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 Abstract  

This paper introduces some characterizations concerning the exponential family. Recurrence relation between 

two consecutive conditional moments of ℎ(𝑍) given 𝑥 < 𝑍 < 𝑦  is presented. In addition, an    expression of 

𝑉[ℎ(𝑍)|𝑥 < 𝑍 < 𝑦] as well as a closed form of 𝐸[ℎ𝑟(𝑍)|𝑥 ≺ 𝑍 ≺ 𝑦] in terms of the failure rate and the reversed 

failure rate is deduced. Finally, the left 𝑟𝑡ℎtruncated moment of ℎ(𝑌𝑘) ( where 𝑌𝑘 is   the 𝑘𝑡ℎorder statistic) is 

expressed in terms of a polynomial, ℎ (∙), of degree r. Some results concerning the exponentiated Pareto, 

exponentiated Weibull, the Modified Weibull, Weibull, generalized exponential, Linear failure rate,1𝑠𝑡 type 

Pearsonian distributions, Burr, power and the uniform distributions are obtained as special cases. 

 Mathematics Subject Classifications: 62E10 
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1-Introduction.            

Characterization theorems play a vital role in many fields such as mathematical statistics, reliability and actuarial 

science. They form an essential tool of statistical inference as they provide characteristic properties of 

distributions that enable researchers to identify the particular models. Some excellent references are, e.g., 

Azlarov and Volodin [6], Galambos and Kotz [13], Kagan, Linnik, and Rao [18], and Patel, Kapadia and Owen 

[26],among others. Characterization 

Different methods have been used to identify many types of distributions. Afify et al. [1 ],Gupta [13], Ouyang 

[24], Talwalker [29] and Elbatal et al. [10], among others have used the concept of right truncated moments to 

identify different probability distributions like Weibull, exponential, Pareto and power distributions. In fact 

characterizations by right truncated moments are very important in practical since, e.g., in reliability studies 

some measuring devices may be unable to record values greater than time t. Actually there are some measuring 

devices that can’t be able to record values smaller than time t. This has motivated several authors to deal with 

the problem of characterizing distributions using left truncated moments, see , e. g., Ahmed [2],Dimaki and 

Xekalaki [7], Navaro et. al.[20],Elbatal [9] and Gupta [14]. On the other hand, characterizations of some particular 

distributions based on the concept of conditional variance have been considered by several authors such as, 

Fakhry[11],El-Arishi [8] and A-Rahman [5].In addition, the concept of order statistics has been used to 

characterize several types of probability distributions, see, e.g.,  Ahsanullah [3], Ahanullah and Nevzorov [4], 

Gupta and Ahsanullah [15 ], Hamedani et al. [16 ]. Nassar [20], Obretenov [23] and Wu and Ouyang [30], among 

others. 

 Recently, the concept of double truncated moments has been used to identify some probability distributions. 

Ruiz and Navaro [27] have discussed the necessary and sufficient conditions for a bivariate real valued function 

𝑚(𝑥, 𝑦) to be a conditional expectation 𝐸(𝑍|𝑥 < 𝑍 < 𝑦) of a continuous random variable 𝑍. Khorashadizadeh et 

al. [18] have studied some of the reliability properties of the variance residual life based on doubly truncated 

data. Nofal [22] has used this concept to identify some distributions like   exponential, geometric, Pareto.   
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Let 𝑍 be a continuous random variable with distribution function 𝐹(𝑧) defined by: 

                                             𝐹(𝑧) =  1  - exp{− [
ℎ(𝑧)−ℎ(𝛼)

𝑐
]}     ,         𝑧 ∈ (𝛼, 𝛽)               (1) 

Such that:  

(I)    c is a positive constant. 

(II)   ℎ(𝑧) is a real valued differentiable function defined on ( α , β) with: 

 (a)   )()(lim 


hzh
z

=
+→

                                  (b)  =
−→

)(lim zh
z 

        

 (c) ℎ(̀ 𝑧) > 0 for any 𝑧 ∈     (𝛼, 𝛽).                 (d) 𝐸 (ℎ𝑖(𝑍)) exists and finite.           

 (e)  ( ) 0)(lim =
−→

yGyhi

y 
 for 𝑖 ∈ {1,2}, where 𝐺(∙) is the survival function of 𝑍.   

 Ouyang [25] has proposed the above family and claimed that several well-known distributions arise from this 

family by suitable choices for the function ℎ(∙) and the domain   (𝛼, 𝛽). 

