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Abstract 

 In this paper is given a description of Neville’s algorithm which is generated from Lagrange interpolation 

polynomials. Given a summary of the properties of these polynomials with some applications. Then, using the 

Lagrange polynomials of lower degrees, Neville algorithm allows recursive computation of those of the larger 

degrees, including the adaption of Neville’s method to trigonometric interpolation. Furthermore, using a 

software application, such as in our case, Matlab, we will show the numerical experiments comparisons between 

the Lagrange interpolation and Neville`s interpolation methods and conclude for their advantages or 

disadvantages. 
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1. Introduction 

Interpolation is an important tool in producing computable approximations to commonly used functions. By 

interpolation can be determined how any size varies within the segment of the measuring points, even outside 

this interval (in this case we extrapolation). The most basic problem of interpolation arises as follows: In a 

segment  ,a b are given 1n+  points , 0,=ix i n
 
that are called nodes of interpolation and the respective 

values ( ), 0,= =i iy f x i n
 
of a function f. Required a simple function, in our case a polynomial  nP  of degree 

less or equal  to n that have the same values with function f  at interpolation nodes, namely: 

( ) ( ), 1,= =n i iP x f x i n .  

Here we will deal with the problem of polynomial interpolation. Will be examined the interpolation by Neville 

algorithm  which actually is an improved version of the classical polynomial interpolation by Lagrange. Neville’s 

method can be applied in the situation that we want to interpolate ( )f x at a given point x p= with increasingly 

higher order Lagrange interpolation polynomials. 

 Below is given a description of the interpolation algorithm and examples of execution of this algorithm in 

programming language. Using undetermined coefficients for the polynomials in Neville's algorithm, one can 

compute the Mac’Laurin expansion of the final interpolating polynomial, which yields numerical approximations 

for the derivatives of the function at the origin. While "this process requires more arithmetic operations than is 

required in finite difference methods", "the choice of points for function evaluation is not restricted in any way". 

They also show that their method can be applied directly to the solution of linear systems of the Vandermonde 

type.  
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On Neville's method  

Through any two points can pass only one line. Through any three points can be withdrawn  a single(unique) 

parabola, and so on. Polynom of degree n-1 that passes through  n points ( ) , 1,= =i iy f x i n  is given by 

classical Lagrange as follows:  
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Interpolation algorithm can be implemented directly through the Lagrange formula, but it is not a good solution. 

Such an algorithm will not have any mechanism for evaluating the error. In this case Neville's algorithm is very 

appropriate. Description of the algorithm is as follows: 

Let 1P  be the value at the point x of the unique polynomial of degree zero     (constant)  which passes through 

the point ( )1 1,x y , therefore 1 1P y= . In the same way can be determined points 1 2, ,..., nP P P .  Now if we go a 

step further and define 1,2P  as the value at the point x, of the unique polynomial of the first degree that passes 

throught points ( )1 1,x y  and ( )2 2,x y . The same thing is valid for points 2,3 3,4 1,, ,..., n nP P P − . In a similar way 

can be defined 1,2,...,nP  the value of the unique polynomial that passes through all n-points. According to these 

the structure of the Neville algorithm  can be displayed in schemes.  The Neville Algorithm recursively 

complements the numbers in this table - the column for columns also from left to right. It is based on the 

"child's" P links and his two "parents 
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 while it’s inverse can be given by 
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The improvement of the above  rrecurence can be achieved in such a way as to follow the minor changes 

between "the child" and "his parents". These differences are equal to: 

, ...( ) ...( 1)+ + − −m j j j m j j mC P P ,        
, ...( ) ( 1)...( )+ + + −m j j j m j j mD P P  

Respectively,  
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In the above expressions, C and D represent corrections which, for each column of the scheme, increase the 

interpolation order to 1. For example for 4n = the scheme will be as follows: 

 



MathLAB Journal     Vol 1 No 3  (2018)                                                                              http://purkh.com/index.php/mathlab 

304 

 

Table 1 

filling the scheme from left to right, the correction value C and D will be reduced more and more (in the ordinary 

case). Thus, the final correction value will show the error indicator. This value actually indicates to what extent 

the interpolation curve is polished. If the interpolation curve fluctuates (eg outside the entry point range) the 

curve will not be so smooth, which means that even the correction values C and D will be larger, and as a 

consequence error estimation. 

