
MathLAB Journal Vol 1 No 3 (2018) http://purkh.com/index.php/mathlab

302

Some Notes on Neville’s Algorithm of Interpolation with Applications to Trigonometric Interpolation

1Shpëtim Rexhepi, 2Egzona Iseni, 3Bilall I. Shaini, 4Tetuta Zenku

1,2,4Mother Teresa University, Math department, Skopje, Macedonia

3State University of Tetovo, Math department, Tetovo, Macedonia.

shpetim.rexhepi@unt.edu.mk, egzona.iseni@unt.edu.mk, bilall.shaini@unite.edu.mk, teuta.zenku@unt.edu.mk

Abstract

 In this paper is given a description of Neville’s algorithm which is generated from Lagrange interpolation

polynomials. Given a summary of the properties of these polynomials with some applications. Then, using the

Lagrange polynomials of lower degrees, Neville algorithm allows recursive computation of those of the larger

degrees, including the adaption of Neville’s method to trigonometric interpolation. Furthermore, using a

software application, such as in our case, Matlab, we will show the numerical experiments comparisons between

the Lagrange interpolation and Neville`s interpolation methods and conclude for their advantages or

disadvantages.

Key words: Lagrange interpolation, Trigonometric interpolation, Neville's method, Neville's algorithm.

Subject Classification (2010): 97N50, 65T40

1. Introduction

Interpolation is an important tool in producing computable approximations to commonly used functions. By

interpolation can be determined how any size varies within the segment of the measuring points, even outside

this interval (in this case we extrapolation). The most basic problem of interpolation arises as follows: In a

segment  ,a b are given 1n+ points , 0,=ix i n

that are called nodes of interpolation and the respective

values (), 0,= =i iy f x i n

of a function f. Required a simple function, in our case a polynomial nP of degree

less or equal to n that have the same values with function f at interpolation nodes, namely:

() (), 1,= =n i iP x f x i n .

Here we will deal with the problem of polynomial interpolation. Will be examined the interpolation by Neville

algorithm which actually is an improved version of the classical polynomial interpolation by Lagrange. Neville’s

method can be applied in the situation that we want to interpolate ()f x at a given point x p= with increasingly

higher order Lagrange interpolation polynomials.

 Below is given a description of the interpolation algorithm and examples of execution of this algorithm in

programming language. Using undetermined coefficients for the polynomials in Neville's algorithm, one can

compute the Mac’Laurin expansion of the final interpolating polynomial, which yields numerical approximations

for the derivatives of the function at the origin. While "this process requires more arithmetic operations than is

required in finite difference methods", "the choice of points for function evaluation is not restricted in any way".

They also show that their method can be applied directly to the solution of linear systems of the Vandermonde

type.

mailto:shpetim.rexhepi@unt.edu.mk
mailto:egzonaiseini@hotmail.com
mailto:bilall.shaini@unite.edu.mk

MathLAB Journal Vol 1 No 3 (2018) http://purkh.com/index.php/mathlab

303

On Neville's method

Through any two points can pass only one line. Through any three points can be withdrawn a single(unique)

parabola, and so on. Polynom of degree n-1 that passes through n points () , 1,= =i iy f x i n is given by

classical Lagrange as follows:

()

()

1

1

1

()
=


=

=


 
− 

 
=  

 −
 
 






n

j

jn
j i

in
i

i j

j
j i

x x

P x y

x x

.

Interpolation algorithm can be implemented directly through the Lagrange formula, but it is not a good solution.

Such an algorithm will not have any mechanism for evaluating the error. In this case Neville's algorithm is very

appropriate. Description of the algorithm is as follows:

Let 1P be the value at the point x of the unique polynomial of degree zero (constant) which passes through

the point ()1 1,x y , therefore 1 1P y= . In the same way can be determined points 1 2, ,..., nP P P . Now if we go a

step further and define 1,2P as the value at the point x, of the unique polynomial of the first degree that passes

throught points ()1 1,x y and ()2 2,x y . The same thing is valid for points 2,3 3,4 1,, ,..., n nP P P − . In a similar way

can be defined 1,2,...,nP the value of the unique polynomial that passes through all n-points. According to these

the structure of the Neville algorithm can be displayed in schemes. The Neville Algorithm recursively

complements the numbers in this table - the column for columns also from left to right. It is based on the

"child's" P links and his two "parents

()
()

()
(1)...(1)

(1)...()