We, in this paper, use the concept of double truncated moments as well as double truncated variance to 

characterize the family (1) in terms of the failure rate and  reversed failure rate and hence generalize the results 

of Ouyang [25] and Fakhry [11]. In addition, we express the 𝑟𝑡ℎ left truncated moment of some function of the 

𝑘𝑡ℎorder statistic,ℎ(∙), as a   polynomial of order r. Some well-known results follow as special cases from our 

results. 

 2 - Main Results. 

 The following Theorem identifies the distribution defined by (1) through some equivalent statements.                                                                         

 Theorem 2.1: Let 𝑍 be an absolutely continuous random variable with cumulative distribution function 𝐹(∙

),survival function 𝐺(∙),density function f(·),failure rate λ(·) and reversed failure rate 𝜏(·) such that 𝐹(𝛼) =0 and 

𝐹(𝛽) = 1 and F(·) has continuous first order derivative on (𝛼, 𝛽) with 𝐹̀(𝑧) > 0 for all z . Then under the conditions 

(I-II), the following statements are equivalent:  

  1-                    𝐹(𝑧) = 1 − 𝑒𝑥𝑝 {− [
ℎ(𝑧)−ℎ(𝛼)

𝑐
]} ,           𝑧 ∈ (𝛼, 𝛽) .   

 2-    For any natural number 𝑟 and real numbers 𝑥, 𝑦 ∈ (𝛼, 𝛽), the following recurrence relation is satisfied:    

              𝜇𝑟(𝑥, 𝑦) = 𝐸(ℎ𝑟(𝑍)|𝑥 < 𝑍 < 𝑦) = [ℎ𝑟(𝑥)𝜏(𝑥)(𝜆(𝑦)+𝜏(𝑦))−ℎ𝑟(𝑦)𝜏(𝑦)(𝜆(𝑥)+𝜏(𝑥))

𝜆(𝑦) 𝜏(𝑥)−𝜆(𝑥) 𝜏(𝑦)
]  + 𝑟𝑐𝜇𝑟−1(𝑥, 𝑦).      (2)                                   

3-       𝑉(ℎ(𝑍|𝑥 < 𝑍 < 𝑦)) = 
ℎ2(𝑥)𝜏(𝑥)(𝜆(𝑦)+𝜏(𝑦))−ℎ2(𝑦)𝜏(𝑦)(𝜆(𝑥)+𝜏(𝑥))

𝜆(𝑦) 𝜏(𝑥)−𝜆(𝑥)𝜏(𝑦)
− [ℎ(𝑥)𝜏(𝑥)(𝜆(𝑦)+𝜏(𝑦))−ℎ(𝑦)𝜏(𝑦)(𝜆(𝑥)+𝜏(𝑥))

𝜆(𝑦)𝜏(𝑥)−𝜆(𝑥)𝜏(𝑦)
]

2

+ 𝑐2.                (3) 

4-                 𝑉(ℎ(𝑍)|𝑍 > 𝑥) = 𝑐2.                                                                        (4) 

Proof .   1 ⟹ 2 

 By definition  

                               𝜇𝑟(𝑥, 𝑦) = 𝐸(ℎ𝑟(𝑍)|𝑥 < 𝑍 < 𝑦) =  
∫ ℎ𝑟(𝑧)

𝑦
𝑥 𝑑 𝐹(𝑧)

𝐹(𝑦)−𝐹(𝑥)
 . 
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Integrating by parts, one gets: 

                    𝜇𝑟(𝑥, 𝑦) =  
)()(

)()()()(

xFyF

xFxhyFyh rr

−

−
  - ( ) ( )xFyF

dzzFzhzhr

y

x

r

−


− )()()(1

 

         Using equation (1) to eliminate 𝐹(𝑧), one gets: 

                 𝜇𝑟(𝑥, 𝑦) =   
( ) ( ) ( ) ( )

( ) ( ) −
−

−

xFyF

xFxhyFyh rr

    
𝑟

𝐹(𝑦)−𝐹(𝑥)
 

−

y

x

r zh )(1
)(zh  [1 − 𝑒𝑥𝑝 {− [

ℎ(𝑧)−ℎ(𝛼)

𝑐
]}] 𝑑𝑧  

                                = 
( )

+
−

−

)()(

)()()(

xFyF

yGyhxGxh rr

 
𝑟

𝐹(𝑦)−𝐹(𝑥)
 

−

y

x

r zh )(1
exp  {− [

ℎ(𝑧)−ℎ(𝛼)

𝑐
]} 𝑑ℎ(𝑧)  