So Neville’s algorithm in recursively way fills the numbers in the scheme column by column from left side to the 

right. The curves generated by Neville’s algorithm are called Lagrange interpolation polynomials.  

We will illustrate an example of  Lagrange interpolation polynomial in the following figure: 

 

Fig 1. The cubic Lagrange polynomial for the control points: P1=(-4,4), P2=(4,-5), P3=(4,5), P4=(-4,-5) (dots), 

interpolated at the nodes ,  ( 1,2,3,4)kx k k= = . 

Theorem1. Given the affine points 1 2, ,..., nP P P  and distinct parameters 1 2, ,..., nt t t . There is a unique 

polynomial curve ( )1,2,...,nP t of degree 1n−  that interpolates the given points at the specified parameters. That 

is ( )1,2,..., , ( 1,2,.., )n k kP t P k n= = .
  

To proof this theorem we will give these auxiliary theorems: 

Theorem 2. [Taylor theorem] Let ( )P t be a polynomial, ( )deg 1P t n= − , r .Then 
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Proposition 1. Let ( )P t be a polynomial of degree 1n− . Then r is the root of ( )P t it and only if t r−  is a 

factor of ( )P t . 

Proof: Let ( )P t be a polynomial of degree n-1. Than by theorem 2  
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−
 . 

Therefore, by inspection, ( ) 0P r =  if and only if  if t r− is a factor of ( )P t . 

Proposition 2. Every nonzero polynomial of degree 1n− has at most 1n−  roots. 

Proof: From proposition 1 as consequence is obtained that a polynomial of 1n−  degree can have at most 1n−  

linear factors. 

Proposition 3. Let ( )P t and ( )Q t be two polynomials of degree 1n−  that agree at n  parameter values. Than 

( ) ( )P t Q t= . 

Proof: Let ( ) ( ) ( )R t Q t P t= − . Than ( )R t is a polynomial of degree n-1. Moreover since ( )P t and ( )Q t  

agree at n  parameter values, ( )R t has n roots. Therefore by proposition 3, ( )R t must be the zero polynomial, 

respectively ( ) ( )P t Q t= . 

Now let us proof theorem1. 

The proof is by induction on n. We have already established this result for 
1,2,3,4n =

. Suppose this result is 

valid for 1n− . Then by induction there are polynomial curves ( )1,2,..., 1nP t− and ( )2,3,...,nP t of degree 2n−  that 

interpolates the points 2 ,..., nP P  at the parameters 2 ,...., nt t . Define 

( ) ( )1
1,2,..., 1,2,..., 2 2,3,..., 1

1 1

n
n n n

n n

t t t t
P P t P t

t t t t
− −

− −
= +

− −
. 

Easily can be defined that ( )1,2,..., , 1,2,..,n k kP t P k n= =
 
and since ( )1,2,..., 1nP t− and ( )2,3,...,nP t of degree 2n−  

from the above equation follows that ( )1,2,...,n kP t is a polynomial of degree 1n− . Now we will show uniqueness. 

Suppose that ( )P t and ( )Q t be two polynomials curves of degree 1n− that interpolate the given control 

points at the specified nodes. Then ( )P t and ( )Q t are polynomials of degree 1n−  that agree at the n 

parameter values , so from proposition 3, ( ) ( )P t Q t= hence the interpolation polynomial is unique. 

The idea of the Neville’s method is to use Lagrange polynomials of lower powers recursively in order to compute 

Lagrange polynomials of higher powers. Neville’s method is based on the following theorem: 

Theorem 3. Let  f  be defined at the k- points 1 2, ,..., kx x x and let ix  and jx  be two distinct points in this set. 