(1)(2)...()

1 + + −

+ +

+ + + ++

−
=

−−

j j j m j

j j j m

j j j m j mj j m

P x x x
P x

P x x xx x
, for

1,

0, 1

 = +


= −

j m n

m n
 ,

 while it’s inverse can be given by

()
()

()
(1)...(1)

(1)...()

(1)(2)...()

1 + + −

+ +

+ + + ++

−
=

−−

j j j m j

j j j m

j j j m j mj j m

P y y y
P y

P y y yy y
, for

1,

0, 1

 = +


= −

j m n

m n

The improvement of the above rrecurence can be achieved in such a way as to follow the minor changes

between "the child" and "his parents". These differences are equal to:

, ...() ...(1)+ + − −m j j j m j j mC P P ,
, ...() (1)...()+ + + −m j j j m j j mD P P

Respectively,

1

,1,1

,1

))((

++

+++

+
−

−−
=

mii

imimmi

im
xx

DCxx
D ,

1

,1,

,1

))((

++

+

+
−

−−
=

mii

imimi

im
xx

DCxx
C

In the above expressions, C and D represent corrections which, for each column of the scheme, increase the

interpolation order to 1. For example for 4n = the scheme will be as follows:

MathLAB Journal Vol 1 No 3 (2018) http://purkh.com/index.php/mathlab

304

Table 1

filling the scheme from left to right, the correction value C and D will be reduced more and more (in the ordinary

case). Thus, the final correction value will show the error indicator. This value actually indicates to what extent

the interpolation curve is polished. If the interpolation curve fluctuates (eg outside the entry point range) the

curve will not be so smooth, which means that even the correction values C and D will be larger, and as a

consequence error estimation.

So Neville’s algorithm in recursively way fills the numbers in the scheme column by column from left side to the

right. The curves generated by Neville’s algorithm are called Lagrange interpolation polynomials.

We will illustrate an example of Lagrange interpolation polynomial in the following figure:

Fig 1. The cubic Lagrange polynomial for the control points: P1=(-4,4), P2=(4,-5), P3=(4,5), P4=(-4,-5) (dots),

interpolated at the nodes , (1,2,3,4)kx k k= = .

Theorem1. Given the affine points 1 2, ,..., nP P P and distinct parameters 1 2, ,..., nt t t . There is a unique

polynomial curve ()1,2,...,nP t of degree 1n− that interpolates the given points at the specified parameters. That

is ()1,2,..., , (1,2,..,)n k kP t P k n= = .

To proof this theorem we will give these auxiliary theorems:

Theorem 2. [Taylor theorem] Let ()P t be a polynomial, ()deg 1P t n= − , r .Then

() () ()() ()
() () ()

()

()

2 1

1
...

2! 1 !

n

nt r t r
P t P r P r t r P r P r

n

−

−− −
 = + − + + +

−
.

MathLAB Journal Vol 1 No 3 (2018) http://purkh.com/index.php/mathlab

305

Proposition 1. Let ()P t be a polynomial of degree 1n− . Then r is the root of ()P t it and only if t r− is a

factor of ()P t .

Proof: Let ()P t be a polynomial of degree n-1. Than by theorem 2

() () ()() ()
() () ()

()

()

2 1

1
...

2! 1 !

n

nt r t r
P t P r P r t r P r P r

n

−

−− −
 = + − + + +

−
 .

Therefore, by inspection, () 0P r = if and only if if t r− is a factor of ()P t .

Proposition 2. Every nonzero polynomial of degree 1n− has at most 1n− roots.

Proof: From proposition 1 as consequence is obtained that a polynomial of 1n− degree can have at most 1n−

linear factors.

Proposition 3. Let ()P t and ()Q t be two polynomials of degree 1n− that agree at n parameter values. Than

() ()P t Q t= .

Proof: Let () () ()R t Q t P t= − . Than ()R t is a polynomial of degree n-1. Moreover since ()P t and ()Q t

agree at n parameter values, ()R t has n roots. Therefore by proposition 3, ()R t must be the zero polynomial,

respectively () ()P t Q t= .

Now let us proof theorem1.

The proof is by induction on n. We have already established this result for
1,2,3,4n =

. Suppose this result is

valid for 1n− . Then by induction there are polynomial curves ()1,2,..., 1nP t− and ()2,3,...,nP t of degree 2n− that

interpolates the points 2 ,..., nP P at the parameters 2 ,...., nt t . Define

() ()1
1,2,..., 1,2,..., 2 2,3,..., 1

1 1

n
n n n

n n

t t t t
P P t P t

t t t t
− −

− −
= +

− −
.

