) be given by (1). Let the 

signal 𝑧(𝑘) be fitted to the AR model of the order 𝑀. Let the degraded signal �̆�(𝑘) be fitted to the AR model 

of the order 𝑁. Let the variance 𝐾(𝑘, 𝑘) of the state vector �̆�(𝑘) for the degraded signal �̆�(𝑘) and the cross-

variance 𝐾𝑥𝑥(𝑘, 𝑘) of the state vector 𝑥(𝑘) for the signal 𝑧(𝑘) with the state vector �̆�(𝑘) for the degraded 

signal �̆�(𝑘) be given. Let the variance of the white observation noise 𝑣(𝑘) be 𝑅. Then, (19)-(29) constitute the 

robust RLS Wiener estimation algorithms for the filtering estimate �̂�(𝑘, 𝑘) and the fixed-point smoothing 

estimate �̂�(𝑘, 𝐿) of the signal 𝑧(𝑘) at the fixed point 𝑘.  

Fixed-point smoothing estimate of the signal 𝑧(𝑘): �̂�(𝑘, 𝐿)  

 �̂�(𝑘, 𝐿) = 𝐻�̂�(𝑘, 𝐿) (19) 

Fixed-point smoothing estimate of the state vector 𝑥(𝑘): �̂�(𝑘, 𝐿) 

 
�̂�(𝑘, 𝐿) = �̂�(𝑘, 𝐿 − 1) + ℎ(𝑘, 𝐿, 𝐿)(�̆�(𝐿) − �̆�Φ̆�̂̆�(𝐿 − 1, 𝐿 − 1)),

�̂�(𝑘, 𝐿)|𝐿=𝑘 = �̂�(𝑘, 𝑘)
 (20) 

Smoother gain for �̂�(𝑘, 𝐿) in (20): ℎ(𝑘, 𝐿, 𝐿)  

 
ℎ(𝑘, 𝐿, 𝐿) = [𝐾𝑥𝑥(𝑘, 𝑘)(Φ̆𝑇)𝐿−𝑘�̆�𝑇 − 𝑞(𝑘, 𝐿 − 1)Φ̆𝑇�̆�𝑇]

× {𝑅 + �̆�[𝐾(𝐿, 𝐿) − Φ̆𝑆0(𝐿 − 1)Φ̆𝑇]�̆�𝑇}−1
 (21) 
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𝑞(𝑘, 𝐿) = 𝑞(𝑘, 𝐿 − 1)Φ̆𝑇 + ℎ(𝑘, 𝐿, 𝐿)�̆�[𝐾(𝐿, 𝐿) − Φ̆𝑆0(𝐿 − 1)Φ̆𝑇],

𝑞(𝑘, 𝑘) = 𝑆0(𝑘)
 (22) 

Filtering estimate of the signal 𝑧(𝑘): �̂�(𝑘, 𝑘)  

 �̂�(𝑘, 𝑘) = 𝐻�̂�(𝑘, 𝑘) (23) 

Filtering estimate of 𝑥(𝑘): �̂�(𝑘, 𝑘)  

 
�̂�(𝑘, 𝑘) = Φ�̂�(𝑘 − 1, 𝑘 − 1) + 𝐺(𝑘)(�̆�(𝑘) − �̆�Φ̆�̂̆�(𝑘 − 1, 𝑘 − 1)),

�̂�(0,0) = 0
 (24) 

Filter gain for �̂�(𝑘, 𝑘) in (24): 𝐺(𝑘)  

 

𝐺(𝑘) = [𝐾𝑥𝑧(𝑘, 𝑘) − Φ𝑆(𝑘 − 1)Φ̆𝑇�̆�𝑇]

× {𝑅 + �̆�[𝐾(𝑘, 𝑘) − Φ̆𝑆0(𝐿 − 1)Φ̆𝑇]�̆�𝑇}−1,

𝐾𝑥𝑧(𝑘, 𝑘) = 𝐾𝑥𝑥(𝑘, 𝑘)�̆�𝑇

 (25) 

Filtering estimate of �̆�(𝑘): �̂̆�(𝑘, 𝑘)  

 
�̂̆�(𝑘, 𝑘) = Φ̆�̂̆�(𝑘 − 1, 𝑘 − 1) + 𝑔(𝑘)(�̆�(𝑘) − �̆�Φ̆�̂̆�(𝑘 − 1, 𝑘 − 1)),

�̂̆�(0,0) = 0
 (26) 

Filter gain for �̂̆�(𝑘, 𝑘) in (26): 𝑔(𝑘) 

 
𝑔(𝑘) = [𝐾(𝑘, 𝑘)�̆�𝑇 − Φ̆𝑆0(𝑘 − 1)Φ̆𝑇�̆�𝑇]

× {𝑅 + �̆�[𝐾(𝑘, 𝑘) − Φ̆𝑆0(𝐿 − 1)Φ̆𝑇]�̆�𝑇}−1
 (27) 