Let ( )1,2,..., 1, 1,...,i i kP x− + be the Lagrange polynomial that agrees with  f  at 1 2 1 1, ,..., , ,...,i i kx x x x x− + . Similarly let 
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( )1,2,..., 1, 1,...,j j kP x− + be the Lagrange polynomial that agrees with f at 1 2 1 1, ,..., , ,...,j j kx x x x x− + . Than the 

Lagrange polynomial ( )1,2,...,kP x  through all the k points 1 2, ,..., kx x x can be computed as follows: 

1,2,..., 1, 1,...,

1,2,...,
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Proof: 

Obviously polynomials ( )1,2,..., 1, 1,...,i i kP x− +  and ( )1,2,..., 1, 1,...,j j kP x− +  are polynomials of 2k −  degree so that the 

degree of 1,2,..., ( )kP x  is 1.−k We will check if 1,2,..., ( ) ( ), 1,= =k m mP x f x m k . Since 

( ) ( )1,2,..., 1, 1,..., ,− + = i i k m mP x f x m i   and ( ) ( )1,2,..., 1, 1,..., ,− + = j j k m mP x f x m j , than for  1, ,= −m k i j  we get  
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For =m i  we have: 
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For =m j  we have: 
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So 1,2,..., ( )kP x  present the 
( )1− −k

degree interpolating polynomial. 

The value 1,2,..., ( )kP x  can be calculated using a 1-dimensional data array P[1]···P[k]: 

 for i:=1 to k do begin  

P[i]:=f[i];  

for n:=i-1 downto 0 do 

 P[n]:=(P[n+1]*(x-x[n])-P[n]*(x-x[i]) )/(x[n]-x[i]); 
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 end; 

 f:=P[1]; 

Matlab code 

function[Table,Px]=neville(FUN,xn,x);  

n=length(xn)-1;  

Table(:,1)=xn’;  

ifisstr(FUN)==1;  

     Table(:,2)=feval(FUN,xn’);  

else  

Table(:,2)=FUN’;  

end; 

 fori=2:n+1;  

   forj=3:i+1;  

    Table(i,j)=((x-xn(i))*Table(i-1,j-1)-...  

      (x-xn(i-j+2))*Table(i,j-1))/(xn(i-j+2)-xn(i));  

end;  

   end; 

 Px=Table(n+1,n+2); 

The error of polynomial interpolation is calculated by this formula 

( ) ( )
( ) ( )( )
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1 !
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nn
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 where f has n+1 continuous derivatives on the interpolating 

interval such that  for each a  belonging in that interval for which exists b  within the smallest interval containing 

a  as well as all the  ix  

2. Application of Neville’s method on trigonometric interpolation 

Next we will give application of Neville method to trigonometric interpolation.  

Suppose that ( )f x  be a 2 -periodic function of x, specified by its values ( ) , 0,= =i iy f x i n  where 

 , , 0,  − =ix i n  than its trigonometric interpolation polynomial takes form 

( )0

1

1
cos sin

2 =

= + +
m

k k

k

f a a kx b kx where m depends on the form of required fit. By ( ), ,i jf x i j  we 
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denote trigonometric polynomials which takes values 1, ,...,i i jy y y+  for 1, ,...,i i jx x x+ , therefore 

( ) ( )0,nf x f x= . Let us deal the cases: 

The algorithm occurs when data points lie in the range  0,  and depending on functions if it is odd function 

the trigonometric polynomial will contain sine terms and if it is even cosine terms 

i) Neville’s method for even functions 

Let  0,ix  , 0,1,...,i n= . In this case m n=  and the unique trigonometric interpolation polynomial will be 

( )
0
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=
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f x a kx  and it can be generated as follows: let us set ( ) ( ), 0,1,...,i i if x y i n= = than
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ii)  Neville’s method for odd functions 

Let  0,ix  , 0,1, ,i n=  . In this case 1m n= +  and the unique trigonometric interpolation polynomial will 

be ( )
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iii) Neville’s method if the function is not even or odd 