It is easy to see that:  

                                     = )(zh  
𝑐 𝑓(𝑧)

1−𝐹(𝑧)
 = 

𝑐 𝑓(𝑧)

exp {−[
ℎ(𝑧)−ℎ(𝛼)

𝑐
]}
     .                          (5) 

 Therefore, 

                       𝜇𝑟(𝑥, 𝑦) =   
ℎ𝑟(𝑥)𝐺(𝑥)−ℎ𝑟(𝑦)𝐺(𝑦)

𝐹(𝑦)−𝐹(𝑥)
   + 

𝑟𝑐

𝐹(𝑦)−𝐹(𝑥)
  

−

y

x

r dzzfzh )()(1
 

Recalling that:   𝜆(𝑦)  =  
𝑓(𝑦)

1−𝐹(𝑦)
   , 𝜏(𝑦)  =  

𝑓(𝑦)

𝐹(𝑦)
  and making use of the definition  of 𝜇𝑟(𝑥, 𝑦), one gets: 

                        𝜇𝑟(𝑥, 𝑦) = 
ℎ𝑟(𝑥)𝜏(𝑥)(𝜆(𝑦)+𝜏(𝑦))−ℎ𝑟(𝑦)𝜏(𝑦)(𝜆(𝑥)+𝜏(𝑥))

𝜆(𝑦)𝜏(𝑥)−𝜆(𝑥)𝜏(𝑦)
+ 𝑟𝑐 𝜇𝑟−1(𝑥, 𝑦) 

       2 ⟹ 3  

Using equation (2) with 𝑟 = 2 and 𝑟 = 1, recalling that 𝜇0(𝑥, 𝑦) = 1, one gets: 

                              𝜇2(𝑥, 𝑦) = ℎ2(𝑥)𝜏(𝑥)(𝜆(𝑦)+𝜏(𝑦))−ℎ2(𝑦)𝜏(𝑦)(𝜆(𝑥)+𝜏(𝑥))

𝜆(𝑦)𝜏(𝑥)−𝜆(𝑥)𝜏(𝑦)
 +2𝑐ℎ(𝑥)𝜏(𝑥)(𝜆(𝑦)+𝜏(𝑦))−ℎ(𝑦)𝜏(𝑦)(𝜆(𝑥)+𝜏(𝑥))

𝜆(𝑦)𝜏(𝑥)−𝜆(𝑥)𝜏(𝑦)
 +2𝑐2 

and 

                              𝜇1(𝑥, 𝑦) = ℎ(𝑥)𝜏(𝑥)(𝜆(𝑦)+𝜏(𝑦))−ℎ(𝑦)𝜏(𝑦)(𝜆(𝑥)+𝜏(𝑥))

𝜆(𝑦)𝜏(𝑥)−𝜆(𝑥)𝜏(𝑦)
+ 𝑐     . 

Therefore, 

                            𝑉(ℎ(𝑍)|𝑥 < 𝑍 < 𝑦) = 𝜇2(𝑥, 𝑦) − [𝜇1(𝑥, 𝑦)]2  

                                                          = ℎ2(𝑥)𝜏(𝑥)(𝜆(𝑦)+𝜏(𝑦))−ℎ2(𝑦)𝜏(𝑦)(𝜆(𝑥)+𝜏(𝑥))

𝜆(𝑦)𝜏(𝑥)−𝜆(𝑥)𝜏(𝑦)
− [ℎ(𝑥)𝜏(𝑥)(𝜆(𝑦)+𝜏(𝑦))−ℎ(𝑦)𝜏(𝑦)(𝜆(𝑥)+𝜏(𝑥))

𝜆(𝑦)𝜏(𝑥)−𝜆(𝑥)𝜏(𝑦)
]

2

+ 𝑐2  .   

   3 ⟹ 4       

Writing equation (3) in terms of the survival and distribution functions of the variable y as follows: 

                              𝑉(ℎ(𝑍)|𝑥 < 𝑍 < 𝑦) = ℎ2(𝑥)𝜏(𝑥)−ℎ2(𝑦)𝐺(𝑦)(𝜆(𝑥)+𝜏(𝑥))

𝜏(𝑥)𝐹(𝑦)−𝜆(𝑥)𝐺(𝑦)
 − [ℎ(𝑥)𝜏(𝑥)−ℎ(𝑦)𝐺(𝑦)(𝜆(𝑥)+𝜏(𝑥))

𝜏(𝑥)𝐹(𝑦)−𝜆(𝑥)𝐺(𝑦)
]

2

+ 𝑐2. 
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Taking the limit of both sides as 𝑦 → 𝛽−, recalling that :  ( ) 0)(lim =
−→

yGyhi

y 
 for 𝑖𝜖{1,2} and 0)(lim =

−→
yG

y 
 

one gets: 

                                          𝑉(ℎ(𝑍)|𝑍 > 𝑥) = 𝑐2. 