Auto-variance function of �̂̆�(𝑘, 𝑘): 𝑆0(𝑘) = 𝐸[�̂̆�(𝑘, 𝑘)�̂̆�𝑇(𝑘, 𝑘)]  

 
𝑆0(𝑘) = Φ̆𝑆0(𝑘 − 1)Φ̆𝑇 + 𝑔(𝑘)�̆�[𝐾(𝑘, 𝑘) − Φ̆𝑆0(𝑘 − 1)Φ̆𝑇],

𝑆0(0) = 0
 (28) 

Cross-variance function of �̂�(𝑘, 𝑘) with �̂̆�(𝑘, 𝑘): 𝑆(𝑘) = 𝐸[�̂�(𝑘, 𝑘)�̂̆�𝑇(𝑘, 𝑘)]  

 
𝑆(𝑘) = Φ𝑆(𝑘 − 1)Φ̆𝑇 + 𝐺(𝑘)�̆�[𝐾(𝑘, 𝑘) − Φ̆𝑆0(𝑘 − 1)Φ̆𝑇],

𝑆(0) = 0
 (29) 

In the robust RLS Wiener filter and fixed-point smoother [22], the estimation problem of the signal 𝑧(𝑘) is the 

main issue and the estimation of the state variables in the state-space model with the system matrix Φ, in the 

controllable canonical form, is possible. To be able to deal with the system matrices, not in the controllable 

canonical form, the signal process needs to be expressed by the AR model of the finite order 𝑀 as shown in 

(2). The corresponding state vector and the state-space model are given in (3) and (4). The AR parameters in (2) 

are calculated by solving the Yule-Walker equation (5). The robust filtering and fixed-point smoothing estimates 

of the signal 𝑧(𝑘)  are calculated by the robust RLS Wiener estimation algorithms of Theorem 1 [22]. By 

replacing the observed value with the robust filtering estimate �̂�(𝑘, 𝑘) of the signal 𝑧(𝑘) in the RLS Wiener 

filtering and fixed-point smoothing algorithms [25], Theorem 2 presents the robust RLS Wiener estimation 

algorithms for the filtering and fixed-point smoothing estimates of the signal 𝑧(𝑘) and the state vector 𝑥(𝑘).  

Theorem 2 Let the state-space model, without including the uncertain quantities ΔΦ and Δ𝐻, be given by (1). 

Then the robust RLS Wiener filtering and fixed-point smoothing algorithms for the signal 𝑧(𝑘) and state vector 

𝑥(𝑘) consist of (30)-(37). In Theorem 2, the observed value 𝑦(𝑘), in the RLS Wiener estimation algorithms [25], 

is replaced with the robust filtering estimate �̂�(𝑘, 𝑘), which is calculated by the robust RLS Wiener filter in 

Theorem 1 [22]. In the filtering and the fixed-point smoothing algorithms of Theorem 2, the filtering estimate 

�̂�(𝑘, 𝑘) , the system matrix Φ , the observation matrix 𝐻 , the auto-variance function of 𝑥(𝑘) , 𝐾𝑥(𝑘, 𝑘) =

𝐸[𝑥(𝑘)𝑥𝑇(𝑘)] are used.  

Fixed-point smoothing estimate of the signal 𝑧(𝑘): �̂�𝑇𝐻2(𝑘, 𝐿)  

 �̂�𝑇𝐻2(𝑘, 𝐿) = 𝐻�̂�(𝑘, 𝐿) (30) 

Fixed-point smoothing estimate of the state vector 𝑥(𝑘): �̂�(𝑘, 𝐿) 
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�̂�(𝑘, 𝐿) = �̂�(𝑘, 𝐿 − 1) + ℎ(𝑘, 𝐿, 𝐿)(�̂�(𝐿, 𝐿) − 𝐻Φ�̂�(𝐿 − 1, 𝐿 − 1)),
�̂�(𝑘, 𝐿)|𝐿=𝑘 = �̂�(𝑘, 𝑘)

 (31) 

Smoother gain for �̂�(𝑘, 𝐿) in (31): ℎ(𝑘, 𝐿, 𝐿)  

 
ℎ(𝑘, 𝐿, 𝐿) = [𝐾𝑥(𝑘, 𝑘)(Φ𝑇)𝐿−𝑘𝐻𝑇 − 𝑞(𝑘, 𝐿 − 1)Φ𝑇𝐻𝑇]

× {𝑅 + 𝐻[𝐾𝑥(𝐿, 𝐿) − Φ𝑆𝑥(𝐿 − 1)Φ𝑇]𝐻𝑇}−1  (32) 

 

 
𝑞(𝑘, 𝐿) = 𝑞(𝑘, 𝐿 − 1)Φ𝑇 + ℎ(𝑘, 𝐿, 𝐿)𝐻[𝐾𝑥(𝐿, 𝐿) − Φ𝑆𝑥(𝐿 − 1)Φ𝑇],

𝑞(𝑘, 𝑘) = 𝑆𝑥(𝑘)
 (33) 

