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Abstract

In this paper, we study some fractional variational problems with functionals that involve some unknown functions and
their Caputo derivatives. We also consider Caputo iso-perimetric problems. Generalized fractional Euler-Lagrange
equations for the problems are presented. Furthermore, we study the optimality conditions for functionals depending
on the unknown functions and the optimal time T. In addition, some examples are discussed.
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1 Introduction

The fractional differential equations theory arises in many engineering and scientific disciplines such as mechanics,
physics, chemistry, biology, economics, control theory and signal processing. For instance see, [15, 16, 17, 18, 21, 23,
25, 27].

On the other hand, the calculus of variations can be considered as an optimization branch, it is concerned with
finding extrema. The calculus of variations has many applications in classical mechanics, economics, electrical engi-
neering, urban planning and other fields. For more information and applications, see [12, 13, 24, 28, 29], and we refer
the reader interested in the calculus of variations theory to [12, 20]. The fractional calculus of variations has exhausted
the attention of some authors and an important research papers have been obtained in [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
14, 19, 22, 26, 30].

This paper is devoted to establish necessary conditions of Euler-Lagrange type for the following fractional variational
problem:

Find functions (yj)j=1,2,...,m ∈ C
1 ([a, b]) that maximize or minimize the functional:

J (y1, ..., ym) =

∫ b

a

L
(
x,y1 (x) , ..., ym (x) ,Ca D

α1
x y1 (x) ,

...,Ca D
αm
x ym (x) ,Cx D

β1

b y1 (x) , ...,Cx D
βm

b ym (x)
)
dx,

subject to the boundary conditions:
yj (a) = yja, yj (b) = yjb,

where (αj)j=1,2,...,m , (βj)j=1,2,...,m are in (0, 1) .
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Then, we will consider the fractional iso-perimetric problem that depends on maximizing or minimizing the above
functional subject to the given boundary conditions and the fractional integral constraint:

I (y1, ..., ym) =

∫ b

a

F
(
x, y1 (x) , ..., ym (x) ,Ca D

α1
x y1 (x) , ...,Ca D

αm
x ym (x) ,

C
xD

β1

b y1 (x) , ...,Cx D
βm

b ym (x)
)
dx

= r,

where r ∈ R.

Finally, we will study the optimality conditions for a pair functions-time
(

(yj)j=1,...,m , T
)
∈
{(
C1 ([a, b]) , [a, b]

)
: yj (a) = yja

}
to be an optimal solution to:

J
′
(y1, ..., ym, T ) =

∫ T

a

L∗
(
x,y1 (x) , ..., ym (x) ,Ca D

α1
x y1 (x) ,

...,Ca D
αm
x ym (x)

)
dx.

2 Fractional Calculus

In this section, we recall some basic definitions which are used throughout this paper, [17, 21, 23].

Definition 1 The left and right Riemann-Liouville fractional integral operators of order α > 0 for an integrable
function y on [a, b] are defined respectively by:

aI
α
x y(x) =

1

Γ (α)

∫ x

a

(x− t)α−1 y (t) dt,

and xI
α
b y(x) =

1

Γ (α)

∫ b

x

(t− x)
α−1

y (t) dt,

(1)

where Γ (α) :=
∫∞
0
e−uuα−1du.

Definition 2 The left and right Riemann-Liouville fractional derivative operators of order α > 0 for a function
y : [a, b]→ R, can be defined respectively, as:

RL
a Dα

xy(x) =
1

Γ (n− α)

(
d

dx

)(n) ∫ x

a

(x− t)n−α−1 y (t) dt,

RL
x Dα

b y(x) =
1

Γ (n− α)

(
− d

dx

)(n) ∫ b

x

(t− x)
n−α−1

y (t) dt,

(2)

for n− 1 < α < n, n ∈ N− {0} .

Definition 3 The left and right Caputo fractional derivative operators of order α > 0 for a function y : [a, b] → R,
which is at least n−times differentiable can be defined respectively, as:

C
aD

α
xy(x) =

1

Γ (n− α)

∫ x

a

(x− t)n−α−1 y(n) (t) dt,

(3)
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and

C
xD

α
b y(x) =

1

Γ (n− α)

∫ b

x

(t− x)
n−α−1

(−1)
n
y(n) (t) dt,

(4)

for n− 1 < α < n, n ∈ N− {0} .