4 ⇒ 1. 

Writing equation (4) in integral form as follows: 

                                ( ) ( ) ( ) ( ) ( ) ( )xGczdFzhzdFzhxG
xx

22

2

2 =







− 



.  

Differentiating last equation with respect to 𝑥 then dividing the result by 𝐺̀(𝑥),one gets: 

                               ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )xGczdFzhxhzdFzhxhxG
xx

222 22 =−+ 


. 

   Differentiating with respect to 𝑥 then cancelling out "𝐺̀(𝑥)ℎ2(𝑥)" then dividing the result by 2ℎ̀(𝑥),one gets: 

                            ( ) ( ) ( ) ( ) 2czdFzhxhxG
x

=− 


G
̀

(𝑥) ℎ̀(𝑥)⁄ . 

Differentiating again with respect to 𝑥 then cancelling the term " 𝐺̀(𝑥)ℎ(𝑥)", one gets: 

                                     𝑐2 𝑑

𝑑𝑥
(

G
̀

(𝑥)

ℎ̀(𝑥)
) = 𝐺(𝑥)ℎ̀(𝑥) .                                (6)      

Now, it is easy to see that:       
G

̀
(𝑥)

ℎ̀(𝑥)
=

( )
( )xdh

xdG
    , therefore we have:   

                                        
𝑑

𝑑𝑥
(

G
̀

(𝑥)

ℎ̀(𝑥)
) =

𝑑

𝑑𝑥

( )
( )

=








xdh

xdG
ℎ̀(𝑥)

( )
( )xdh

xGd
2

2

. 

Hence equation (6) becomes:           
( )
( )

( )
22

2

c

xG

xdh

xGd
= . 

This is a second order differential equation with constant coefficients, its solution is known to be:  

                            ( )
( ) ( )

c

xh

c

xh

beaexG +=
−

  , for some constants 𝑎 and 𝑏. 

Taking the limit as 
−→ x , we find that 𝑏 = 0, on the other hand, taking the limit as 

+→x ,we conclude 

that 𝑎 = 𝑒
ℎ(𝛼)

𝑐  .  

Hence,               ( ) ( ) ( )( ) chxhexG −−= . 



MathLAB Journal     Vol 1 No 3  (2018)                                                                              http://purkh.com/index.php/mathlab 

 
245 

Remarks  2.1: 

(1) Theorem 2.1 can be used to generalize Fakhrey’s result [11]. To this end, rewriting equation (2) as 

follows: 

                                 𝜇𝑟(𝑥, 𝑦) = ℎ𝑟(𝑥)𝜏(𝑥)−ℎ𝑟(𝑦)𝐺(𝑦)(𝜆(𝑥)+𝜏(𝑥))

𝜏(𝑥)𝐹(𝑦)−𝜆(𝑥)𝐺(𝑦)
+ 𝑟𝑐𝜇𝑟−1(𝑥, 𝑦). 

Taking the limit of both sides as 
−→y , recalling that: 

(1) 1)(lim =
−→

yF
y 

         (2) 0)()(lim =
−→

yGyhr

y 
      (3)   =

−
→ −

y

x

rxFyF

dzzfzh

y
x

r

)(lim
)()(

)()( 


 

One gets: 

                                   𝜇𝑟(𝑥) =  ℎ𝑟(𝑥) + 𝑟𝑐𝜇𝑟−1(𝑥). 

It is easy to see that, if we set ∅(𝑍) = ℎ(𝑍) − ℎ(𝛼), 𝑟 = 1 and recalling that:  𝜇0 = 1, the result reduces to that of 

Hamdan [16] 

(2) Theorem 2.1 generalizes the result of A-Rahman [5]. To see this, rewriting equation (2) as follows: 

                               

                             𝜇𝑟(𝑥, 𝑦) =  ℎ𝑟(𝑥)𝐺(𝑥)(𝜆(𝑦)+𝜏(𝑦))−ℎ𝑟(𝑦)𝜏(𝑦)

𝜆(𝑦)𝐺(𝑥)−𝜏(𝑦)𝐹(𝑥)
+ 𝑟𝑐𝜇𝑟−1(𝑥, 𝑦). 