Easily can be defined that ()1,2,..., , 1,2,..,n k kP t P k n= =

and since ()1,2,..., 1nP t− and ()2,3,...,nP t of degree 2n−

from the above equation follows that ()1,2,...,n kP t is a polynomial of degree 1n− . Now we will show uniqueness.

Suppose that ()P t and ()Q t be two polynomials curves of degree 1n− that interpolate the given control

points at the specified nodes. Then ()P t and ()Q t are polynomials of degree 1n− that agree at the n

parameter values , so from proposition 3, () ()P t Q t= hence the interpolation polynomial is unique.

The idea of the Neville’s method is to use Lagrange polynomials of lower powers recursively in order to compute

Lagrange polynomials of higher powers. Neville’s method is based on the following theorem:

Theorem 3. Let f be defined at the k- points 1 2, ,..., kx x x and let ix and jx be two distinct points in this set.

Let ()1,2,..., 1, 1,...,i i kP x− + be the Lagrange polynomial that agrees with f at 1 2 1 1, ,..., , ,...,i i kx x x x x− + . Similarly let

MathLAB Journal Vol 1 No 3 (2018) http://purkh.com/index.php/mathlab

306

()1,2,..., 1, 1,...,j j kP x− + be the Lagrange polynomial that agrees with f at 1 2 1 1, ,..., , ,...,j j kx x x x x− + . Than the

Lagrange polynomial ()1,2,...,kP x through all the k points 1 2, ,..., kx x x can be computed as follows:

1,2,..., 1, 1,...,

1,2,...,

1,2,..., 1, 1,...,

()1
()

()

− +

− +

−
=

−−

j j k i

k

i i k ji j

P x x x
P x

P x x xx x

Proof:

Obviously polynomials ()1,2,..., 1, 1,...,i i kP x− + and ()1,2,..., 1, 1,...,j j kP x− + are polynomials of 2k − degree so that the

degree of 1,2,..., ()kP x is 1.−k We will check if 1,2,..., () (), 1,= =k m mP x f x m k . Since

() ()1,2,..., 1, 1,..., ,− + = i i k m mP x f x m i and () ()1,2,..., 1, 1,..., ,− + = j j k m mP x f x m j , than for  1, ,= −m k i j we get

1,2,..., 1, 1,...,

1,2,...,

1,2,..., 1, 1,...,

()1
()

()

()1
()

()

− +

− +

−
= =

−−

−
= =

−−

j j k m m i

k m

i i k m m ji j

m m i

m

m m ji j

P x x x
P x

P x x xx x

f x x x
f x

f x x xx x

For =m i we have:

1,2,..., 1, 1,...,

1,2,...,

1,2,..., 1, 1,...,

()1
()

()

() 01
()

()

− +

− +

−
= =

−−

= =
−−

j j k i i i

k i

i i k i i ji j

i

i

i i ji j

P x x x
P x

P x x xx x

f x
f x

f x x xx x

For =m j we have:

1,2,..., 1, 1,...,

1,2,...,

1,2,..., 1, 1,...,

()1
()

()

()1
()

() 0

− +

− +

−
= =

−−

−
= =

−

j j k j j i

k j

i i k j j ji j

m j i

j

mi j

P x x x
P x

P x x xx x

f x x x
f x

f xx x

So 1,2,..., ()kP x present the
()1− −k

degree interpolating polynomial.

The value 1,2,..., ()kP x can be calculated using a 1-dimensional data array P[1]···P[k]:

 for i:=1 to k do begin

P[i]:=f[i];

for n:=i-1 downto 0 do

 P[n]:=(P[n+1]*(x-x[n])-P[n]*(x-x[i]))/(x[n]-x[i]);

MathLAB Journal Vol 1 No 3 (2018) http://purkh.com/index.php/mathlab

307

 end;

 f:=P[1];

Matlab code

function[Table,Px]=neville(FUN,xn,x);

n=length(xn)-1;

Table(:,1)=xn’;

ifisstr(FUN)==1;

 Table(:,2)=feval(FUN,xn’);

else

Table(:,2)=FUN’;

end;

 fori=2:n+1;

 forj=3:i+1;

 Table(i,j)=((x-xn(i))*Table(i-1,j-1)-...