Let ( )g x  be a 2 -periodic function of x, specified by its values ( ) , 0,= =i iy g x i n  where 

 , , 0,  − =ix i n . In this case 2n m=  and the unique trigonometric interpolation polynomial will be 

( )0

1

1
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2 =
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r r

r

g a a rx b rx  which is provided by formula 
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 Equivalent to this result is obtained from method similar to Neville’s method with the initial approximation 

( ) ( ), 0,1,...,= =i i ig x y i n and further approximations are obtained from the relation 
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 Where 
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, sin sin sin
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The following table illustrates the case for 6n = . 

Calculation for full-range series(function is not even or odd) 

00

11 02

22 13 04

33 24 15 06

44 35 26

55 46

66

g

g g

g g g

g g g g

g g g

g g

g

 

Table2. 

3. Illustrations and discussions  

In the Matlab software package we have created a program that can enter the original function that  later will 

be interpolated. The user initially gives assigned number of points on the original function that are believed to 

be known as interpolation points for Neville's algorithm. Here is the advantage is the appearance of the original 

function (plotted in green), then given  an arbitrary number of known points of the function (marked with red 

circles), which are then given to Neville's algorithm. Finally, the user sets the second set of points (red or blue 

crosshairs) asking for the values obtained by interpolation of initial given points. As a result of the program, 

displayed  are the values of x (that are initially given ) and y (interpolated) coordinates of the second set marked 

with "$", and the interpolated function and the graph of interpolated function  plotted by a dashed blue line 

(from xmin  to  xmax).The results are shown in the figures below: 

Examples of  interpolated functions 

1.  sin(1.5 ) cos(0,3 ) cos(0,2 ) cos(0,16 ) sin(0,16 )= + + + +y x x x x x
 

 

(fig.1) 
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2. cos(0,2 ) cos(0,16 ) sin(0,16 )= + +y x x x
 

 

(fig.2) 

In the following example can be seen that the interpolation accuracy is highly dependent on the fact that chosen 

points (known given points) are found in crossings or out crossings of the functions, and the fact if the boundary 

points are taken or not. Compare figure 3 and 4. 

3.  sin(1.2 ) sin(1.7 ) sin(0,2 ) sin(0,16 ) sin(0,16 ) sin(0,083 )= + + + + +y x x x x x x
 

 

(fig.3) 
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(fig.4) 

4. An example to find the error bound consider the sample points 

I 
ix  sin ix  

1 0 0 

2 

2


 

1 

3   0 

4 3

2


 

-1 

5 2  0 

Table3. 

The maximum interpolation error is estimated by  (
( ) ( )1

1
+


n

f b )
( )

( )0

35
( ) 0,3

1 ! 120=

−
 

+


n
i

i

a x
R a

n
whereas 

the error increases rapidly outside the interval  0, 2 as can be seen from the figure 5, below: 
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Fig5. (Interpolating polynomial) The interpolated function (solid curve) and the interpolating polynomial (broken 

curve)  

4. Conclusion 

The advantages of  interpolated function: are used only operations +, -, *, /, in contrast to the original function, 

which can contain a variety of mathematical functions (sinh, ln, arc, exp…). This property is very useful  in cases 

when  the execution speed can be very important. 

Using the program for the famous original function it is possible to vary the number (and coordinates) known 

points, and for a given problem to detect the optimal configuration of the known values, which satisfies the 

required accuracy interpolation. An important property Neville`s method is that successive interpolations get 

everything precise and more accurate values, with the exception of the last, which - diverges.

  

The advantage of Neville's method over a  Lagrange interpolating polynomial, if the data are arranged in order  

of closeness to the interpolated point, is that none of the work performed to obtain a specific degree result 

must be redone to evaluate the next higher degree result. Neville's method  has a couple of minor 

disadvantages. All of the work must be redone for each new value of x. The amount of work is essentially the 

same as for a Lagrange polynomial. The divided difference polynomial minimizes these disadvantages. 
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