Filtering estimate of the signal 𝑧(𝑘): �̂�𝑇𝐻2(𝑘, 𝑘)  

 �̂�𝑇𝐻2(𝑘, 𝑘) = 𝐻�̂�(𝑘, 𝑘) (34) 

Filtering estimate of 𝑥(𝑘): �̂�(𝑘, 𝑘)  

 
�̂�(𝑘, 𝑘) = Φ�̂�(𝑘 − 1, 𝑘 − 1) + 𝐺𝑥(𝑘)(�̂�(𝑘, 𝑘) − 𝐻Φ�̂�(𝑘 − 1, 𝑘 − 1)),
�̂�(0,0) = 0

 (35) 

Filter gain for �̂�(𝑘, 𝑘) in (35): 𝐺𝑥(𝑘)  

 
𝐺𝑥(𝑘) = [(𝐾𝑥(𝑘, 𝑘) − Φ𝑆𝑥(𝑘 − 1)Φ𝑇)𝐻𝑇]

× {𝑅 + 𝐻[𝐾𝑥(𝑘, 𝑘) − Φ𝑆𝑥(𝐿 − 1)Φ𝑇]𝐻𝑇}−1 (36) 

Variance of filtering estimate �̂�(𝑘, 𝑘): 𝑆𝑥(𝑘) 

 
𝑆𝑥(𝑘) = Φ𝑆𝑥(𝑘 − 1)Φ𝑇 + 𝐺𝑥(𝑘)𝐻[𝐾𝑥(𝑘, 𝑘) − Φ𝑆𝑥(𝑘 − 1)Φ𝑇],

𝑆𝑥(0) = 0
 (37) 

In section 4, the filtering error variance function for the state vector 𝑥(𝑘) is introduced and the existence of the 

filtering estimate �̂�(𝑘, 𝑘) Of 𝑥(𝑘) is validated.  

4. Filtering error variance function of state vector 

In this section the filtering error variance function �̃�𝑥(𝑘) for the state vector 𝑥(𝑘) is shown. The filtering error 

variance function is given by 

 

�̃�𝑥(𝑘) = 𝐸[(𝑥(𝑘) − �̂�(𝑘, 𝑘))(𝑥(𝑘) − �̂�(𝑘, 𝑘))𝑇]

= 𝐾𝑥(𝑘, 𝑘) − 𝐸[�̂�(𝑘, 𝑘)�̂�𝑇(𝑘, 𝑘)]

= 𝐾𝑥(𝑘, 𝑘) − 𝑆𝑥(𝑘).

 (38) 

𝑆𝑥(𝑘) Is calculated by (36) and (37) recursively. Since �̃�𝑥(𝑘) is the semi-definite function, the filtering variance 

function 𝐸[�̂�(𝑘, 𝑘)�̂�𝑇(𝑘, 𝑘)] is upper bounded by 𝐾𝑥(𝑘, 𝑘) and lower bounded by the zero matrices as 

 0 ≤ 𝐸[�̂�(𝑘, 𝑘)�̂�𝑇(𝑘, 𝑘)] ≤ 𝐾𝑥(𝑘, 𝑘). (39) 

This validates the existence of the filtering estimate �̂�(𝑘, 𝑘) of the state vector 𝑥(𝑘).  

5. A numerical simulation example 

Let a scalar observation equation and the state equation for 𝑥(𝑘) be given by  

 

𝑦(𝑘) = 𝑧(𝑘) + 𝑣(𝑘), 𝑧(𝑘) = 𝐻𝑥(𝑘), 𝐻 = [0.95 −0.4], 𝑥(𝑘) = [
𝑥1(𝑘)
𝑥2(𝑘)

] ,

𝑥(𝑘 + 1) = Φ𝑥(𝑘) + Γ𝑤(𝑘),Φ = [
0.05 0.95

−0.98 0.2
] , Γ = [

0.952
0.2

] ,

𝐸[𝑣(𝑘)𝑣(𝑠)] = 𝑅𝛿𝐾(𝑘 − 𝑠), 𝐸[𝑤(𝑘)𝑤(𝑠)] = 𝑄𝛿𝐾(𝑘 − 𝑠), 𝑄 = 0. 52.