Also, we list some well known results in fractional variational calculus theory, [12, 20].

(i) : Assume that n − 1 < α < n, n ∈ N − {0} and f is of class Cn on [a, b]. Then its left and right Caputo
derivatives of order α are continuous on [a, b] .

(ii) : Let f : [a, b]→ R be a continuous function such that:∫ b

a

f (x) δ (x) dx = 0,

(5)

holds for every δ ∈ Cn ([a, b]) , n ≥ 0, satisfying δ (a) = δ (b) = 0. Then, f(x) = 0 on [a, b] .

(iii) : Let 0 < α < 1, and f, g : [a, b]→ R be C1 functions. Then,∫ b

a

g (x) C
aD

α
xf (x) dx =

∫ b

a

f (x) RL
x Dα

b g (x) dx+
[
xI

1−α
b g (x) f (x)

]b
a
,

(6)

and ∫ b

a

g (x) C
xD

α
b f (x) dx =

∫ b

a

f (x) RL
a Dα

x g (x) dx−
[
aI

1−α
x g (x) f (x)

]b
a
.

(7)

Remark 4 If f(a) = f(b) = 0, then∫ b

a

g (x) C
aD

α
xf (x) dx =

∫ b

a

f (x) RL
x Dα

b f (x) dx,

(8)

and ∫ b

a

g (x) C
xD

α
b f (x) dx =

∫ b

a

f (x) RL
a Dα

xf (x) dx.

(9)

3 Fractional Euler-Lagrange Equations

In this section, we prove optimality conditions of Euler-Lagrange type for variational problems with functional that
contains m unknown functions with their Caputo fractional derivatives.
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For (αj)j=1,2,...,m , (βj)j=1,2,...,m ∈ (0, 1) , we consider the following problem: find functions (yj)j=1,2,...,m ∈
C1 ([a, b]) that maximize or minimize the functional

J (y1, ..., ym) =

∫ b

a

L
(
x,y1 (x) , ..., ym (x) ,Ca D

α1
x y1 (x) ,

...,Ca D
αm
x ym (x) ,Cx D

β1

b y1 (x) , ...,Cx D
βm

b ym (x)
)
dx,

(10)

subject to the boundary conditions:

yj (a) = yja, yj (b) = yjb.

(11)

For the sake of convenience, we denote by ∂jL, j = 1, ..., 3m+1, the partial derivative of the function L : [a, b]×R3m →
R with respect to its jth argument. Also, we assume that:

(H1) : The function L is of class C1 on all its arguments.

(H2) : (∂jL)j=m+2,...,2m+1 has continuous right Riemann-Liouville fractional derivative of order αi, i = 1, 2, ...,m,

respectively.

(H3) : (∂jL)j=2m+2,...,3m+1 has continuous left Riemann-Liouville fractional derivative of order βi, i = 1, 2, ...,m,

respectively.

Theorem 5 If (yj)j=1,2,...,m is an extremum of the functional given by (10)&(11), then for all x ∈ [a, b] , the functions
(yj)j=1,2,...,m satisfy the fractional Euler–Lagrange equations:

∂jL+ RL
x D

αj−1

b ∂m+jL+ RL
a Dβj−1

x ∂2m+jL = 0, j = 2, ...,m+ 1.

(12)

Proof. Let εj > 0 and define S by:

S :=
{
δj ∈ C1 ([a, b]) : δj (a) = δj (b) = 0

}
.

Assume that (yj)j=1,2,...,m is solution of (10)&(11) and yj + εjδj is the variation of yj . Then,

J (ε1, ..., εm) = J (y1 + ε1δ1, ..., ym + εmδm)

=

∫ b

a

L
(
x, (y1 + ε1δ1) (x) , ..., (ym + εmδm) (x) ,

C
aD

α1
x (y1 + ε1δ1) (x) , ...,Ca D

αm
x (ym + εmδm) (x) ,

C
xD

β1

b (y1 + ε1δ1) (x) , ...,Cx D
βm

b (ym + εmδm) (x)
)
dx.

(13)

Since J (ε1, ..., εm) is a extremum at (ε1, ..., εm) = (0, ..., 0) , the necessary optimality condition is:(
∂J

∂εi

)
(εi = 0) = 0, i = 1, 2, ...,m.

