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Abstract 

We Study The Identities For Stirling Numbers Obtained By Wildon, And Yuluklu Et Al. 
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1. Introduction 

   Yuluklu-Simsek-Komatsu [1] Deduced The Identity: 

                                          𝐴 ≡ ∑  ∑  (−1)𝑗𝑘
𝑗=0 2𝑛−𝑗 𝑗!  𝑆𝑛

(𝑘)
 𝑆𝑘

[𝑗]
= (−1)𝑛 𝑛! ,𝑛

𝑘=0                                          (1) 

Where 𝑆𝑛
(𝑘)

 And 𝑆𝑘
[𝑗]

 Are The Stirling Numbers Of The First And Second Kind, Respectively [2]. In Sec. 2 We 

Exhibit An Elementary Proof Of (1) And We Give An Extension Of It. 

   Wildon [3] Used The Technique Of Differentiation To Obtain The Following Relations: 

                                                              ∑ (
𝑛
𝑘

)𝑛
𝑘=0 𝑆𝑘

[𝑚]
= 𝑆𝑛+1

[𝑚+1]
 ,                                                                  (2) 

                                                          ∑ (−1)𝑘𝑛
𝑘=0  𝑘 𝑆𝑛

(𝑘)
= −𝑆𝑛+1

(2)
 ,                                                               (3) 

                                                   ∑  (−1)𝑘𝑛
𝑘=0 (

𝑘
𝑚

) 𝑆𝑛
(𝑘)

= (−1)𝑚 𝑆𝑛+1
(𝑚+1)

 ,                                                    (4) 

                                              𝐶 ≡ ∑  (
𝑛
𝑘

)𝑛
𝑘=0 𝑆𝑘

[𝑚]
 𝐵(𝑛 − 𝑘) = ∑ (

𝑟
𝑚

)𝑛
𝑟=0 𝑆𝑛

[𝑟]
 ,                                             (5) 

With The Participation Of The Bell Numbers [2, 4-6]: 

                                                                     𝐵(𝑞) ≡ ∑ 𝑆𝑞
[𝑗]

 .
𝑞
𝑗=0                                                                       (6) 

In Sec. 3 We Comment That The Identities (2), (3) And (4) Are Known In The Literature, And We Realize A Simple 

Demonstration Of (5). 

2. Yuluklu Et Al Expression 

   We Have The Orthonormality Of The Stirling Numbers [2, 6]: 
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                                                                  ∑ 𝑆𝑛
(𝑘)𝑛

𝑘=𝑗  𝑆𝑘
[𝑗]

= 𝛿𝑗𝑛 ,                                                                    (7) 

Then: 

                                          𝐴 = ∑  (−1)𝑗𝑛
𝑗=0 2𝑛−𝑗  𝑗!  ∑  𝑆𝑛

(𝑘)𝑛
𝑘=𝑗 𝑆𝑘

[𝑗]
   (7)
  =

 
  (1)  𝑞. 𝑒. 𝑑. 

Similarly: 

                         𝐷 ≡ ∑ ∑  (−1)𝑗−𝑘𝑘
𝑗=0 2𝑛−𝑗 𝑗!  𝑆𝑛

(𝑘)
 𝑆𝑘

[𝑗]
= (−1)𝑛 ∑  (−1)𝑗𝑛

𝑗=0 2𝑛−𝑗 𝑗!  𝐿𝑛,𝑗  ,𝑛
𝑘=0                    (8) 

With The Presence Of The Lah Numbers [6-8]: 

                                                  𝐿𝑛,𝑗 ≡ ∑  (−1)𝑛−𝑘 𝑛
𝑘=𝑗 𝑆𝑛

(𝑘)
 𝑆𝑘

[𝑗]
=

𝑛!

𝑗!
 (

𝑛 − 1
𝑗 − 1

) ,                                             (9) 

Thus From (8): 

                                            𝐷 = (−2)𝑛−1 𝑛!  ∑ (
𝑛 − 1

𝑞
)𝑛−1 

𝑞=0 (−
1

2
)𝑞 = (−1)𝑛+1 𝑛! .                                   (10) 

   The Identities (1) And (10) Imply The Result:    

                                   ∑  ∑ (−1)𝑗−𝜀 𝑘𝑘
𝑗=0  2𝑛−𝑗  𝑗!  𝑆𝑛

(𝑘)
 𝑆𝑘

[𝑗]
= {

(−1)𝑛 𝑛!  ,        𝜀 = 0,

(−1)𝑛+1 𝑛!  ,    𝜀 = 1.
 𝑛 

𝑘=0                            (11) 

3. Wildon’s Relations 

   The Property (2) Is The Equation (15.31) In [2], Also See [9]. The Relation (12.17) In [2] Gives The Following 

Expression For The Harmonic Numbers: 

                                                            𝐻𝑛 =
(−1)𝑛

𝑛!
 ∑  (−1)𝑘𝑛

𝑘=0  𝑘 𝑆𝑛
(𝑘)

 ,                                                       (12) 

Besides, From [10] We Have That: 

                                                                      𝐻𝑛 =
(−1)𝑛+1

𝑛!
 𝑆𝑛+1

(2)
 ,                                                                 (13) 

Hence (3) Is Consequence Of (12) And (13). The Identity (4) Is Deduced In [10]. 

   From (9.25) In [2]: 

                                                   𝐷 ≡ ∑ (
𝑛
𝑘

)𝑛
𝑘=0  𝑆𝑘

[𝑚]
 𝑆𝑛−𝑘

[𝑗]
= (

𝑚 + 𝑗
𝑚

) 𝑆𝑛
[𝑚+𝑗]

 ,                                           (14) 

Which Allows Consider The Left Member Of (5): 

                                  𝐶   
(6)
=
 

   ∑ 𝐷   𝑛
𝑗=0

(14)
=
 

 ∑ (
𝑚 + 𝑗

𝑚
)𝑛

𝑗=0  𝑆𝑛
[𝑚+𝑗]

= ∑  (
𝑟
𝑚

)𝑚+𝑛
𝑟=𝑚  𝑆𝑛

[𝑟]
 , 
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Equivalent To The Right Member Of (5), Q.E.D. 
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