 (40) 

As shown in (2), the signal 𝑧(𝑘) is fitted to the 𝑀-th order AR model. The state-space model of (6) contains the 

uncertain quantities Δ𝐻(𝑘) and ΔΦ(𝑘) as shown in 
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�̆�(𝑘) = �̆�(𝑘) + 𝑣(𝑘), �̆�(𝑘) = �̄�(𝑘)�̄�(𝑘), �̄�(𝑘) = [
�̄�1(𝑘)

�̄�2(𝑘)
] ,

�̄�(𝑘) = 𝐻 + Δ𝐻(𝑘) = [1 + Δ3(𝑘) 0], Δ𝐻(𝑘) = [Δ3(𝑘) 0], Δ3(𝑘) = 0.3𝜁3(𝑘),

�̄�(𝑘 + 1) = Φ̄(𝑘)�̄�(𝑘) + Γ𝑤(𝑘), Φ̄(𝑘) = Φ + ΔΦ(𝑘), ΔΦ(𝑘) = [
Δ1(𝑘) 0

0 Δ2(𝑘)
] ,

Δ1(𝑘) = 0.1𝜁1(𝑘), Δ2(𝑘) = 0.2𝜁2(𝑘).

 (41) 

It should be noted that the uncertain quantities Δ𝐻(𝑘) and ΔΦ(𝑘) are not given as prior information and are 

not used in the proposed robust estimation algorithms in Theorem 1 [22] and Theorem 2. Their norm-bounded 

condition [14] is not used in the theorems as well. The task is to estimate the signal 𝑧(𝑘) recursively with the 

scalar observed value �̆�(𝑘), which is given as a sum of the degraded signal �̆�(𝑘) and the observation noise 

𝑣(𝑘) . 𝜁1(𝑘) , 𝜁2(𝑘)  and 𝜁3(𝑘)  in (41) represent the uniformly distributed random variables taking values 

between 0  and 1  and are generated by using the MATLAB command “𝑟𝑎𝑛𝑑 .” Δ1(𝑘) , Δ2(𝑘)  and Δ3(𝑘) 

consist of the deterministic mean values and the zero-mean stochastic variables, which are mutually 

independent. The degraded signal �̆�(𝑘) is fitted to the 𝑁-th order AR model of (7). The state-space model for 

the degraded signal �̆�(𝑘) is given by (9). The state equation for �̆�(𝑘) is given by (9) for 𝑚 = 1. 𝐾(𝑘, 𝑠) = 𝐾(𝑘 −

𝑠) represents the auto-covariance function of the state vector �̆�(𝑘) in wide-sense stationary stochastic systems. 

𝐾(𝑘, 𝑠) is expressed in the form of the semi-degenerate function (10). The system matrix Φ̆ for the state vector 

�̆�(𝑘) is given in (9). In terms of the auto-covariance function 𝐾𝑧(𝑘 − 𝑠) = 𝐾𝑧(𝑠 − 𝑘) = 𝐸[�̆�(𝑘)�̆�(𝑠)] of degraded 

signal �̆�(𝑘), the auto-variance function 𝐾(𝑘, 𝑘) of the state vector �̆�(𝑘) is expressed as follows. 

 

𝐾(𝑘, 𝑘) = 𝐸

[
 
 
 
 
 

[
 
 
 
 

�̆�(𝑘)
�̆�(𝑘 + 1)

⋮
�̆�(𝑘 + 𝑁 − 2)

�̆�(𝑘 + 𝑁 − 1)]
 
 
 
 

[�̆�(𝑘) �̆�(𝑘 + 1) ⋯ �̆�(𝑘 + 𝑁 − 2) �̆�(𝑘 + 𝑁 − 1)]

]
 
 
 
 
 

=

[
 
 
 
 

𝐾𝑧(0) 𝐾𝑧(1) ⋯ 𝐾𝑧(𝑁 − 2) 𝐾𝑧(𝑁 − 1)

𝐾𝑧(1) 𝐾𝑧(0) ⋯ 𝐾𝑧(𝑁 − 3) 𝐾𝑧(𝑁 − 2)
⋮ ⋮ ⋱ ⋮ ⋮

𝐾𝑧(𝑁 − 2) 𝐾𝑧(𝑁 − 3) ⋯ 𝐾𝑧(0) 𝐾𝑧(1)

𝐾𝑧(𝑁 − 1) 𝐾𝑧(𝑁 − 2) ⋯ 𝐾𝑧(1) 𝐾𝑧(0) ]
 
 
 
 

 (42) 

Let 𝐾𝑧𝑧(𝑘, 𝑠) = 𝐸[𝑧(𝑘)�̆�(𝑠)] represent the cross-covariance function between the signal 𝑧(𝑘) and the degraded 

signal �̆�(𝑠). From (3) and (13), the cross-covariance function 𝐾𝑥�̆�(𝑘, 𝑠) is expressed as  
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𝐾𝑥𝑥(𝑘, 𝑠) = Φ𝑘−𝑠𝐾𝑥𝑥(𝑠, 𝑠),0 ≤ 𝑠 ≤ 𝑘,

𝐾𝑥𝑥(𝑘, 𝑘) = 𝐸

[
 
 
 
 
 

[
 
 
 
 

𝑥1(𝑘)

𝑥2(𝑘)

⋮
𝑥𝑀−1(𝑘)

𝑥𝑀(𝑘) ]
 
 
 
 