(14)
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On the other hand, the linearity of the operators CaD
αj
x and C

xD
βj

b , implies that

C
aD

αj
x (yj + εjδj) (x) = C

aD
αj
x yj + εj

C
aD

αj
x δj (x) ,

and
C
xD

βj

b (yj + εjδj) (x) = C
xD

βj

b yj + εj
C
xD

βj

b δj (x) .

Therefore, for each j = 2, ...,m+ 1, we obtain:∫ b

a

[
∂jLδj−1 (x) + ∂m+jL

C
aD

αj−1
x δj−1 (x) + ∂2m+jL

C
xD

βj−1

b δj−1 (x)
]
dx = 0.

(15)

By Eq. (8) and Eq. (9), we can state that∫ b

a

[
∂jLδj−1 (x) + δj−1 (x) RL

x D
αj−1

b ∂m+jL+ δj−1 (x) RL
a Dβj−1

x ∂2m+jL
]
dx = 0,

(16)

where j = 2, ...,m+ 1.

Consequently,∫ b

a

[(
∂jL+ RL

x D
αj−1

b ∂m+jL+ RL
a Dβj−1

x ∂2m+jL
)
δj−1 (x)

]
dx = 0, j = 2, ...,m+ 1.

(17)

Then, thanks to (ii) , we conclude that

∂jL+ x
RLD

αj−1

b ∂m+jL+ RL
a Dβj−1

x ∂2m+jL = 0, j = 2, ...,m+ 1.

(18)

Remark 6 For αj = βj = 1, the problem (10) reduces to:

J (y1, ..., ym) =

∫ b

a

L
(
x, y1 (x) , ..., ym (x) , y

′

1 (x) , ..., y
′

m (x)
)
dx.

(19)

Then, the fractional Euler-Lagrange equations given by Eq. (12) reduce to to the classical Euler–Lagrange equations:

∂jL−
d

dx
(∂m+jL) = 0, j = 2, ...,m+ 1,

(20)

where (∂jL) , j = 2, ...,m+ 1, are the partial derivatives of the function L with respect to its jth argument.

Example 7 Consider the following fractional variational problem:

J (y1, y2, y3) =

∫ 1

−1

(
2x+ y31 + y32 + y33 + 2

(
C
−1D

4
5
x y1

)2
+ 3

(
C
−1D

5
6
x y2

)2
+
(
C
−1D

6
7
x y3

)2
− C

xD
3
4
1 y1 − C

xD
2
3
1 y2 − C

xD
1
2
1 y3

)
dx,
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with the boundary conditions:

y1 (−1) = 1, y1 (1) = −1, y2 (−1) = 2
√

2, y2 (1) = 1, y3 (−1) = 0, y3 (1) =
3

4
.

We have: m = 3, a = −1, b = 1, y1−1 = 1, y11 = −1, y2−1 = 2
√

2, y21 = 1, y3−1 = 0, y31 = 3
4 , α1 =

4
5 , α2 = 5

6 , α3 = 6
7 , β1 = 3

4 , β2 = 2
3 , β3 = 1

2 ,

and

L = 2x+ y31 + y32 + y33 + 2
(
C
−1D

4
5
x y1

)2
+ 3

(
C
−1D

5
6
x y2

)2
+
(
C
−1D

6
7
x y3

)2
− C

xD
3
4
1 y1 − C

xD
2
3
1 y2 − C

xD
1
2
1 y3.

Then, the associated fractional Euler–Lagrange equations are:

∂2L+ RL
x D

4
5
1 ∂5L+ RL

−1D
3
4
x ∂8L = 0,

∂3L+ RL
x D

5
6
1 ∂6L+ RL

−1D
2
3
x ∂9L = 0,

∂4L+ RL
x D

6
7
1 ∂7L+ RL

−1D
1
2
x ∂10L = 0.

Hence, 

3y21 + 4 RL
x D

4
5
1

(
C
−1D

4
5
x y1

)
− RL
−1D

3
4
x (1) = 0,

3y22 + 6 RL
x D

5
6
1

(
C
−1D

5
6
x y2

)
− RL
−1D

2
3
x (1) = 0,

3y23 + 2 RL
x D

6
7
1

(
C
−1D

6
7
x y3

)
− RL
−1D

1
2
x (1) = 0.