Taking the limit of both sides as 𝑥 → 𝛼+, recalling that:  
  

0)(lim =
+→

xF
x 

    and        )(lim
)()(

)()( yr

y

x

xFyF

dzzfzh

x

r




= −
→ +

 ,  

one gets: 

                                             𝜇𝑟(𝑦) = −𝜏(𝑦)

𝜆(𝑦)
ℎ𝑟(𝑦) + 𝑟𝑐𝜇𝑟−1(𝑦) + 𝜆(𝑦)+𝜏(𝑦)

𝜆(𝑦)
ℎ𝑟(𝛼). 

It is easy to see that for   𝑟 = 1, recalling that 𝜆(𝑦)+𝜏(𝑦)

𝜆(𝑦)
 = 1

𝐹(𝑦)  and setting 𝜑(𝑍) = ℎ(𝑍) − ℎ(𝛼) the result reduces to 

that of Talwalker [29].On the other hand, if we set   𝑟 = 1, ℎ(𝑍) = 𝑍, 𝛼 = 0 and β = ∞ the result coincides with 

that of Elbatal et.al.[10].  

        The following Corollary gives a closed form for the double truncated 𝑟𝑡ℎmoments of the random variable 

𝑍 in terms of the failure rate, the reversed failure rate and a polynomial ℎ(∙) of degree 𝑟. 

Corollary 2.1:Let 𝑍 be a continuous random variable  with distribution function 𝐹(∙), survival function 𝐺(∙), 

density function 𝑓(∙), reversed failure rate τ(∙) and failure rate λ(∙) such that 𝐹(α)=0  and 𝐹(𝛽) = 1,then 𝑍 has 

the distribution defined by (1) iff for any natural number ,𝑟, the following equation is satisfied: 

        𝜇𝑟(𝑥, 𝑦) = 𝐸((ℎ𝑟(𝑍)|𝑥 < 𝑍 < 𝑦)) =
ℎ𝑟(𝑥)𝜏(𝑥)[𝜆(𝑦)+𝜏(𝑦)]−ℎ𝑟(𝑦)𝜏(𝑦)[𝜆(𝑥)+𝜏(𝑥)]

𝜆(𝑦)𝜏(𝑥)−𝜆(𝑥)𝜏𝜆(𝑦)
+                           

                                       
( ) ( ) ( )

==

−

+−+
+−

−−
i

j

r

i

yxxy

xxyyhyyxxhi jrc
irir

11

)()()()(

)()()()()()()()(
1





               (7)  

 

Proof.  By induction 
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At  𝑟 = 1, equation (7) will be: 

                                          𝜇1(𝑥, 𝑦) =  ℎ(𝑥)𝜏(𝑥)(𝜆(𝑦)+𝜏(𝑦))−ℎ(𝑦)𝜏(𝑦)(𝜆(𝑥)+𝜏(𝑥))

𝜆(𝑦)𝜏(𝑥)−𝜆(𝑥)𝜏(𝑦)
+ 𝑐.  

Comparing this result with equation (2), we conclude that the relation is true at   𝑟 = 1. Assume that the result 

is true at  𝑟 = 𝑘 , i.e.,     

          𝜇𝑘(𝑥, 𝑦) = 
ℎ𝑘(𝑥)𝜏(𝑥)(𝜆(𝑦)+𝜏(𝑦))−ℎ𝑘(𝑦)𝜏(𝑦)(𝜆(𝑥)+𝜏(𝑥))

𝜆(𝑦)𝜏(𝑥)−𝜆(𝑥)𝜏(𝑦)
+   

                        
=

k

i

ic
1

ℎ𝑘−𝑖(𝑥)𝜏(𝑥)(𝜆(𝑦)+𝜏(𝑦))−ℎ𝑘−𝑖(𝑦)𝜏(𝑦)(𝜆(𝑥)+𝜏(𝑦))

𝜆(𝑦)𝜏(𝑥)−𝜆(𝑥)𝜏(𝑦)
( )

=

+−
i

j

jk
1

1 .                    (8) 

We have to prove that this will be true at   𝑟 = 𝑘 + 1. From equation (2), we get:  

          𝜇𝑘+1(𝑥, 𝑦) = ℎ𝑘+1(𝑥)𝜏(𝑥)(𝜆(𝑦)+𝜏(𝑦))−ℎ𝑘+1(𝑦)𝜏(𝑦)(𝜆(𝑥)+𝜏(𝑥))