 (x-xn(i-j+2))*Table(i,j-1))/(xn(i-j+2)-xn(i));

end;

 end;

 Px=Table(n+1,n+2);

The error of polynomial interpolation is calculated by this formula

() ()
() ()()

()

1

0

()
1 !

+

=

−
= − =

+


nn
i

n

i

f b a x
R a f a P a

n
 where f has n+1 continuous derivatives on the interpolating

interval such that for each a belonging in that interval for which exists b within the smallest interval containing

a as well as all the ix

2. Application of Neville’s method on trigonometric interpolation

Next we will give application of Neville method to trigonometric interpolation.

Suppose that ()f x be a 2 -periodic function of x, specified by its values () , 0,= =i iy f x i n where

 , , 0,  − =ix i n than its trigonometric interpolation polynomial takes form

()0

1

1
cos sin

2 =

= + +
m

k k

k

f a a kx b kx where m depends on the form of required fit. By (), ,i jf x i j we

MathLAB Journal Vol 1 No 3 (2018) http://purkh.com/index.php/mathlab

308

denote trigonometric polynomials which takes values 1, ,...,i i jy y y+ for 1, ,...,i i jx x x+ , therefore

() ()0,nf x f x= . Let us deal the cases:

The algorithm occurs when data points lie in the range  0, and depending on functions if it is odd function

the trigonometric polynomial will contain sine terms and if it is even cosine terms

i) Neville’s method for even functions

Let  0,ix  , 0,1,...,i n= . In this case m n= and the unique trigonometric interpolation polynomial will be

()
0

cos
=

=
n

k

k

f x a kx and it can be generated as follows: let us set () (), 0,1,...,i i if x y i n= = than

()
()

()
, 1

,

1,

cos cos1

cos coscos cos

−

+

−
=

−−

i j i

i j

i j jj i

f x x x
f x

f x x xx x
.

ii) Neville’s method for odd functions

Let  0,ix  , 0,1, ,i n=  . In this case 1m n= + and the unique trigonometric interpolation polynomial will

be ()
1

0

sin
+

=

=
n

k

k

f x a kx and it can be generated as follows: let us set () (),

sin
0,..., 1

sin
i i i

i

x
f x y i n

x
= = + than

()
()

()
, 1

,

1,

cos cos1

cos coscos cos

−

+

−
=

−−

i j i

i j

i j jj i

f x x x
f x

f x x xx x
.

iii) Neville’s method if the function is not even or odd

Let ()g x be a 2 -periodic function of x, specified by its values () , 0,= =i iy g x i n where

 , , 0,  − =ix i n . In this case 2n m= and the unique trigonometric interpolation polynomial will be

()0

1

1
cos sin

2 =

= + +
m

r r

r

g a a rx b rx which is provided by formula

0

0

0

sin
2

sin
2

=


=

=


 −  
  

  
=  

−  
  
  

 






n
j

jn
j i

in
i i j

j
j i

x x

g y
x x

.

 Equivalent to this result is obtained from method similar to Neville’s method with the initial approximation

() (), 0,1,...,= =i i ig x y i n and further approximations are obtained from the relation

()

()

()

()

()
, 1 , 1, 1 1, 1

1, 1 1, ,

1, 1

1 1 1 1

0

sin sin sin
2 2 2

 



+ − + + +

− − −

− +

− + − +

−

=
− − −     

     
     

j j i j i j i j

i j i i i j

i j

j i j i j i

g x g x

g x g x
g x

x x x x x x

 Where

MathLAB Journal Vol 1 No 3 (2018) http://purkh.com/index.php/mathlab

309

, sin sin sin
2 2 2


− + −  −−   

=      
    

s r j i sr
r s

x x x x x xx x
.

The following table illustrates the case for 6n = .

Calculation for full-range series(function is not even or odd)

00

11 02

22 13 04

33 24 15 06

44 35 26

55 46

66

g

g g

g g g

g g g g

g g g

g g

g

Table2.