4 Fractional Iso-perimetric Problem

In this section, we study the extremum of the functional given by (10)&(11), subject to the following fractional integral
constraint:

I (y1, ..., ym) =

∫ b

a

F
(
x, y1 (x) , ..., ym (x) ,Ca D

α1
x y1 (x) , ...,Ca D

αm
x ym (x) ,

C
xD

β1

b y1 (x) , ...,Cx D
βm

b ym (x)
)
dx

= r

(21)

where r ∈ R.

As before, we denote by ∂jF, j = 1, ..., 3m + 1 the partial derivative of the function F : [a, b] × R3m → R with
respect to its jth argument.

We also assume that:

(H4) : The function F is of class C1 on all its arguments.
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(H5) : (∂jF )j=m+2,...,2m+1 has continuous right Riemann-Liouville fractional derivative of order αi, i = 1, 2, ...,m,

respectively.

(H6) : (∂jF )j=2m+2,...,3m+1 has continuous left Riemann-Liouville fractional derivative of order βi, i = 1, 2, ...,m,

respectively.

Theorem 8 Assume that (yj)j=1,2,...,m is an extremum of the functional given by (10)&(11), such that I (y1, ..., ym) =

r. If (yj)j=1,2,...,m is not an extremum of I, then there exists a constant µ satisfaying

∂jE + RL
x D

αj−1

b ∂m+jE + RL
a Dβj−1

x ∂2m+jE = 0, j = 2, ...,m+ 1.

(22)

for all x ∈ [a, b] , where E = L+ µF.

Proof. Assume that (yj)j=1,2,...,m is a solution of (10)&(11), such that I (y1, ..., ym) = r, and (yj)j=1,2,...,m is not an
extremum of I.

Let ε1j , ε2j > 0, δ1j , δ
2
j ∈ S, and yj + ε1jδ

1
j + ε2jδ

2
j be the variation of yj , such taht δ1j , δ2j ∈ S. Then,

J∗
(
ε11, ..., ε

1
m, ε

2
1, ..., ε

2
m

)
= J

(
y1 + ε11δ

1
1 + ε21δ

2
1 , ..., ym + ε1mδ

1
m + ε2mδ

2
m

)
=

∫ b

a

L
(
x,
(
y1 + ε11δ

1
1 + ε21δ

2
1

)
(x) , ...,(

ym + ε1mδ
1
m + ε2mδ

2
m

)
(x) ,Ca D

α1
x

(
y1 + ε11δ

1
1 + ε21δ

2
1

)
(x) ,

...,Ca D
αm
x

(
ym + ε1mδ

1
m + ε2mδ

2
m

)
(x) ,Cx D

β1

b

(
y1 + ε11δ

1
1 + ε21δ

2
1

)
(x) ,

...,Cx D
βm

b

(
ym + ε1mδ

1
m + ε2mδ

2
m

)
(x)
)
dx,

(23)

and

I∗
(
ε11, ..., ε

1
m, ε

2
1, ..., ε

2
m

)
= I

(
y1 + ε11δ

1
1 + ε21δ

2
1 , ..., ym + ε1mδ

1
m + ε2mδ

2
m

)
=

∫ b

a

F
(
x,
(
y1 + ε11δ

1
1 + ε21δ

2
1

)
(x) , ...,(

ym + ε1mδ
1
m + ε2mδ

2
m

)
(x) ,Ca D

α1
x

(
y1 + ε11δ

1
1 + ε21δ

2
1

)
(x) ,

...,Ca D
αm
x

(
ym + ε1mδ

1
m + ε2mδ

2
m

)
(x) ,Cx D

β1

b

(
y1 + ε11δ

1
1 + ε21δ

2
1

)
(x) ,

...,Cx D
βm

b

(
ym + ε1mδ

1
m + ε2mδ

2
m

)
(x)
)
dx− r.