𝜆(𝑦)𝜏(𝑥)−𝜆(𝑥)𝜏(𝑦)
+ (𝑘 + 1)𝑐𝜇𝑘(𝑥, 𝑦) .                          (9)  

Eliminating 𝜇𝑘(𝑥, 𝑦) using equation (8), one gets: 

        𝜇𝑘+1(𝑥, 𝑦) =   

       
ℎ𝑘+1(𝑥)𝜏(𝑥)(𝜆(𝑦)+𝜏(𝑦))−ℎ𝑘+1(𝑦)𝜏(𝑦)(𝜆(𝑥)+𝜏(𝑥))

𝜆(𝑦)𝜏(𝑥)−𝜆(𝑥)𝜏(𝑦)
+ (𝑘 + 1)𝑐  ℎ𝑘(𝑥)𝜏(𝑥)(𝜆(𝑦)+𝜏(𝑦))−ℎ𝑘(𝑦)𝜏(𝑦)(𝜆(𝑥)+𝜏(𝑥))

𝜆(𝑦)𝜏(𝑥)−𝜆(𝑥)𝜏(𝑦)
+      

                                             (𝑘 + 1)𝑐
( ) ( ) ( )

==

−

+−+ +−
−−

i

j

k

i

yxxy

xxyyhyyxxhi jkc
ikik

11

)()()()(

)()()()()()()()( 1


. 

It is easy to see that the second and third term can be combined in a sum term so that we have: 

           𝜇𝑘,+1(𝑥, 𝑦) =     
ℎ𝑘+1(𝑥)𝜏(𝑥)(𝜆(𝑦)+𝜏(𝑦))−ℎ𝑘+1(𝑦)𝜏(𝑦)(𝜆(𝑥)+𝜏(𝑥))

𝜆(𝑦)𝜏(𝑥)−𝜆(𝑥)𝜏(𝑦)
+ 

  

   

                                 
( ) ( ) ( )

=

+

=

−

+−+ +−+
+−+−

i

j

k

i

yxxy

xxyyhyyxxhi jkc
ikik

1

1

1

)()()()(

)()()()()()()()( 11
11




. 

So equation (7) is true at r=1 and its validity at r=k implies its validity at r=k+1. So by the principal of 

mathematical induction (7) is true for every natural number n. 

Remarks  2.2: 

(1) If we set ℎ(𝑍) = 𝑍, 𝑐 = 1 𝜆 , 𝛼 = 0⁄  and β=∞, the result coincides with that of Nofal [22]. 

(2) If we take The limit as 𝑦 → 𝛽−of both sides of equation (7) we obtain a generalization of Fakhry’s result 

[11],namely, A random variable 𝑍 has the distribution defined by (1) iff: 

                          ur(x) = E(hr(Z)|Z > x) = hr(x) + ( ) ( )
==

− +−
i

j

r

i

iri jrxhc
11

1 . 

(3) If we set 𝑟 = 1 and   ∅(𝑍) = ℎ(𝑍) − ℎ(𝛼), the result coincides with Hamdan’s result [16]. 

(4) If we take the limit as 𝑥 → 𝛼+of both sides of equation (7), we obtain a generalization of A-Rahman’s 

result [5], namely, A random variable 𝑍 has the distribution defined by (1) iff 
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                               𝜇𝑟(𝑦) = 𝐸(ℎ𝑟(𝑍)|𝑍 < 𝑦) =   

         −𝜏(𝑦)

𝜆(𝑦)
( ) ( ) +






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1 1

1



.     

           For   𝑟 = 1 , recalling that 𝜆(𝑦)+𝜏(𝑦)

𝜆(𝑦)
= 1

𝐹(𝑦)  and setting ∅(𝑍) = ℎ(𝑍) − ℎ(𝛼) , the result reduces to that of    

Talwalker [29]. 

  A-Rahman [5] has used the concept of recurrence relations through order statistics to characterize the family 

(1) and hence generalizes Ouyang’s result [25]. The following theorem gives a closed form of the 𝑟𝑡ℎ truncated 

moment of some function of the 𝑘𝑡ℎorder statistic,𝑌𝑘  . Some important results follow as special cases of this 

result. 