[�̆�(𝑘) �̆�(𝑘 + 1) ⋯ �̆�(𝑘 + 𝑁 − 2) �̆�(𝑘 + 𝑁 − 1)]

]
 
 
 
 
 

= 𝐸

[
 
 
 
 
 

[
 
 
 
 

𝑧(𝑘)

𝑧(𝑘 + 1)
⋮

𝑧(𝑘 + 𝑀 − 2)
𝑧(𝑘 + 𝑀 − 1)]

 
 
 
 

[�̆�(𝑘) �̆�(𝑘 + 1) ⋯ �̆�(𝑘 + 𝑁 − 2) �̆�(𝑘 + 𝑁 − 1)]

]
 
 
 
 
 

=

[
 
 
 
 

𝐾𝑧𝑧(𝑘, 𝑘)] 𝐾𝑧𝑧(𝑘, 𝑘 + 1)

𝐾𝑧𝑧(𝑘 + 1, 𝑘) 𝐾𝑧𝑧(𝑘 + 1, 𝑘 + 1)
⋮ ⋮

𝐾𝑧𝑧(𝑘 + 𝑀 − 2, 𝑘) 𝐾𝑧𝑧(𝑘 + 𝑀 − 2, 𝑘 + 1)

𝐾𝑧𝑧(𝑘 + 𝑀 − 1, 𝑘) 𝐾𝑧𝑧(𝑘 + 𝑀 − 1, 𝑘 + 1)

⋯ 𝐾𝑧𝑧(𝑘, 𝑘 + 𝑁 − 2) 𝐾𝑧𝑧(𝑘, 𝑘 + 𝑁 − 1)

⋯ 𝐾𝑧𝑧(𝑘 + 1, 𝑘 + 𝑁 − 2) 𝐾𝑧𝑧(𝑘 + 1, 𝑘 + 𝑁 − 1)
⋱ ⋮ ⋮
⋯ 𝐾𝑧�̆�(𝑘 + 𝑀 − 2, 𝑘 + 𝑁 − 2) 𝐾𝑧𝑧(𝑘 + 𝑀 − 2, 𝑘 + 𝑁 − 1)

⋯ 𝐾𝑧�̆�(𝑘 + 𝑀 − 1, 𝑘 + 𝑁 − 2) 𝐾𝑧𝑧(𝑘 + 𝑀 − 1, 𝑘 + 𝑁 − 1)]
 
 
 
 

.

 (43) 

 

 

Fig. 1 Signal 𝒛(𝒌) and the degraded signal �̆�(𝒌) vs. 𝒌, 𝟏 ≤ 𝒌 ≤ 𝟐𝟎𝟎, for the white Gaussian observation 

noise 𝑵(𝟎, 𝟎. 𝟑𝟐).  
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Fig. 2 Signal 𝒛(𝒌), the fixed-point smoothing estimate �̂�(𝒌, 𝒌 + 𝟑) and the filtering estimate �̂�(𝒌, 𝒌) of the 

signal 𝒛(𝒌) vs. 𝒌, 𝟏 ≤ 𝒌 ≤ 𝟐𝟎𝟎, for the white Gaussian observation noise 𝑵(𝟎, 𝟎. 𝟑𝟐) in the case of the AR 

model orders 𝑴 = 𝟓 and 𝑵 = 𝟓. 

 

Fig. 3 State variable 𝒙𝟏(𝒌) and its filtering estimate 𝒙𝟏(𝒌, 𝒌) vs. 𝒌, 𝟏 ≤ 𝒌 ≤ 𝟐𝟎𝟎, for the white Gaussian 

observation noise 𝑵(𝟎, 𝟎. 𝟑𝟐) in the case of the AR model orders 𝑴 = 𝟓 and 𝑵 = 𝟓. 
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Fig. 4 State variable 𝒙𝟐(𝒌) and its filtering estimate 𝒙𝟐(𝒌, 𝒌) vs. 𝒌, 𝟏 ≤ 𝒌 ≤ 𝟐𝟎𝟎, for the white Gaussian 

observation noise 𝑵(𝟎, 𝟎. 𝟑𝟐) in the case of the AR model orders 𝑴 = 𝟓 and 𝑵 = 𝟓. 

 

Fig. 5 MSVs of the filtering errors 𝒛(𝒌) − �̂�(𝒌, 𝒌) and the fixed-point smoothing errors 𝒛(𝒌) − �̂�(𝒌, 𝒌 + 𝑳𝒂𝒈) 

by the RLS Wiener filter and fixed-point smoother of Theorem 1 [22] and the MSVs of the filtering errors 

𝒛(𝒌) − �̂�𝑻𝑯𝟐(𝒌, 𝒌) and the fixed-point smoothing errors 𝒛(𝒌) − �̂�𝑻𝑯𝟐(𝒌, 𝒌 + 𝑳𝒂𝒈) by the RLS Wiener filter and 

fixed-point smoother of Theorem 2 vs. 𝑳𝒂𝒈, 𝟎 ≤ 𝑳𝒂𝒈 ≤ 𝟏𝟎, for the white Gaussian observation noises 