3. Illustrations and discussions

In the Matlab software package we have created a program that can enter the original function that later will

be interpolated. The user initially gives assigned number of points on the original function that are believed to

be known as interpolation points for Neville's algorithm. Here is the advantage is the appearance of the original

function (plotted in green), then given an arbitrary number of known points of the function (marked with red

circles), which are then given to Neville's algorithm. Finally, the user sets the second set of points (red or blue

crosshairs) asking for the values obtained by interpolation of initial given points. As a result of the program,

displayed are the values of x (that are initially given) and y (interpolated) coordinates of the second set marked

with "$", and the interpolated function and the graph of interpolated function plotted by a dashed blue line

(from xmin to xmax).The results are shown in the figures below:

Examples of interpolated functions

1. sin(1.5) cos(0,3) cos(0,2) cos(0,16) sin(0,16)= + + + +y x x x x x

(fig.1)

MathLAB Journal Vol 1 No 3 (2018) http://purkh.com/index.php/mathlab

310

2. cos(0,2) cos(0,16) sin(0,16)= + +y x x x

(fig.2)

In the following example can be seen that the interpolation accuracy is highly dependent on the fact that chosen

points (known given points) are found in crossings or out crossings of the functions, and the fact if the boundary

points are taken or not. Compare figure 3 and 4.

3. sin(1.2) sin(1.7) sin(0,2) sin(0,16) sin(0,16) sin(0,083)= + + + + +y x x x x x x

(fig.3)

MathLAB Journal Vol 1 No 3 (2018) http://purkh.com/index.php/mathlab

311

(fig.4)

4. An example to find the error bound consider the sample points

I
ix sin ix

1 0 0

2

2



1

3  0

4 3

2



-1

5 2 0

Table3.

The maximum interpolation error is estimated by (
() ()1

1
+


n

f b)
()

()0

35
() 0,3

1 ! 120=

−
 

+


n
i

i

a x
R a

n
whereas

the error increases rapidly outside the interval  0, 2 as can be seen from the figure 5, below:

MathLAB Journal Vol 1 No 3 (2018) http://purkh.com/index.php/mathlab

312

Fig5. (Interpolating polynomial) The interpolated function (solid curve) and the interpolating polynomial (broken

curve)

4. Conclusion

The advantages of interpolated function: are used only operations +, -, *, /, in contrast to the original function,

which can contain a variety of mathematical functions (sinh, ln, arc, exp…). This property is very useful in cases

when the execution speed can be very important.

Using the program for the famous original function it is possible to vary the number (and coordinates) known

points, and for a given problem to detect the optimal configuration of the known values, which satisfies the

required accuracy interpolation. An important property Neville`s method is that successive interpolations get

everything precise and more accurate values, with the exception of the last, which - diverges.

The advantage of Neville's method over a Lagrange interpolating polynomial, if the data are arranged in order

of closeness to the interpolated point, is that none of the work performed to obtain a specific degree result

must be redone to evaluate the next higher degree result. Neville's method has a couple of minor

disadvantages. All of the work must be redone for each new value of x. The amount of work is essentially the

same as for a Lagrange polynomial. The divided difference polynomial minimizes these disadvantages.

References

1. W. Gautschi, Numerical Analysis, Birkhäuser, Boston, 1997.

2. D. Levy, Numerical Analysis , University of Maryland, March 4, 2008.

3. N. J. Higham, Accuracy and Stability of Numerical Algorithm, SIAM, Philadelphia, 1996.

4. I.S Berezin and N.P. Zhidkov, Computing methods,Oxford, Pergamon Press

5. L. N. Trefethen, Approximation Theory and Approximation Practice, SIAM, 2012.

MathLAB Journal Vol 1 No 3 (2018) http://purkh.com/index.php/mathlab

313

6. B. Shaini,Sh.Rexhepi , E.Iseni ,, On advantages of Neville Method and its adapting to trigonometric series,

Conference SPNA Tirana, 2014

7. M. J. D. Powell, Approximation Theory and Methods, Cambridge University Press, 2001.

8. J. Mason, D. Hands comb, Chebyshev Polynomials, CHAPMAN & HALL/CRC , 2003.

9. T. J. Rivlin, Chebyshev Polynomials-from appromaxion theory to algebra and number theory, John Wiley,

1990.

10. B. Hunter, ,, Nevilles method for trigonometric interpolation,, the Computer journal, 1968

11. John MasonDavid Handscomb, “Chebyshev Polynomials”, April 2002

12. Doron Levy ,,Numerical Analysis ,,University of Maryland March 4, 2008

13. Xiaozhe Hu,, Introduction to Numerical Analysis,, The Pennsylvania State University

14. Z.Drmac, M.Marusic,S.Singer,V.Hari,M.Rogina,S.Singer, “Numericka Analiza”, predavanje i vezbe, Zagreb,

2003