 Theorem 2.2: Let X be an absolutely continuous random variable with cumulative distribution function F(·), 

survival function G(·),and density function f(·). Let 𝑋1, 𝑋2, …, 𝑋𝑛 be a random sample from F(·). Denote by 𝑌1<𝑌2< 

…< 𝑌𝑛  the corresponding ordered sample. Then under the conditions (I-II), the random variable X has the 

distribution defined by equation (1) iff for any natural number, r, the following recurrence relation is satisfied : 

                     𝜇𝑟(𝑡) = 𝐸(ℎ𝑟(𝑌𝑘)| 𝑌𝑘 > t)=  ℎ𝑟(t) + 
( )

( ) 
= +

+−
+−

−
r

i

i

j
kn

thi jrc i

ir

1 1
1

)( 1  , 𝑘 = 1,2, … 𝑛.            (10)                                                  

             Proof.  A-Rahman [5] has characterized the family defined by equation (1) using the following 

recurrence relation: 

                               𝜇𝑟(𝑡) = 𝐸(ℎ𝑟(𝑌𝑘)|𝑌𝑘 > 𝑡) =  ℎ𝑟(𝑡) +  𝑟𝑐

𝑛−𝑘+1
𝜇𝑟−1(𝑡) .

  

   Writing similar expression for 𝜇𝑟−1(𝑡) and 𝜇𝑟−2(𝑡), one gets: 

                           𝜇𝑟−1(𝑡) = 𝐸(ℎ𝑟−1(𝑌𝑘)|𝑌𝑘 > 𝑡) = ℎ𝑟−1(𝑡) + (𝑟−1)𝑐

𝑛−𝑘+1
 𝜇𝑟−2(𝑡) ,          

                           𝜇𝑟−2(𝑡) = 𝐸(ℎ𝑟−2(𝑌𝑘)|𝑌𝑘 > 𝑡) = ℎ𝑟−2(𝑡) + (𝑟−2)𝑐

𝑛−𝑘+1
 𝜇𝑟−3(𝑡) . 

Substituting these results in 𝜇𝑡(𝑡), one gets: 

                         𝜇𝑟(𝑡) = 𝐸(ℎ𝑟(𝑌𝑘)|𝑌𝑘 > 𝑡) = ℎ𝑟(𝑡) + 𝑟𝑐

𝑛−𝑘+1
ℎ𝑟−1(𝑡)+ 𝑟(𝑟−1)𝑐2

(𝑛−𝑘+1)2ℎ𝑟−2(𝑡)+
𝑟(𝑟−1)(𝑟−2)𝑐3

(𝑛−𝑘+1)3  𝜇𝑟−3(𝑡) .     

Continuing in this manner we conclude that: 

                     𝜇𝑟(𝑡) = 𝐸(ℎ𝑟(𝑌𝑘)|𝑌𝑘 > 𝑡) = ℎ𝑟(𝑡) +
( )

( )
==

+−
+−

−
i

j

r

i
kn

th jri

ir

11
1

)( 1  . 

Remarks 2.3: 

(1) If we put k=n in Theorem (2.2), we obtain a characterization for the maximum. Moreover, A-Rahman [5], 

has shown that:  

                              E(ℎ𝑟(𝑌𝑛)|𝑌𝑛> t)= E(ℎ𝑟(X)|X> y), 

(2) Theorem (2.2) generalizes the result of Fakhry[11]. To see this, put k = n.  

(3) Theorem (2.2) generalizes the result of Ouyang [25].To see this, put r =1 and k = n. 
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(4) Theorem (2.2) generalizes the result of Hamdan [16]. To see this put r = 1, k = n and  

        ∅(𝑥) =ℎ(𝑥) − ℎ(𝛼) 

(5) Theorem (2.2) generalizes the result of Shanbhag [28]. To see this set r =1, k = n and ℎ(𝑥) = 𝑥 

(6) If we put k=1, we obtain a recurrence relation for the minimum. 

(7) If we put n=2r+1 and k= r+1, we obtain a recurrence relation for the median. 

(8) If we set ℎ(𝑍) = 𝑍𝛾 , 𝛼 = 0  and β=∞, we have characterizations concerning Weibull distribution with 

positive parameter 𝛾.For   𝑟 = 1, the result coincides with that of Ahsanullah [3].  For 𝑟 = 𝑘 = 1 , the 

result coincides with that of Hamedani et al. [17]. 

3- General Comments . 