𝑵(𝟎, 𝟎. 𝟏𝟐), 𝑵(𝟎, 𝟎. 𝟑𝟐), 𝑵(𝟎, 𝟎. 𝟓𝟐) and 𝑵(𝟎, 𝟎. 𝟕𝟐) in the case of the AR model orders 𝑴 = 𝟓 and 𝑵 = 𝟓.  
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Fig. 6 MSVs of the filtering errors 𝒙𝟏(𝒌) − 𝒙𝟏(𝒌, 𝒌) and the fixed-point smoothing errors 𝒙𝟏(𝒌) − 𝒙𝟏(𝒌, 𝒌 +

𝑳𝒂𝒈), 𝟏 ≤ 𝒌 ≤ 𝟐𝟎𝟎𝟎, vs. 𝑳𝒂𝒈, 𝟎 ≤ 𝑳𝒂𝒈 ≤ 𝟏𝟎, for the white Gaussian observation noises 𝑵(𝟎, 𝟎. 𝟏𝟐), 

𝑵(𝟎, 𝟎. 𝟑𝟐), 𝑵(𝟎, 𝟎. 𝟓𝟐) and 𝑵(𝟎, 𝟎. 𝟕𝟐) in the case of the AR model orders 𝑴 = 𝟓 and 𝑵 = 𝟓. 

 

Fig. 7 MSVs of the filtering errors 𝒙𝟐(𝒌) − 𝒙𝟐(𝒌, 𝒌) and the fixed-point smoothing errors 𝒙𝟐(𝒌) − 𝒙𝟐(𝒌, 𝒌 +

𝑳𝒂𝒈), 𝟏 ≤ 𝒌 ≤ 𝟐𝟎𝟎𝟎, vs. 𝑳𝒂𝒈, 𝟎 ≤ 𝑳𝒂𝒈 ≤ 𝟏𝟎, for the white Gaussian observation noises 𝑵(𝟎, 𝟎. 𝟏𝟐), 

𝑵(𝟎, 𝟎. 𝟑𝟐), 𝑵(𝟎, 𝟎. 𝟓𝟐) and 𝑵(𝟎, 𝟎. 𝟕𝟐) in the case of the AR model orders 𝑴 = 𝟓 and 𝑵 = 𝟓. 



Computer Reviews Journal Vol 4 (2019) ISSN: 2581-6640                   http://purkh.com/index.php/tocomp 

30 

 

 

Fig. 8 MSVs of the filtering errors 𝒛(𝒌) − �̂�(𝒌, 𝒌) by the 𝑯∞ filter in [21], the robust Kalman filter [14] and the 

robust RLS Wiener filter in Theorem 1 [22], the MSVs of the filtering errors 𝒙𝟏(𝒌) − 𝒙𝟏(𝒌, 𝒌) and 𝒙𝟐(𝒌) −

𝒙𝟐(𝒌, 𝒌) by the 𝑯∞ filter in [21], the robust Kalman filter [14] and the robust RLS Wiener filter in Theorem 2, 

and the MSV of the filtering errors 𝒛(𝒌) − �̂�𝑻𝑯𝟐(𝒌, 𝒌) by the robust RLS Wiener filter in Theorem 2 vs. the 

standard deviation of the observation noise. 

The AR parameters �̆�𝑖 ,1 ≤ 𝑖 ≤ 𝑁, in (7) for the degraded signal �̆�(𝑘) are calculated by the Yule-Walker equation 

(12). The AR parameters 𝑎𝑖 ,1 ≤ 𝑖 ≤ 𝑀, in (2) for the signal 𝑧(𝑘) are calculated by the Yule-Walker equation (5). 

By substituting 𝐻 , �̆� , Φ , Φ̆ , 𝐾𝑥𝑥(𝑘, 𝑘) , 𝐾(𝑘, 𝑘) = 𝐾(𝐿, 𝐿)  and 𝑅  into the robust RLS Wiener estimation 

algorithms of Theorem 1 [22], the filtering and fixed-point smoothing estimates of the signal 𝑧(𝑘)  are 

calculated recursively. In the simulation, the AR model orders for the sequences of the signal 𝑧(𝑘) and the 

degraded signal �̆�(𝑘) are 𝑀 = 5 and 𝑁 = 5 respectively. Fig.1 illustrates the signal 𝑧(𝑘) and the degraded 

signal �̆�(𝑘) vs. 𝑘, 1 ≤ 𝑘 ≤ 200, for the white Gaussian observation noise 𝑁(0,0. 32). It is clear that the sequence 

of the degraded signal is different from that of the signal. Fig.2 illustrates the signal 𝑧(𝑘), the filtering estimate 