(24)

The formula (24) implies that for ε1j−1 = ε2j−1 = 0, we get I∗ (0, ..., 0) = 0 and(
∂I∗

∂ε2j−1

)(
ε2j−1 = 0

)
=

∫ b

a

[
∂jFδ

2
j−1 (x) + (∂m+jF ) C

aD
αj−1
x δ2j−1 (x)

+ (∂2m+jF ) C
xD

βj−1

b δ2j−1 (x)

]
dx

=

∫ b

a

[
∂jFδ

2
j−1 (x) + δ2j−1 (x) RL

x D
αj−1

b ∂m+jF + δ2j−1 (x) RL
a Dβj−1

x ∂2m+jF
]
dx

=

∫ b

a

[
∂jF + RL

x D
αj−1

b ∂m+jF + RL
a Dβj−1

x ∂2m+jF
]
δ2j−1 (x) dx,

(25)
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for all j = 2, ...,m+ 1.

Then, taking into account that (yj)j=1,2,...,m is not an extremum of I, there exists a family of function
(
δ2j
)
j=1,2,...,m

,

where (
∂I∗

∂ε2j

)(
ε11 = ... = ε1m = 0, ε21 = ... = ε2m = 0

)
6= 0, j = 1, 2, ...,m.

(26)

Since I∗ (0, ..., 0) = 0, applying implicit function theorem, there exists a family of function
(
ε2j
)

(·) , j = 1, 2, ...,m

defined in a neigh-borhood of zero, where

I∗
(
ε1j , ε

2
j

(
ε1j
))

= 0.

(27)

Using the Lagrange multiplier rule, there exists a constant µ, where

∇ (J∗ (0, ..., 0) + µI∗ (0, ..., 0)) = (0, .., 0) .

(28)

It is easy to show that for all j = 2, ...,m+ 1,(
∂J∗

∂ε1j−1

)
(0, ..., 0) =

∫ b

a

(
∂jL+ RL

x D
αj−1

b ∂m+jL+ RL
a Dβj−1

x ∂2m+jL
)
δ1j−1dx,

(29)

and (
∂I∗

∂ε1j−1

)
(0, ..., 0) =

∫ b

a

(
∂jF + RL

x D
αj−1

b ∂m+jF + RL
a Dβj−1

x ∂2m+jF
)
δ1j−1dx.

(30)

Taking E = L+ µF, we obtain∫ b

a

(
∂jE + RL

x D
αj−1

b ∂m+jE + RL
a Dβj−1

x ∂2m+jE
)
δ1j−1dx = 0.

(31)

By (ii) , we can obtain:

∂jE + RL
x D

αj−1

b ∂m+jE + RL
a Dβj−1

x ∂2m+jE = 0, j = 2, ...,m+ 1.

Now, we present an example to illustrate our theorem.

Example 9 Consider the following fractional iso-perimetric problem:

J (y1, y2) =
∫ 1

−1
(
x2 + y21 + y22 +

(
C
−1D

3
4
x y1

)2
+
(
C
−1D

7
8
x y2

)2
+
(
C
xD

4
5
1 y1

)2
+
(
C
xD

5
7
1 y2

)2 )
dx,
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subject to the boundary conditions:

y1 (−1) = 0, y1 (1) =
√

2, y2 (−1) = 1, y2 (1) =
3

2
,

and the fractional integral constraint:

I (y1, y2) =

∫ 1

−1

(
x− 2y1 − y2 + C

−1D
3
4
x y1

+ C
−1D

7
8
x y2 + C

xD
4
5
1 y1 + C

xD
5
7
1 y2

)
dx

= 3.

Here, m = 2, a = −1, b = 1, y1−1 = 0, y11 =
√

2, y2−1 = 1, y21 = 3
2 , α1 = 3

4 , α2 = 7
8 , β1 =

4
5 , β2 = 5

7 , r = 3,

and

E = x2 + y21 + y22

+
(
C
−1D

3
4
x y1

)2
+
(
C
−1D

7
8
x y2

)2
+
(
C
xD

4
5
1 y1

)2
+
(
C
xD

5
7
1 y2

)2
+µ
(
x− 2y1 − y2 + C

−1D
3
4
x y1 + C

−1D
7
8
x y2 + C

xD
4
5
1 y1 + C

xD
5
7
1 y2

)
.

For this problem, the fractional Euler–Lagrange equations (22) are given by:
∂2E + RL

x D
3
4
1 ∂4E + RL

−1D
4
5
x ∂6E = 0,

∂3E + RL
x D

7
8
1 ∂5E + RL

−1D
5
7
x ∂7E = 0.