In all of the previous theorems, several results can be picked out for some well-known distributions by suitable 

choices for the function ℎ(X),the values of the parameters d and c and the domain (𝛼, 𝛽) as follows: 

(1) If we set  = ℎ(𝑍) = 𝑎𝑍 + 𝑏𝑍𝜆, where λ > 0 and 𝑎, 𝑏 ≥ 0, such that 𝑎 + 𝑏 > 0, c=1, α=0 and β = ∞ , 

we obtain characterizations concerning modified Weibull distribution with non-negative 

parameters 𝑎 and 𝑏 and positive parameter λ . For λ= 2, we have characterizations concerning the 

linear failure rate distribution with positive parameters 𝑎  and 𝑏 . For  𝑎 = 0  , we have 

characterizations concerning  Weibull distribution with positive parameters 𝑏 and  λ . For 𝑏 = 0, we 

have characterizations concerning the exponential distribution with parameter 𝑎 > 0 . For 𝑎 = 0 

and λ = 2, we have characterizations concerning Rayleigh distribution with parameter 𝑏 > 0. 

(2) If we set ℎ(𝑍) = −𝑙𝑛[1 − (1 − (𝛼 𝑍⁄ )𝑎)𝜃], 𝑐 = 1  and β=∞, we obtain the  characterizations 

concerning the exponentiated Pareto of the 1st type with positive parameters α,θ and 𝑎. For θ=1, 

the results reduce to those of the 1st type Pareto with positive parameters α and 𝑎.  

(3) If we set ℎ(𝑍) = −𝑙𝑛[1 − (1 − (1 + 𝑍)−𝑎)𝜃], 𝑐 = 1 𝛼 = 0 𝑎𝑛𝑑  𝛽 = ∞ ,  we obtain characterizations 

concerning Burr distribution of type XII with positive parameters θ and 𝑎. For 𝑎 = 1, the result 

reduces to the 2nd type Pareto distribution. 

(4) If we set ℎ(𝑍) = −𝑙𝑛[1 − (1 − 𝑒𝑥𝑝 − (𝑍 𝑏⁄ )𝑎)𝜃], 𝑐 = 1, 𝛼 = 0 𝑎𝑛𝑑 𝛽 = ∞, we obtain characterizations 

concerning the exponentiated Weibull with positive parameters θ,𝑎 and 𝑏. For θ=1, the results 

reduce to Weibull distribution with positive parameters 𝑎 and 𝑏. For 𝑎 = 1, the results reduce to the 

generalized exponential distribution with positive parameters θ and 𝑏.For 𝜃 = 𝑎 = 1, the results 

reduce to the exponential distribution with positive parameter 𝑏. 

(5)  If we set ℎ(𝑍) = −𝑙𝑛 [1 − (𝑒𝑥𝑝 − 𝛾

𝑍
)

𝜃
] , 𝑐 = 1, 𝛼 = 0 𝑎𝑛𝑑 𝛽 = ∞ , we obtain characterizations 

concerning the inverse Weibull distribution with positive parameters θ and 𝛾.For θ=2, the results 

coincide with those of inverse Rayleigh with positive parameter 𝛾.  

(6) If we put  ℎ(𝑍) = −ln [
𝛽−𝑍

𝛽−𝛼
] ,  𝑐 = 1 𝜃⁄ , we obtain  characterizations concerning the first type Pearson 

distribution with parameters β, α and θ. For θ=1, the results reduce to the uniform distribution with 

parameters β and α. 

(7) If we set ℎ(𝑍) = −𝑙𝑛[1 − ((𝑍 − 𝛼) (𝛽 − 𝛼)⁄ )𝜃], 𝑐 = 1 , we obtain characterizations concerning 

Ferguson’s distribution [12] of the first  type with parameters 𝛼, 𝛽 and θ.  

(8) If we set ℎ(𝑍) = −𝑙𝑛[1 − ((𝑟 − 𝛽) (𝑟 − 𝑍)⁄ )𝜃],    𝑍 < 𝛽, 𝑐 = 1, 𝜃 > 0   and 𝛼 = −∞ , we obtain 

characterizations concerning Ferguson’s distribution [12] of the third type with parameters 𝑟, 𝛽 and 

θ.   
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(9)  If we set ℎ(Z) = - ln( 1 − 𝑍) , α = 0 and β = 1, we obtain characterizations concerning beta 

distribution with parameters 1  ,  
1

𝑐
   .  

(10) If we Set ℎ(𝑍) = ln(1 + 𝑍𝑟), r > 0,  ,α =0 and β =∞ ,we obtain results concerning the   2𝑛𝑑type Burr 

distribution with parameters r, 
1

𝑐
 . 

(11)  If we Set ℎ(𝑍) =  −ln(1 −  𝑍𝜃), 𝜃 > 0, c = 1, α =0 and β = 1, we obtain results concerning the power 

distribution with parameter 𝜃. For 𝜃= 1, we have results concerning the uniform distribution.   
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