�̂�(𝑘, 𝑘) and the fixed-point smoothing estimate �̂�(𝑘, 𝑘 + 3) of the signal 𝑧(𝑘) vs. 𝑘, 1 ≤ 𝑘 ≤ 200, for the white 

Gaussian observation noise 𝑁(0,0. 32). It is shown that the filtering and fixed-point smoothing estimates of 𝑧(𝑘) 

have the values near those of the signal along with the time 𝑘. By substituting the robust filtering estimate 

�̂�(𝑘, 𝑘), calculated by Theorem 1 [22], the observation matrix 𝐻, the system matrix Φ, and the variance 𝐾𝑥(𝑘, 𝑘) 

of the state vector 𝑥(𝑘) into the RLS Wiener filtering and fixed-point smoothing algorithms of Theorem 2, the 

filtering estimate �̂�𝑇𝐻2(𝑘, 𝑘) and the fixed-point smoothing estimate �̂�𝑇𝐻2(𝑘, 𝐿) of the signal 𝑧(𝑘), and the 

filtering estimates �̂�1(𝑘, 𝑘) ,  �̂�2(𝑘, 𝑘)  and the fixed-point smoothing estimate �̂�1(𝑘, 𝐿) ,  �̂�2(𝑘, 𝐿)  of the state 

variables 𝑥1(𝑘) and 𝑥2(𝑘) are calculated, respectively. Fig.3 illustrates the state variable 𝑥1(𝑘) and its filtering 

estimate �̂�1(𝑘, 𝑘) vs. 𝑘, 1 ≤ 𝑘 ≤ 200, for the white Gaussian observation noise 𝑁(0,0. 32). It is shown that the 

filtering estimate �̂�1(𝑘, 𝑘)  has the values near those of the state variable 𝑥1(𝑘)  along the time 𝑘 . Fig.4 

illustrates the state variable 𝑥2(𝑘) and its filtering estimate �̂�2(𝑘, 𝑘) vs. 𝑘, 1 ≤ 𝑘 ≤ 200, for the white Gaussian 

observation noise 𝑁(0,0. 32). It is also shown that the filtering estimate �̂�2(𝑘, 𝑘) has the values near those of 

the state variable 𝑥2(𝑘) along time 𝑘. Fig.5 illustrates the mean-square values (MSVs) of the filtering errors 

𝑧(𝑘) − �̂�(𝑘, 𝑘) and the fixed-point smoothing errors 𝑧(𝑘) − �̂�(𝑘, 𝑘 + 𝐿𝑎𝑔) by the RLS Wiener filter and fixed-

point smoother of Theorem 1 [22] and the MSVs of the filtering errors 𝑧(𝑘) − �̂�𝑇𝐻2(𝑘, 𝑘) and the fixed-point 

smoothing errors 𝑧(𝑘) − �̂�𝑇𝐻2(𝑘, 𝑘 + 𝐿𝑎𝑔) by the RLS Wiener filter and fixed-point smoother of Theorem 2 vs. 
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𝐿𝑎𝑔, 0 ≤ 𝐿𝑎𝑔 ≤ 10, for the white Gaussian observation noises 𝑁(0,0. 12), 𝑁(0,0. 32), 𝑁(0,0. 52) and 𝑁(0,0. 72). 

For 𝐿𝑎𝑔 = 0, the MSVs are shown for the filtering errors. The MSVs of the fixed-point smoothing errors are 

greater than the MSVs of the filtering errors for each observation noise. The MSVs by the robust RLS Wiener 

filter and fixed-point smoother of Theorem 1 [22] are smaller than those by the RLS Wiener filter and fixed-point 

smoother of Theorem 2 for the white Gaussian observation noises 𝑁(0,0. 32), 𝑁(0,0. 52) and 𝑁(0,0. 72). Fig.6 

illustrates the MSVs of the filtering errors 𝑥1(𝑘) − �̂�1(𝑘, 𝑘)  and the fixed-point smoothing errors 𝑥1(𝑘) −

�̂�1(𝑘, 𝑘 + 𝐿𝑎𝑔) , vs. 𝐿𝑎𝑔 , 0 ≤ 𝐿𝑎𝑔 ≤ 10 , for the white Gaussian observation noises 𝑁(0,0. 12) , 𝑁(0,0. 32) , 

𝑁(0,0. 52) and 𝑁(0,0. 72). The MSVs have a tendency to be small as 𝐿𝑎𝑔 increases for 1 ≤ 𝐿𝑎𝑔 ≤ 3 in the 

cases of the white Gaussian observation noises 𝑁(0,0. 32), 𝑁(0,0. 52) and 𝑁(0,0. 72). Fig.7 illustrates the MSVs 

of the filtering errors 𝑥2(𝑘) − �̂�2(𝑘, 𝑘) and the fixed-point smoothing errors 𝑥2(𝑘) − �̂�2(𝑘, 𝑘 + 𝐿𝑎𝑔), vs. 𝐿𝑎𝑔, 