Thus, µ should satisfy the fractional Euler–Lagrange equations:
2y1 − 2µ+ RL

x D
3
4
1

(
2 C
−1D

3
4
x y1 + µ

)
+ RL
−1D

4
5
x

(
2 C
xD

4
5
1 y1 + µ

)
= 0,

2y2 − µ+ RL
x D

7
8
1

(
2 C
−1D

7
8
x y2 + µ

)
+ RL
−1D

5
7
x

(
2CxD

5
7
1 y2 + µ

)
= 0.

5 An Optimal Time Problem

Here, we are interested to find the optimal time T as well as the functions (yj)j=1,2,...,m that maximize or minimize
the functional for the following variational problem:

J
′
(y1, ..., ym, T ) =

∫ T

a

L∗
(
x,y1 (x) , ..., ym (x) ,Ca D

α1
x y1 (x) ,

...,Ca D
αm
x ym (x)

)
dx,

(32)

where (
(yj)j=1,...,m , T

)
∈

{(
C1 ([a, b]) , [a, b]

)
: yj (a) = yja

}
.

(33)
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Theorem 10 Assume that
(

(yj)j=1,...,m , T
)
is an extremum of J

′
defined by (32)&(33). Then, for all x ∈ [a, T ] ,

∂jL
∗ + RL

x D
αj−1

T ∂m+jL
∗ = 0, j = 2, ...,m+ 1,

(34)

and the following transversality conditions are satisfied

1. L∗
(
T, y1 (T ) , ..., ym (T ) ,Cx D

α1

T y1 (T ) , ...,Cx D
αm

T ym (T )
)

= 0,

2. xI
1−αj−1

T (∂m+jL
∗) (T ) = 0, j = 2, ...,m+ 1.

Proof. Let yj + εδj be variations of yj and T + ε∆T variation of T, such that ε > 0, ∆T ∈ R and

S∗ : =
{
δj ∈ C1 ([a, b]) : δj (a) = 0, j = 1, ...,m

}
.

Define

J
′
(ε) = J

′
(y1 + εδ1, ..., ym + εδm, T + ε∆T ) .

(35)

Let
(

(yj)j=1,...,m , T
)
be an extremum of J

′
. Then, we get(

∂J
′

∂ε

)
(ε = 0) = 0,

(36)

which implies that ∫ T

a

[
∂jL

∗δj−1 (x) + ∂m+jL
∗ C
aD

αj−1

T δj−1 (x)
]
dx

+∆TL∗
(
T, y1 (T ) , ..., ym (T ) ,Cx D

α1

T y1 (T ) , ...,Cx D
αm

T ym (T )
)

= 0.

(37)

where j = 2, ...,m+ 1.

Using Eq. (6) given in (iii), we obtain∫ T

a

[
∂jL

∗δj−1 (x) + δj−1 (x) RL
x D

αj−1

T ∂m+jL
∗] dx+x I

1−αj−1

T (∂m+jL
∗) (T ) δj−1 (T )

+∆TL∗
(
T, y1 (T ) , ..., ym (T ) ,Cx D

α1

T y1 (T ) , ...,Cx D
αm

T ym (T )
)

=

∫ T

a

[
∂jL

∗ + RL
x D

αj−1

T ∂m+jL
∗] δj−1 (x) dx+ xI

1−αj−1

T (∂m+jL
∗) (T ) δj−1 (T )

+∆TL∗
(
T, y1 (T ) , ..., ym (T ) ,Cx D

α1

T y1 (T ) , ...,Cx D
αm

T ym (T )
)

= 0.

(38)
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By fixing δj−1 ≡ 0, j = 2, ...,m+ 1, and by the arbitrariness of ∆T, we obtain the first transversality condition:

L∗
(
T, y1 (T ) , ..., ym (T ) ,Cx D

α1

T y1 (T ) , ...,Cx D
αm

T ym (T )
)

= 0.

Then, the second transversality condition is proved by choosing δj−1is zero on [a, T ) and δj−1 (T ) 6= 0, j = 2, ...,m+1.

If δj−1is free on [a, T ) and δj−1 (T ) = 0, j = 2, ...,m+1, we obtain the Euler-Lagrange equation (34). This completes
the proof.