0 ≤ 𝐿𝑎𝑔 ≤ 10, for the white Gaussian observation noises 𝑁(0,0. 12), 𝑁(0,0. 32), 𝑁(0,0. 52) and 𝑁(0,0. 72). The 

MSVs tend to be small as 𝐿𝑎𝑔 increases for 1 ≤ 𝐿𝑎𝑔 ≤ 4 in the case of each observation noise. Fig.8 illustrates 

the MSVs of the filtering errors 𝑧(𝑘) − �̂�(𝑘, 𝑘) by the 𝐻∞ RLS Wiener filter in [21], the robust Kalman filter [14] 

and the robust RLS Wiener filter in Theorem 1 [22], the MSVs of the filtering errors 𝑥1(𝑘) − �̂�1(𝑘, 𝑘) and 𝑥2(𝑘) −

�̂�2(𝑘, 𝑘) by the 𝐻∞ RLS Wiener filter in [21], the robust Kalman filter [14] and the robust RLS Wiener filter in 

Theorem 2, and the MSV of the filtering errors 𝑧(𝑘) − �̂�𝑇𝐻2(𝑘, 𝑘) by the robust RLS Wiener filter in Theorem 2 

vs. the standard deviation of the observation noise. From Fig. 8, concerning the estimation of the signal 𝑧(𝑘), 

the estimation accuracy is feasible in the order of the robust RLS Wiener filter in Theorem 1 [22], the robust RLS 

Wiener filter in Theorem 2, the 𝐻∞ RLS Wiener filter in [21] and the robust Kalman filter [14]. Concerning the 

estimations of the state variables 𝑥1(𝑘) and 𝑥2(𝑘), the estimation accuracy is feasible in the order of the robust 

RLS Wiener filter in Theorem 2, the 𝐻∞ RLS Wiener filter in [21] and the robust Kalman filter [14].  

Here, in the simulation of section 5, the value of 𝛾 in [17] is 𝛾 = 0.9, and the parameters used in the Riccati-

type equations of the robust Kalman filter [14] are 𝜀𝑘 = 0.1, 𝐸 = [
1 0
0 1

], 𝐻1 = [
1 −1
0 2

], 𝐻2 = [3 −3]. Here, 

the MSVs of the filtering and fixed-point smoothing errors are evaluated as follows:  

∑ (2000
𝑖=1 𝑧(𝑘) − �̂�(𝑘, 𝑘))2/2000, ∑ (2000

𝑖=1 𝑧(𝑘) − �̂�(𝑘, 𝑘 + 𝐿𝑎𝑔))2/2000,  

∑ (𝑧(𝑘) − �̂�𝑇𝐻2
2000
𝑖=1 (𝑘, 𝑘))2/2000, ∑ (𝑧(𝑘) − �̂�𝑇𝐻2

2000
𝑖=1 (𝑘, 𝑘 + 𝐿𝑎𝑔))2/2000,  

∑ (𝑥𝑖
2000
𝑖=1 (𝑘) − �̂�𝑖(𝑘, 𝑘))2/2000, ∑ (𝑥𝑖

2000
𝑖=1 (𝑘) − �̂�𝑖(𝑘, 𝑘 + 𝐿𝑎𝑔))2/2000, 𝑖 = 1, 2.  

6. Conclusions 

This paper, based on the robust RLS Wiener filter and fixed-point smoother [22] for the signal estimation, has 

proposed the estimation technique for the signal and the state variables in linear discrete-time stochastic 

systems with uncertain parameters. It is assumed that the signal and degraded signal processes are fitted to the 

finite order AR models. By fitting the signal process to the AR model, the system matrix for the signal is 

transformed to the controllable canonical form. Then the robust RLS Wiener filter and fixed-point smoother [22] 

are applicable to the estimation of the signal even if the original system matrix is not in the controllable canonical 

form. With respect to the state estimation, to begin with, the robust RLS Wiener filtering estimate of the signal 

is calculated the robust RLS Wiener filter in Theorem 1 [22]. Then, by replacing the robust filtering estimate of 

the signal with the observed value in the RLS Wiener filtering and fixed-point smoothing algorithms [25], the 

robust filtering and fixed-point smoothing estimates of the signal and the state variables are calculated.   

The simulation example has shown that the proposed robust estimation technique for the signal and the state 

variables is feasible. Concerning the estimation of the signal 𝑧(𝑘), the estimation accuracy is feasible in the 

order of the robust RLS Wiener filter in Theorem 1 [22], the robust RLS Wiener filter in Theorem 2, the 𝐻∞ RLS 

Wiener filter in [21] and the robust Kalman filter [14]. Concerning the estimations of the state variables 𝑥1(𝑘) 

and 𝑥2(𝑘), the estimation accuracy is feasible in the order of the robust RLS Wiener filter in Theorem 2, the 𝐻∞ 

RLS Wiener filter in [21] and the robust Kalman filter [14].  
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