Example 11 Let us consider the following optimal time problem:

J
′
(y1, y2) =

∫ T

−2

(
2x3 − 1

2
y21 +

1

2
y22 − 2

(
C
−2D

2
3
x y1

)2
+ 2

(
C
−2D

3
4
x y2

)2 )
dx,

with the boundary conditions:
y1 (−2) = 1, y2 (−2) = −1.

We have: m = 2, a = −2, b = 2, y1−2 = 1, y2−2 = −1, α1 = 2
3 , α2 = 3

4 ,

and
L∗ = 2x3 − 1

2
y21 +

1

2
y22 − 2

(
C
−2D

2
3
x y1

)2
+ 2

(
C
−2D

3
4
x y2

)2
.

Then, the fractional Euler–Lagrange equations associated are:
∂2L

∗ + RL
x D

2
3

T ∂4L
∗ = 0,

∂3L
∗ + RL

x D
3
4

T ∂5L
∗ = 0,

which implies that 
−y1 − 4 RL

x D
2
3

T

(
C
−2D

2
3
x y1

)
= 0,

y2 + 4 RL
x D

3
4

T

(
C
−2D

3
4
x y2

)
= 0.

And the the transversality conditions are:
2T 3 − 1

2y
2
1 (T ) + 1

2y
2
2 (T )− 2

(
C
−2D

2
3

T y1

)2
(T ) + 2

(
C
−2D

3
4

T y2

)2
(T ) = 0,

−4 xI
1
3

T

(
C
−2D

2
3
x y1

)
(T ) = 0,

4 xI
1
4

T

(
C
−2D

3
4
x y2

)
(T ) = 0.

6 Conclusion

We consider the following problem: find functions (yj)j=1,2,...,m ∈ C
1 ([a, b]) that maximize or minimize the functional

J (y1, ..., ym) =

∫ b

a

L
(
x,y1 (x) , ..., ym (x) ,Ca D

α1
x y1 (x) ,

...,Ca D
αm
x ym (x) ,Cx D

β1

b y1 (x) , ...,Cx D
βm

b ym (x)
)
dx,

subject to the boundary conditions:

yj (a) = yja, yj (b) = yjb.
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First, we conclude that the solution (yj)j=1,2,...,m of the given fractional variational problem, satisfy the fractional
Euler–Lagrange equations:

∂jL+ RL
x D

αj−1

b ∂m+jL+ RL
a Dβj−1

x ∂2m+jL = 0, j = 2, ...,m+ 1.

Then, we consider the fractional iso-perimetric problem that depends on maximizing or minimizing the above functional
subject to the given boundary conditions and the fractional integral constraint:

I (y1, ..., ym) =

∫ b

a

F
(
x, y1 (x) , ..., ym (x) ,Ca D

α1
x y1 (x) , ...,Ca D

αm
x ym (x) ,

C
xD

β1

b y1 (x) , ...,Cx D
βm

b ym (x)
)
dx

= r.

Second, we conclude that if the solution (yj)j=1,2,...,m is not an extremum of I, then there exists a constant µ satisfaying

∂jE + RL
x D

αj−1

b ∂m+jE + RL
a Dβj−1

x ∂2m+jE = 0, j = 2, ...,m+ 1.

for all x ∈ [a, b] , where E = L+ µF.

Finally, we state that the optimal solution pair functions-time
(

(yj)j=1,...,m , T
)
∈
{(
C1 ([a, b]) , [a, b]

)
: yj (a) = yja

}
of

J
′
(y1, ..., ym, T ) =

∫ T

a

L∗
(
x,y1 (x) , ..., ym (x) ,Ca D

α1
x y1 (x) ,

...,Ca D
αm
x ym (x)

)
dx.

satisfy, for all x ∈ [a, T ] ,

∂jL
∗ + RL

x D
αj−1

T ∂m+jL
∗ = 0, j = 2, ...,m+ 1,

and the following transversality conditions:

1. L∗
(
T, y1 (T ) , ..., ym (T ) ,Cx D

α1

T y1 (T ) , ...,Cx D
αm

T ym (T )
)

= 0,

2. xI
1−αj−1

T (∂m+jL
∗) (T ) = 0, j = 2, ...,m+ 1.

For the future, we will study an isoperimetric problem with multiple constraints.
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